
Supplements for the paper ”When do we have the power to detect biological interac-
tions in spatial point patterns?” by Rajala, Olhede and Murrell.

A Technical details on point processes and summaries

A.1 Preliminaries

We observe two point processes X1 and X2, observed as point patterns, or equivalently
as sets of locations, x1 = {x11, ..., x1n1

} and x2 = {x21, ..., x2n2
} in a finite observation

window W ⊂ R
2. Write Ni(B) := #(Xi ∩ B) for the random number of points of type

i in a set B ⊂ R
2. All results generalise easily to higher dimensions. We assume that

the processes (X1, X2) are jointly second order stationary, so that the expectation of the
statistics we shall calculate do not depend on any particular location in the observation
window.

A.2 Summary statistics for bivariate interaction

First assumption is that the expected point count in any set B can be written as an
integral

ENi(B) =

∫

B

λi(u)du,

where λi(u) ≥ 0 is called the intensity. For stationary processes λi(u) ≡ λi is a constant,
and we assume that λi > 0, so that ENi(B) = λi|B|.

We define the cross-K function as a function of a distance parameter r > 0

K12(r) := λ−1
2 Eo1N2(b(o, r)),

where b(o, r) is a ball of radius r > 0 centred at the origin, the expectation Eo1 is condi-
tional on the joint process having a point of type 1 at the origin o (for stationary processes
the exact location does not matter). Heuristically, λ2K12(r) is the mean abundance of
species 2 within distance r of a typical point of species 1. Equivalently we can define
K21(r), but due to symmetry K12 = K21.

The cross-K index is a powerful statistic for testing purposes, but for a more detailed
description of spatial interactions we often study the derivative of K12,

g12(r) :=
K ′

12(r)

2πr
,

known as the cross (or partial) pair correlation function (pcf). The pcf describes the
aggregation/segregation of cross species point locations: The probability of having a
species 1 point at some small region dx and a species 2 point at some small region dy
is given by g12(||x − y||)λ1λ2dxdy. If the processes are independent, g12(r) ≡ 1 and
K12(r) = πr2. We say the processes are aggregated if g12 > 1, and segregated if g12 < 1,
at any particular distance r > 0.

To estimate these quantities several estimators have been proposed, differing in how
the observation bias near the borders of W is corrected. We will look at bivariate
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versions of the globally corrected ”Ohser”-type estimators (Illian et al. 2008, p. 230,
Ward and Ferrandino (1999) and Wiegand et al. 2016) of the form

c(r)
1

n1n2

∑

x∈x1

∑

y∈x2

fr(x− y) = c(r)T (r)

where c(r) is some constant, mainly responsible for scaling and edge correction and possi-
bly depending on r, and fr is some function, for example an indicator function for K12 and
a kernel function for g12. Note that while the theoretical K12 and g12 are symmetric in the
species indices, their estimators are not necessarily so (see e.g. Lotwick and Silverman
1982).

A.3 Covariance of the summary statistics

The key ideas for this Section follow those given by Lotwick and Silverman 1982. Consider
two point processes X1 and X2 with fixed counts n1, n2 in a bounded window W . We are
interested in the covariance between different distances r > 0, s > 0 of estimators of type

M(r) = c(r)
1

n1n2

∑

x∈X1

∑

y∈X2

fr(x− y) = c(r)T (r),

where fr is symmetric in x− y (this can be extended to non-symmetric functions). Then,
if X1 and X2 are independent,

Cov[T (r), T (s)] = (n1n2)
−2[ n1(n1 − 1)n2(n2 − 1)a1(r, s) + n1n2(n1 − 1)a2(r, s)

+ n1n2(n2 − 1)a3(r, s) + a4(r, s)− (n1n2)
2a5(r, s)]

where

a1(r, s) = Efr(x− y)fs(x
′ − y′)

a2(r, s) = Efr(x− y)fs(x
′ − y)

a3(r, s) = Efr(x− y)fs(x− y′)

a4(r, s) = Efr(x− y)fs(x− y)

a5(r, s) = Efr(x− y)Efs(x
′ − y′),

with expectations over random locations on W such that the pair x, x′ follow the distri-
bution of X1 and the pair y, y′ follow the distribution of X2. Heuristically, for the K12

which effectively counts point pairs, the terms reflect the probabilities of all different types
of point pair occurrences, and then get multiplied by corresponding number of possible
combinations. For example, a1 counts the occurrences of two separate pairs which both
have a point from each species, and a2 and a3 count the times an individual has two
neighbours both of the opposite species. These terms are all influenced by the edge of the
observation window W , and are therefore sensitive to the size of the neighbourhood radii
r, s. In the case of i.i.d. uniform locations (that is, assuming X1 and X2 follow Poisson
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processes and we condition on fixed n1 and n2), we have a1 = a5 and a2 = a3, and the
covariance, say Cov0(r, s), simplifies to

Cov0(r, s) = (n1n2)
−1[ (n1 + n2 − 2)a2(r, s) + a4(r, s)− (n1 + n2 − 1)a1(r, s)]

= (n1n2)
−1[ (n1 + n2)c2(r, s) + c3(r, s)]

where we have further simplified using

c2 = a2(r, s)− a1(r, s)

c3 = a4(r, s) + a1(r, s)− a2(r, s)

to highlight the effect of sample sizes. The additional constant for the statistic M is
c1(r, s) = c(r)c(s), which mainly scales away biases due to edge effects. This is the form
we provide in Equation 2 and use for our examples.

For the general situation where the processes have some pair correlation functions g1
and g2, additional terms appear such that

Cov[T (r), T (s)] = Cov0(r, s) +

(n1n2)
−1[ (n1 − 1)(n2 − 1)e1(r, s) + (n1 − 1)e2(r, s) + (n2 − 1)e3(r, s)]

≈ Cov0(r, s) + e1(r, s) + n−1
2 e2(r, s) + n−1

1 e3(r, s)

with

e1(r, s) = |W |−4

∫

W 4

{

[g1(x− x′)− 1][g2(y − y′)− 1] + [g1(x− x′)− 1]

+ [g2(y − y′)− 1]
}

fr(x− y)fs(x
′ − y′)dxdydx′dy′

e2(r, s) = |W |−3

∫

W 3

[g1(x− x′)− 1]fr(x− y)fs(x
′ − y)dxdydx′

e3(r, s) = |W |−3

∫

W 3

[g2(y − y′)− 1]fr(x− y)fs(x− y′)dxdydy′.

From these expression we can see that if the marginal processes tend towards internal
clustering, i.e. g1 ≥ 1 and g2 ≥ 1 the extra terms will be positive and the covariances will
be higher than with just uniformly random marginals. This means that in our examples
where the species 2 is slightly clustered (cf. Section B), our plug-in variances are slightly
lower than in truth, leading to over-estimation of power. This explains the ”optimistic”
bias we see in e.g. Figures 1 and S8. Also noteworthy is that for processes tending towards
internal segregation (g1 ≤ 1, g2 ≤ 1) the extra terms are negative and the covariances and
variances are lower than for uniformly random marginals. From a statistical point of view
the best patterns to analyse are strongly internally segregated.

The evaluation of Cov0(r, s) is not trivial, as all the terms are geometrical integrals
determined by the weighting function f and the observation window W . For estimator of
the pair correlation function g12, consider the box-kernel

fr(x− y) = (2h)−11br(x− y),
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where br = b(o, r + h) \ b(o, r − h) and h > 0 is the bandwidth. Then

a1(r, s) = |W |−4(2h)−2 [I1(r + h)− I1(r − h)] [I1(s+ h)− I1(s− h)]

a2(r, s) = |W |−3(2h)−2I3(r, s)

a4(r, s) = |W |−2(2h)−2I2(r, s, h),

where

I1(r) =

∫

b(o,r)

|W ∩ (W + z)|dz

I2(r, s, h) = I1(r + h)− I1(s− h) if |r − s| < 2h, and 0 otherwise

I3(r, s) =

∫

W

∫

W

∫

W

1br(x− y)1bs(x− z)dxdydz.

For the K12 function we use fr(x− y) = 1Br
(x− y) where Br = b(o, r), and

a1(r, s) = |W |−4I1(r)I1(s)

a2(r, s) = |W |−3I4(r, s)

a4(r, s) = |W |−2I1(min(r, s))

where

I4 =

∫

W

∫

W

∫

W

1Br
(x− y)1Bs

(x− z)dxdydz.

The quantities I3 and I4 can be approximated numerically using Monte Carlo integration,
and I1 is up to a constant the isotropised set covariance of W which has a closed form
solution for some elementary shapes of W (rectangle, disc; Illian et al., 2008, p. 485).

A.4 Gaussian approximation of K̂12

The mathematics of the limiting behaviour of the ”Ohser”-type estimators are beyond
this study, and for progress in this regard we refer to Heinrich (2015). We resort to the
same argument as Wiegand et al. (2016): the empirical plots do not show signs against
normality apart from very short distances due to the positivity constraint. Fig. S5
illustrates this (compare to Wiegand et al. 2016, Fig. S3). Note the accuracy of the
analytical formula derived in Appendix A.3 for the variance.

B Model generated data

The process is inspired by the shot-noise product Cox processes (Jalilian et al., 2015), and
is constructed hierarchically. First, let X1 be a stationary Poisson process with intensity
λ1. Then conditional on a realisation x1 of X1, let X2 be an inhomogeneous Poisson
process with intensity function

λ2(u;x1) = ea
∏

x∈x1

(1 + bh(u− x)) ∈ u ∈ W
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Figure S5: Empirical distribution of K̂12 at r = 3, 8, 15 for random shifted data, where
data is generated by the introduced bivariate model with range 2τ = 10. Overlaid are
Gaussian density functions with empirical mean and variance (solid, black) and with
theoretical mean πr2 and variance σ2 given by the analytical approximation (dashed,
red), which in most subplots is superimposed with the solid black line.

where h(v) = kτ (v)/kτ (0) with kτ a 2D kernel function (probability density) with standard
deviation τ > 0, and a ∈ R, b > −1 are parameters controlling the intensity and the
interaction, respectively. The joint model is stationary, and isotropic if k is isotropic, and
has

λ2 = exp (a+ λ1b/kτ (0)) , g11(u) ≡ 1, g12(u) = 1+bh(u), g22(u) = exp
(

λ1b
2(h ∗ h)(u)

)
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Figure S6: Example bivariate point patterns exhibiting cross-species spatial aggregation
and segregation, and the corresponding cross-K and cross-pcf statistics.

where ∗ denotes convolution. From these properties we see that if −1 < b < 0 the two
species exhibit segregation (g12 < 1), and if b > 0 the two species exhibit aggregation or
clustering (g12 > 1), and when b = 0 the two species are independent. We also see that
the both types of interactions result in clustering of species 2 (g22 ≥ 1). The range of
interaction (if defined via the pair correlation) is controlled by the parameter τ . In our
examples we use a Gaussian kernel, for which the range, i.e. h is non-zero, is approximately
2τ . Fig. S6 shows two examples of the process with identical type 1 patterns, together
with their K12 and g12 estimates.

C Additional power estimates

Fig. S7 provides evidence that the analytical power formula is close to the true power,
which can be estimated by Monte Carlo simulation, also in unbalanced scenarios. Compare
Fig. S7 to Fig. 1.
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Figure S7: Power of K12-based pointwise cross-species independence tests with varying
degrees of imbalance n1 = 30 ≤ n2. Range of interaction 2τ = 10. The true power is
estimated using 5000 repeated tests with 199 random shifts each.

Fig. S8 provides evidence that the analytical power formula works also for the cross-
pair correlation function g12. Compare Fig. S8 to Fig. 1. The optimistic bias in the
power is again due to the slight downwards bias in the variance as species 2 is clustered.

The estimation was carried out in this example with the bandwidths 0.15
√

|W |
n1

as the

samples sizes were balanced.
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Figure S8: Power of g12-based pointwise cross-species independence tests. Range of inter-
action 2τ = 10. The true power is estimated using 5000 repeated tests with 199 random
shifts each.

C.1 Testing without simulation

Note that the approximate Gaussianity and the approximate variance formula lead di-
rectly to a χ2-test of independence without random shift simulations, much like in the
work by Wiegand et al. (2016). Procedure:

1. Estimate K̂12(r) for one r

2. Compute σ(r)

3. Compute T = (K̂12(r)− πr2)2/σ2(r)

4. Compare T to the χ2-distribution with 1 degrees of freedom.

C.2 Pointwise test vs testing over a range

In the simulation experiments we control all factors, so we can choose the distance of the
pointwise test to be optimal, i.e. the distance which we know the power is highest. Table
S1 compares this optimal pointwise power to the power of a test where instead of a single
distance an interval of distances is tested simultaneously using a deviation test (see e.g.
Myllymäki et al., 2017).

(n1, n2)=(25,25) (n1, n2)=(50,50) (n1, n2)=(75,75)
Interaction model r=1-10 r=1-20 pw.o. r=1-10 r=1-20 pw.o. r=1-10 r=1-20 pw.o.
b = −.25, 2τ = 10 0.11 0.05 0.07 0.29 0.14 0.16 0.50 0.28 0.30
b = −.25, 2τ = 20 0.18 0.10 0.15 0.41 0.43 0.43 0.70 0.78 0.73
b = −.75, 2τ = 10 0.43 0.21 0.31 0.96 0.82 0.82 1.00 1.00 0.99
b = −.75, 2τ = 20 0.71 0.77 0.80 1.00 1.00 1.00 1.00 1.00 1.00

Table S1: Power comparison of the Studentised L2 deviation test over two distance in-
tervals (“r=1-10” and “r=1-20”) with the pointwise power formula at the known optimal
distance (“pw.o.”). The K12 statistic, and the deviation test powers estimated using 1000
simulations per model and/or setting as indicated, with 199 random shifts each.

We tried using the covariance formula to combine several distances to a χ2-test, but
the very short distance asymmetry and the non-central χ2 did not immediately lead to a
useful power approximation of the Studentised L2 test.
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C.3 Improving power by combining summaries

A simple way to improve power is to combine several summaries in the test statistic.
As an example, we combined the K12 with the nearest neighbour distance distribution
function D12 (Van Lieshout and Baddeley, 1999) by using the pointwise test statistic

TKD(r) =

(

K̂12(r)− K̄12(r)

σ̂K(r)

)2

+

(

D̂12(r)− D̄12(r)

σ̂D(r)

)2

.

Fig. S9 depicts the pointwise powers for K12, D12 and the combination when the data
was generated by our bivariate model with b = 0.5, 2τ = 10. The nearest neighbour
summary operates only at short distances as it saturates to 1 quickly, and for distances
> 5 is inferior to K12 in this scenario. But as it captures different information than the
K12, combining it with K12 increases the power, at least when r < 10. After r > 10 the
combined pointwise power is diminished as the nearest neighbour summary provides no
help yet is weighted equally with K12 in making the decision. Weighting the statistics by
their useful ranges is therefore recommended.
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Figure S9: Power of K12, D12 and K12 +D12-based pointwise cross-species independence
tests when species are significantly segregated.

Table S2 gives the powers of a test with T =
∑20

r=1 T
2
KD(r), over the distances 1− 20.

The power with the combined statistic is higher than with either of the components alone
for small samples.

(n1, n2) = (25,25) (50,50) (75,75)
D12 0.09 0.27 0.45
K12 0.08 0.43 0.83

K12 +D12 0.14 0.49 0.82

Table S2: Power of the independence test when using K12, D12 or both, for different
balanced sample size, deviation test over distances 1-20. Each power was estimated using
2000 simulations of data, 199 random shifts each.
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C.4 Sample size and observation window

Under most circumstances samples sizes can only really be increased by increasing the
area of observation, and the connection λi ≈ ni/Area can be used to get a rough idea
of the requirements. First, a pilot study needs to be conducted to estimate λi (see
Illian et al. 2008 for estimation techniques). Then we need to determine the minimum
Area, accounting for imbalance between species if that is needed. Table S3 gives some
example calculations when a square area is used (note that the window geometry might
affect the power; see C.5).

Balance λ2/λ1 1 2 5 10 50
Area requirement, λ1 ≈ 0.01 1302 1102 902 772 552

Area requirement, λ1 ≈ 0.5 182 162 132 112 82

Table S3: Required observation area given estimates of intensities λ1 and λ2, when ex-
pected interaction has strength b = 0.25 and range 2τ = 10, testing with K12(r = 7) at
level α = 5% and requiring power at least 90%.

C.5 Additional factors

The geometry of the area has an effect on the estimator’s variance and hence the power
of the test, but according to the analytical formula the effect is relatively small. For
example, if we change from a square shape to an elongated rectangle shape with equal
area but width-to-height -ratio 3, and consider interaction b = 0.25 and type I error level
α = 5%, the power drops from 33.2% to 32.9% with 2τ = 10 and 78.0% to 76.8% with
2τ = 20 for sample size (80, 80), and from 15.4% to 15.3% with 2τ = 10 and 41.4% to
40.5% with 2τ = 20 for sample size (30, 80).

Increasing the type I error level α increases the power as illustrated in Table S4. From
the table we can see that a 5% increase in α can reduce the type II error β = 1−power by
more than 10%. So in scenarios where we can tolerate some extra false positive discoveries
with the simultaneous decrease in false negatives, for example when pre-screening a large
data set for more involved downstream analysis on found interacting pairs, adjustments
to α should be considered.

(n1, n2) = (10,10) (30,30) (50,50) (80,80) (30,50) (30,80)
α =1% 0.01 0.08 0.26 0.68 0.14 0.24
α =5% 0.06 0.21 0.48 0.86 0.32 0.47
α =10% 0.10 0.31 0.61 0.92 0.44 0.59

Table S4: Power of the K12 independence test at most powerful distance for typical type
I error levels α. Interaction b = 0.5, 2τ = 10.
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