Supporting Information for

"Transport and Loss of Ring Current Electrons Inside Geosynchronous Orbit during the 17 March 2013 Storm"

N. A. Aseev^{1,2}, Y. Y. Shprits^{1,2,3}, D. Wang¹, J. Wygant⁴, A. Y. Drozdov³, A. C. Kellerman³, G. D. Reeves⁵

¹GFZ German Research Centre for Geosciences, Potsdam, Germany
²Institute of Physics and Astronomy, University of Potsdam, Potsdam, Germany
³University of California Los Angeles, Los Angeles, CA, USA
⁴University of Minnesota, Minneapolis, MN, USA
⁵Los Alamos National Laboratory, Los Alamos, NM, USA

Corresponding author: N. A. Aseev, nikita.aseev@gfz-potsdam.de

• Supporting Figure 1 shows combined HOPE and MagEIS spectrum for the Van Allen Probes A and B. The figure indicates that HOPE and MagEIS data match up well near the energy boundary around 30 keV.

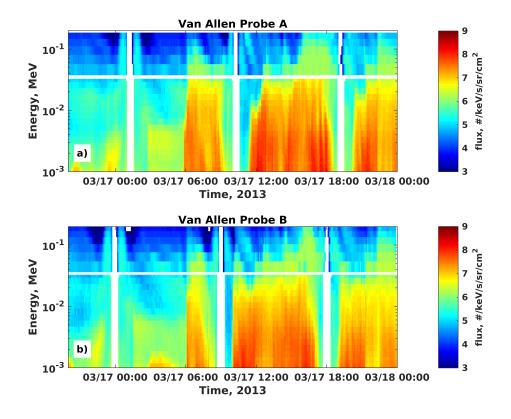


Figure 1. Combined HOPE and MagEIS spectrum for 90° local pitch angle for the Van Allen Probes A (a) and B (b). The HOPE data above 30 keV are not shown, and the white horizontal line marks the energy boundary between the instruments.