1

## Supplementary Information

2

## **3 Materials and Methods**

# 4 **Pump-CTD and nutrient measurements**

The pump-CTD system had an approximate water flow of 1.5 1 min<sup>-1</sup> in a FALMAT-hose 5 cable with an outer diameter of 18 and an inner diameter of 6 mm. The pump tube was 6 7 directed into the lab and split into a nutrient and a gas line. Measurements with custom-made STOX-sensors (Unisense, Denmark) revealed a background concentration of 25 nmol/l 8 oxygen originating from the pump-CTD system. Pumping volume was constantly controlled 9 via precision flow-through devices, and delay time between pump inlet and sample outlet was 10 continuously calculated and converted to sampling depth. All samples were measured during 11 lowering of the system with a speed of 1 cm s<sup>-1</sup> (further details in the cruise report: DOI: 12 10.2323/cr msm33). To construct depth profiles from successive casts, data were aligned 13 according to density; for all these profiles the depths showing the respective densities during 14 15 the first cast were used.

16

For continuous nutrient measurements in the outflow of the pump-CTD, the auto-analyzer 17 18 was connected to the water outlet of the pump-CTD system. The injection syringe of the autosampler dipped directly into the core pool of the outflowing water and thereby avoided any 19 20 contact of the samples with laboratory air prior to analysis. This procedure considerably reduced contamination, particularly of ammonium. Sampling time was set to 26 s and 21 washing time to 7 s. As the lowering speed of the pump-CTD was set to 1 cm/s, the vertical 22 resolution of sampling was 33 cm throughout the observed water column, of which 26 cm 23 24 were included in successive analytical pulses and thereby integrated, and 7 cm were lost due to rinsing and blank measurements between the injections. 25

## 27 Nucleic acid extractions

For metagenome analysis 6 l of water were filtered on Sterivex-GV 0.22 µm, PVDF. DNA 28 from frozen Sterivex-filters was extracted using a QIAmp DNA Mini kit (Qiagen, Hilden, 29 30 Germany) after removing the filter from the plastic support. For physical cell disruption, the filter pieces were added to a tube containing lysis buffer and low-binding zirconium beads 31 (200 µm, OPS diagnostics, Lebanon, NJ, USA) and vortexed for 5 min before proceeding 32 with the manufacturer's instructions. The extracted DNA was sent for library preparation 33 (BS80: Illumina TruSeq PCR free library; BS90, BS102, BS115: Rubicon Thruplex library 34 prep) and Illumina HiSeq sequencing to the SciLife Lab (Stockholm, Sweden). For 35 metatranscriptomic analyses from six selected depths, 1.5 l of fixed water samples from the 36 AFIS system were filtered on 0.2 µm polycarbonate filter and stored at -80 °C. RNA from 37 frozen filters was extracted as described elsewhere (1). For downstream absolute 38 quantification of RNA transcripts, standards were added to the lysis buffer before the start of 39 RNA extraction (2). Due to a lysis buffer spill during the extraction of the sample from 111 m 40 water depth, absolute transcript numbers will be slightly overestimated in this sample. DNA 41 leftovers in the RNA extracts were removed using a Turbo DNA-free Kit (Thermo-Fisher 42 Scientific, Waltham, MA USA) and subsequently concentrated and purified using the RNA 43 Clean & Concentrator<sup>TM</sup>-5 Kit (Zymo Research, Irvine, CA, USA). Because positive PCR 44 amplifications with the 16S rRNA specific primers Com1f/Comr2r-Ph (3) indicated the 45 46 presence of DNA traces in the RNA extracts, DNase digestion and subsequent purification was repeated as described above. The purified RNA was sent to Fasteris (Plan-les-Ouates, 47 Switzerland) for Illumina-HiSeq sequencing after rRNA depletion with the RiboZero kit for 48 bacteria (Epicentre, Madison, WI, USA). Library preparation for single reads was performed 49 using the TruSeq stranded mRNA kit (Illumina, San Diego, CA, USA). 50

- 51
- 52

## 53 Bioinformatic processing of Illumina sequence data

Paired Illumina reads from 4 individual metagenome libraries were screened for rRNA-reads 54 using SortMeRNA 1.9 on the default rRNA-databases provided by the program. Remaining 55 non-rRNA-reads were adaptor-clipped using mira 4.0.2 (4) and quality clipped using sickle 56 1.33 (default settings) (5). Remaining intact read pairs from all four libraries were combined 57 and assembled using idba ud 1.1.1 (--mink 25 --maxk 97 --step 18) (6). Contigs shorter than 58 200 nt were discarded. Gene calling was performed using Prodigal's meta-procedure (v2.6.1) 59 (7). CDSs from the Prodigal output were functionally and taxonomically annotated using 60 NCBI's blastp (8) against KEGG and NCBI's NR. Genes of special interest were identified 61 using IHAT as described by Temperton et al. (2011) (9). Single-end metatranscriptome reads 62 were also adaptor- and quality clipped as described above and mapped onto the previously 63 generated metagenome using bowtie2 2.2.4 (10) with the very-sensitive settings. Mapped 64 reads were summarized using featureCounts 1.4.6 (11), requiring a minimum of 20 65 overlapped bases to assign a read to a feature. The number of reads coding for internal 66 standards of the metatranscriptome data were determined in every sample by a LAST search 67 (12) of the non-protein coding reads against a database containing sequence information of 68 the internal standards as well as representative rRNA and tRNA sequences (cutoff score: 69 500). The number of transcripts 1<sup>-1</sup> for Ppk1, Ppk2 and Ppx was estimated as detailed in 70 Satinsky et al. (2013) (2). In short, knowledge of the sequence of internal standards and the 71 72 exact amount of ng internal standard RNA added allowed us to calculate the number of RNA internal standard molecules that were added to each RNA extractions. The recovery rate of 73 the standard molecules in the sequencing data reads can be used to estimate fraction of RNA 74 molecules in the sample that were sequenced and deduce from this value the absolute number 75 of transcripts that were in the filtered water volume. 76

# Analysis of bacterial community composition, probe design and catalysed reporter deposition-fluorescence in situ hybridization

Of the Phenol/Chloroform extracted DNA/RNA mixture, DNA was digested using the Turbo 80 DNA free kit (Ambion). The RNA was transcribed in cDNA utilizing the iScript Select 81 cDNA synthesis kit (Bio-Rad Laboratories GmbH; Munich, Germany). After 16S rRNA gene 82 amplification the amplicons were purified using Agencourt© AMPure ® XP (Becker Coulter) 83 and sent for sequencing. The resulting sequences were analyzed using SILVA NGS 84 (Glöckner et al., 2017) with the settings Min. Align. Identity: 50%; Min. Align. Score: 40; 85 Min. Sequence Quality 30%; Min Length: 200, Max Ambiguties: 2%, Min OTU Identity: 86 97%, Min. Smilarity: 93%. SILVA NGS performs additional quality checks according to the 87 SINA-based alignments (Pruesse et al., 2012) with a curated seed database in which PCR 88 artifacts or non-SSU reads are excluded. The longest read serves as a reference for the 89 taxonomic classification in a BLAST (version 2.2.28+) search against the SILVA SSURef 90 dataset. The classification of the reference sequence of a cluster (97% sequence identity) is 91 then mapped to all members of the respective cluster and to their replicates. Best BLAST hits 92 were only accepted if they had a (sequence identity + alignment coverage)/ $2 \ge 93$  or 93 otherwise defined as unclassified. 94

95

96 CARD-FISH was carried out using the horseradish-peroxidase-labeled probe MaCo983. The 97 competitor probe MaCo983 without horseradish-peroxidase label was applied in parallel. For 98 signal amplification, tyramide labeled with the fluorescent dye carboxyfluoresceine was 99 incubated for 30 min at 37 °C. The filters were embedded in a Citifluor/Vetashield mix (5: 1) 100 containing 4,6-diamidino-2-phenylindole (1  $\mu$ g ml<sup>-1</sup> final concentration). Images were 101 acquired using a 100× Plan-Apochromat objective (Zeiss) and the Zeiss multi-band filter set 102 62HE.

104 Scanning electron microscopy (SEM) and energy dispersive x-ray micro analysis (EDX) Suspended particulate matter in 1 l seawater samples taken from the CTD rosette bottle was 105 filtered on 0.4 µm polycarbonate filters (Millipore) and rinsed with 50 ml purified water to 106 remove salt. After drying at 40 °C for 48 h, the filters were covered (vacuum sputter) with 107 elemental carbon for electrical conductivity. Analysis of carbon in these samples is thus not 108 possible, but this technique is optimal for analyzing all other elements. The identification of 109 minerals after automated particle element analyses is based on boundary values of 110 characteristic elements. These boundary values were defined by analyses of standard minerals 111 112 and adjusted by analyses of samples with known mineral composition. However, besides the additional information about the detected minerals or particle groups, the whole data set for 113 each sample was analyzed with a statistic software (xls; DataDesk) to verify the detected 114 clusters of particles in a "multi element space". Using this method, we were able to 115 characterize the general mineral and particle group composition of the samples and to search 116 for P in different binding forms. 117

118

### 119 Modeling

120 In our modeling approach the differential equation for diffusive transport (Fick's second law):

121 (1)  $\delta c / \delta t = D \cdot \delta^2 c / \delta x^2$ 

122 (D = diffusion coefficient, c = concentration, t = time; x = distance-coordinate), is solved by 123 using the explicit numerical solution:

124 (2) 
$$C_{PO_{d}(x,t+\Delta t)} = C_{PO_{d}(x,t)} + \Delta t \cdot D_{x} \cdot \left(C_{PO_{d}(x+\Delta x,t)} - 2 \cdot C_{PO_{d}(x,t)} + C_{PO_{d}(x-\Delta x,t)}\right) / \Delta x^{2} + \Delta t \cdot Prod_{x}$$

where  $C_{PO_4}$  is the concentration of phosphate at a given place *x* and time *t*,  $D_x$  is the diapycnal diffusivity at the depth *x*, as determined by Gregg and Yakushev (13), *x* is the depth and  $Prod_x$ is a change of concentration at a given depth per time step, caused by the release of phosphate from the particulate phosphorus pool, or visa verse a negative release is an incorporation into the particulate phosphorus pool. When the calculation of all concentrations of a time step is 130 completed, the next time step starts with the final concentrations of the preceding time step. By this approach, the concentration of phosphate with depth is calculated in cell E12-E172 for 131 depths between 80 and 120 m (cell C12-C172) with a  $\Delta x$  of 0.25 m (cell B12). Under starting 132 133 conditions (cell F12-F172), when the model is reset with the switch in cell B10, phosphate increases linearly with depth. This starting condition is without influence on the 134 concentrations in a final steady state. Only the concentration of the first cell (E12) and the 135 rates with which phosphate is released from the particulate pool or incorporated into it (cells 136 G12-G172) determine the final phosphate concentration. These latter rates were manually 137 138 adjusted until they resulted, under steady state, in a profile similar to the measured one. Steady state is reached after approximately 3 years (cell B26). 139

The modelled concentrations of particulate phosphorus originate only from the fluxes into and out of the dissolved pool. These fluxes are adjusted to produce the same shape of the phosphate profile as observed in nature. According to the depth-dependent rates  $Prod_x$ , with which phosphate is released from or incorporated into the particulate pool (cells G12-G172), the concentration of *PartP* (cells H12-H172) changes with each time step, which is expressed by:

 $PartP_{(x,t+\Delta t)} = PartP_{(x,t)} - \Delta t \cdot Prod_{(x)}$ 

147

148

|      | A                         | В                      | С                                  | D                | E                | F                 | G               | н               | 1                | J              | K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | L               | M                       | N              | 0               |
|------|---------------------------|------------------------|------------------------------------|------------------|------------------|-------------------|-----------------|-----------------|------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------------|----------------|-----------------|
|      |                           |                        |                                    |                  |                  |                   |                 |                 |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                         |                | antatan Esta II |
| 1    | EXPLICIT numerica         | i solution for adve    | ctive, aispersi                    | ve/aimusive tra  | ansport and s    | imple reaction    | s (as describ   | ea by H.D. Sc   | nuiz, în Chapt   | er 15: Conce   | otual models a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | and Compute     | r models. In: N         | harine Geoche  | mistry Eas. H   |
| 2    |                           |                        |                                    |                  |                  |                   |                 |                 |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                         |                |                 |
| 3    | How to use this spre      | eadsheet:              |                                    |                  |                  |                   |                 |                 |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                         |                |                 |
| 4    | 1. Set your EXCEL vi      | a Tools – Options –    | <ul> <li>Calculation to</li> </ul> | Calculation = N  | fanual, to Itera | ation = 1 and to  | Maximum Iter    | ations = 1000   |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                         |                |                 |
| 5    | 2. Now each pressing      | of the F9 key is one   | e time step of tl                  | he explicit num  | erical solution  |                   |                 |                 |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                         |                |                 |
| 6    | 3. An input of '1' into i | position B10 and pre   | essing F9 reset                    | s the spreadsh   | eet to the start | conditions        |                 |                 |                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                         |                |                 |
| 7    | 4 An input of '0' into    | position B10 and rer   | neated pressing                    | F9 performs t    | ne model calc    | lation In B26 th  | he time since t | the model start | ed is given in v | ears           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                         |                |                 |
| 8    | 5 Note the two diagra     | ame towarde the rick   | nt with A)measu                    | ured phoenhat    | and particula    | te P profilee (re | d) and profiles | regulting from  | the model (are   | and B) flu     | v rates used fr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | or production a | nd consumptio           | n in the modes |                 |
| 0    | 5. Note the two diagra    | ania towarda trie rigi | it with Ajmedat                    | area priospriati | and particula    | te i prones (re   | u) and promea   | s reading nom   | the model (gre   | sen) and b) no | A TRIES USED IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | or production a | ind consumptio          | in the modes   |                 |
| 9    |                           |                        |                                    |                  | 0.004            | 0.004 -11         | Dend            |                 | and Destant      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                         |                |                 |
| 10   | Reset = 1                 | 1                      | X                                  | D                | C P04            | C PO4_start       | Prod            | part P          | part P start     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                         |                |                 |
| 11   |                           |                        | (m)                                | m2/s             | (mmol/m3)        | (mmol/m3)         | mmol/m3*s       | (mmol/m3)       | (mmol/m3)        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                         |                |                 |
| 12   | delta_x =                 | 0.25                   | 80.00                              | 4.00E-06         | 1.40             | 1.40              | 0.00E+00        | 0.02            | 0.02             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                         | files          |                 |
| 13   | dt_max =                  | 833                    | 80.25                              | 3.98E-06         | 1.43             | 1.43              | 0.00E+00        | 0.02            | 0.02             |                | wode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ied and mea     | asureu pro              | nies           |                 |
| 14   | delta t =                 | 800                    | 80.50                              | 3.96E-06         | 1.45             | 1.45              | 0.00E+00        | 0.02            | 0.02             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -               | aanhala (um             | -1/1           |                 |
| 15   |                           |                        | 80.75                              | 3.94E-06         | 1.48             | 1.48              | 0.00E+00        | 0.02            | 0.02             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ph              | osphate (µm             | 101/1)         |                 |
| 16   |                           |                        | 81.00                              | 3 93E-06         | 1.51             | 1.51              | 0.00E+00        | 0.02            | 0.02             |                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 | 5                       | 1              | 0               |
| 17   | eink vol (m/e) =          | 0.000075               | 81.25                              | 3 91E-06         | 1.53             | 1.53              | 0.00E+00        | 0.02            | 0.02             |                | 00 ĭ 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 | ,                       |                | °               |
| 10   | sink_vel (m/d) =          | 0.000073               | 01.20                              | 3.912-00         | 1.55             | 1.55              | 0.00E+00        | 0.02            | 0.02             |                | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |                         |                |                 |
| 10   | sink_ver (m/u) -          | 0.5                    | 01.50                              | 3.09E-00         | 1.50             | 1.00              | 0.00E+00        | 0.02            | 0.02             |                | l ä                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                         |                |                 |
| 19   |                           |                        | 01./5                              | 3.872-06         | 1.59             | 1.59              | 0.00E+00        | 0.02            | 0.02             |                | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |                         |                |                 |
| 20   |                           |                        | 82.00                              | 3.85E-06         | 1.62             | 1.62              | 0.00E+00        | 0.02            | 0.02             |                | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8 8             |                         |                |                 |
| 21   | TIME COUNT:               |                        | 82.25                              | 3.83E-06         | 1.64             | 1.64              | 0.00E+00        | 0.02            | 0.02             |                | N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8 E             | ○ Ph                    | osphate mod    | eled            |
| 22   |                           |                        | 82.50                              | 3.81E-06         | 1.67             | 1.67              | 0.00E+00        | 0.02            | 0.02             |                | 85 - 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8 E             | ° Ph                    | osphate mea    | sured           |
| 23   | t_total(s) =              | 0                      | 82.75                              | 3.79E-06         | 1.70             | 1.70              | 0.00E+00        | 0.02            | 0.02             |                | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8 H             | □Pa                     | rt P modeler   | 1               |
| 24   | t total(h) =              | 0.00                   | 83.00                              | 3.78E-06         | 1.72             | 1.72              | 0.00E+00        | 0.02            | 0.02             |                | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | S 🖬             |                         |                |                 |
| 25   | t total(d) =              | 0.00                   | 83.25                              | 3.76E-06         | 1.75             | 1.75              | 0.00E+00        | 0.02            | 0.02             |                | l 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8 E             | <b>u</b> Pa             | n. P measure   | a               |
| 26   | t total(vrs) =            | 0.0                    | 83.50                              | 3.74E-06         | 1.78             | 1.78              | 0.00E+00        | 0.02            | 0.02             |                | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8 E             |                         |                |                 |
| 27   | ,                         |                        | 83.75                              | 3.72E-06         | 1.80             | 1.80              | 0.00E+00        | 0.02            | 0.02             |                | de la compañía de la comp | 8 H             | _                       |                |                 |
| 28   |                           |                        | 84.00                              | 3 70E-06         | 1.93             | 1.92              | 0.005+00        | 0.02            | 0.02             |                | 90 - ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ă 🗄             |                         |                |                 |
| 20   |                           |                        | 04.00                              | 3.702-00         | 1.05             | 1.00              | 0.00E+00        | 0.02            | 0.02             |                | Š                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8 E             |                         |                |                 |
| 29   |                           |                        | 04.25                              | 3.002-00         | 1.00             | 1.00              | 0.00E+00        | 0.02            | 0.02             |                | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8 E             |                         |                |                 |
| 30   |                           |                        | 84.50                              | 3.00E-00         | 1.88             | 1.88              | 0.00E+00        | 0.02            | 0.02             |                | S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8 H             |                         |                |                 |
| 31   |                           |                        | 84.75                              | 3.64E-06         | 1.91             | 1.91              | 0.00E+00        | 0.02            | 0.02             |                | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8 8             |                         |                |                 |
| 32   |                           |                        | 85.00                              | 3.63E-06         | 1.94             | 1.94              | 0.00E+00        | 0.02            | 0.02             |                | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8 H             |                         |                |                 |
| 33   |                           |                        | 85.25                              | 3.61E-06         | 1.96             | 1.96              | 0.00E+00        | 0.02            | 0.02             |                | 95 - %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | o. 8 🗏          |                         |                |                 |
| 34   |                           |                        | 85.50                              | 3.59E-06         | 1.99             | 1.99              | 0.00E+00        | 0.02            | 0.02             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | °0, 8 E         |                         |                |                 |
| 35   |                           |                        | 85.75                              | 3.57E-06         | 2.02             | 2.02              | 0.00E+00        | 0.02            | 0.02             | Ê              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ~ <u>~</u> & =  |                         |                |                 |
| 36   |                           |                        | 86.00                              | 3.55E-06         | 2.05             | 2.05              | 0.00E+00        | 0.02            | 0.02             | 5              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | °& ≣            |                         |                |                 |
| 37   |                           |                        | 86.25                              | 3.53E-06         | 2.07             | 2.07              | 5.45E-08        | 0.02            | 0.02             | E E            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Koo.            |                         |                |                 |
| 38   |                           |                        | 86 50                              | 3 51E-06         | 2 10             | 2 10              | 5.45E-08        | 0.02            | 0.02             | 6              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8 H             | °•                      |                | -               |
| 20   |                           |                        | 96.75                              | 3.405.06         | 2.10             | 2.10              | 5 455 09        | 0.02            | 0.02             | P              | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 뚢               | <sup>~</sup> 0          |                |                 |
| 40   |                           |                        | 97.00                              | 2 495 06         | 2.10             | 2.10              | 1 405 07        | 0.02            | 0.02             | ē              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 월드              | ്ട                      |                |                 |
| 40   |                           |                        | 07.00                              | 3.462-00         | 2.15             | 2.10              | 1.42E-07        | 0.02            | 0.02             | ja ja          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1               | 8                       |                |                 |
| 41   |                           |                        | 87.25                              | 3.46E-06         | 2.18             | 2.18              | 1.42E-07        | 0.02            | 0.02             | 5              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8               | <b>– –</b> %            |                |                 |
| 42   |                           |                        | 87.50                              | 3.44E-06         | 2.21             | 2.21              | 2.29E-07        | 0.02            | 0.02             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8               | 9                       | <b>k</b>       |                 |
| 43   |                           |                        | 87.75                              | 3.42E-06         | 2.23             | 2.23              | 3.27E-07        | 0.02            | 0.02             | ·              | 05 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18.             | 8                       | Ŷ              |                 |
| 44   |                           |                        | 88.00                              | 3.40E-06         | 2.26             | 2.26              | 4.92E-07        | 0.02            | 0.02             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | B               | , ଟ                     |                |                 |
| 45   |                           |                        | 88.25                              | 3.38E-06         | 2.29             | 2.29              | 5.74E-07        | 0.02            | 0.02             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 | ă X                     |                |                 |
| 46   |                           |                        | 88.50                              | 3.36E-06         | 2.31             | 2.31              | 6.05E-07        | 0.02            | 0.02             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 目               | 8                       |                |                 |
| 47   |                           |                        | 88.75                              | 3.34E-06         | 2.34             | 2.34              | 6.05E-07        | 0.02            | 0.02             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 | <u>ຊ</u> ຊ <sup>ອ</sup> |                |                 |
| 48   |                           |                        | 89.00                              | 3.33E-06         | 2.37             | 2.37              | 6.05E-07        | 0.02            | 0.02             |                | 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 目               | 8 - 8                   |                |                 |
| 49   |                           |                        | 89.25                              | 3.31E-06         | 2.39             | 2.39              | 5.74E-07        | 0.02            | 0.02             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | E               | β <mark>⊔</mark> β      |                |                 |
| 50   |                           |                        | 89.50                              | 3.29E-06         | 2.42             | 2.42              | 4.92E-07        | 0.02            | 0.02             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 | <u>8</u> 8              |                |                 |
| 51   |                           |                        | 89.75                              | 3.27E-06         | 2 45             | 2 45              | 2 29E-07        | 0.02            | 0.02             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | E               | <u>8</u> 8              |                |                 |
| 52   |                           |                        | 00.00                              | 2 255 06         | 2.49             | 2.49              | 2 805 07        | 0.02            | 0.02             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 | S Ø                     |                |                 |
| 50   |                           |                        | 50.00                              | 3.232-00         | 2.40             | 2.40              | -2.092-07       | 0.02            | 0.02             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 | X X                     |                |                 |
| 03   |                           |                        | 90.25                              | 3.23E-06         | 2.50             | 2.50              | -2.09E-07       | 0.02            | 0.02             | ⊢              | 115 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 日               | E ø                     |                |                 |
| 54   |                           |                        | 90.50                              | 3.21E-06         | 2.53             | 2.53              | -4.82E-07       | 0.02            | 0.02             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 | 88                      |                |                 |
| 55   |                           |                        | 90.75                              | 3.19E-06         | 2.56             | 2.56              | -5.50E-07       | 0.02            | 0.02             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 | 1 g                     |                |                 |
| 56   |                           |                        | 91.00                              | 3.18E-06         | 2.58             | 2.58              | -7.15E-07       | 0.02            | 0.02             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 目               | - <u>8</u> 8            |                |                 |
| 57   |                           |                        | 91.25                              | 3.16E-06         | 2.61             | 2.61              | -7.15E-07       | 0.02            | 0.02             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 目               | L 88                    |                |                 |
| 58   |                           |                        | 91.50                              | 3.14E-06         | 2.64             | 2.64              | -7.70E-07       | 0.02            | 0.02             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | E               | 3                       |                |                 |
| 59   |                           |                        | 91.75                              | 3.12E-06         | 2.66             | 2.66              | -7.70E-07       | 0.02            | 0.02             |                | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |                         |                |                 |
| 60   |                           |                        | 92.00                              | 3.10E-06         | 2.69             | 2.69              | -8.25E-07       | 0.02            | 0.02             |                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20              |                         | 40             | 60              |
| 61   |                           |                        | 92.25                              | 3.08E-06         | 2.72             | 2.72              | -8.25E-07       | 0.02            | 0.02             |                | v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20              |                         | -10            | 00              |
| 62   |                           |                        | 92.50                              | 3.06E-06         | 2.74             | 2.72              | -8 25E-07       | 0.02            | 0.02             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Pa              | rticulate P (n          | mol/l)         |                 |
| 62   |                           |                        | 02.50                              | 3.04E 00         | 2.74             | 2.74              | 9.255-07        | 0.02            | 0.02             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                         |                |                 |
| 03   |                           |                        | 92.15                              | 3.04E-06         | 2.11             | 2.11              | -0.25E-07       | 0.02            | 0.02             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                         |                |                 |
| 04   |                           |                        | 93.00                              | 3.03E-06         | 2.80             | 2.80              | -0.25E-07       | 0.02            | 0.02             |                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |                         |                |                 |
| 1 65 |                           |                        | 93.25                              | 3.01E-06         | 2 82             | 2.82              | -8 25E-07       | 0.02            | 0.02             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                         |                |                 |

150 Screenshot of the model after reset:

151

When the model is reset to time zero (as explained in the head of the spreadsheet) the 152 particulate phosphorus pool *PartP* is set to a concentration of 20 nmol l<sup>-1</sup> at all depths, which 153 is the concentration measured directly above the suboxic zone. Over time the transport of 154 phosphorus from the dissolved into the particulate pool alone, without a removal of 155 particulate phosphorus, would result in *PartP* concentrations orders of magnitude higher than 156 observed in nature. Therefore, the model contains a function, which removes particulate 157 phosphorus by sinking of particles. For this, a certain amount of PartP in each cell oh H12-158 H172 is moved to the cell below with a sinking velocity, *sinkvel* (entered in cell B17 in m s<sup>-1</sup>) 159 by adding the term: 160

161 (4) + 
$$(PartP_{(x-\Delta x,t)} \cdot sinkvel \cdot \Delta t / \Delta x - PartP_{(x,t)}) \cdot sinkvel \cdot \Delta t / \Delta x$$

- 162 The sinking velocity in the model was adjusted to result in similar particulate phosphorus
- 163 levels as observed in nature.

## 164 Screenshot of the model at steady state after 3 years:



165

166

In this overall approach, the dissolved phosphate concentrations, which we measured 167 accurately and with high vertical resolution, is the starting point of the model and the 168 modelled values follow closely the measured concentrations. The modelled values for 169 particulate phosphorus, which we determined with much lower resolution and accuracy, only 170 roughly represent the measured concentrations. Principally, this problem could be addressed, 171 e.g., by applying changing sinking velocities with depth, but unless more precise data on the 172 distribution of particulate phosphorus are available, this would not improve our overall 173 understanding of the system. 174

## 176 **References**

Weinbauer MG, Fritz I, Wenderoth DF, Höfle MG. Simultaneous extraction from
 bacterioplankton of total RNA and DNA suitable for quantitative structure and function
 analyses. Appl Environ Microbiol. 2002;68:1082-7.

Satinsky BM, Gifford SM, Crump BC, Moran MA. Use of internal standards for
 quantitative metatranscriptome and metagenome analysis. Methods Enzymol. 2013;531:237 50.

3. Stolle C, Labrenz M, Meeske C, Jürgens K. Bacterioneuston community structure in
the southern Baltic Sea and its dependence on meteorological conditions. Appl Environ
Microbiol 2011;77:3726–33.

Chevreux B, Wetter T, Suhai S. Genome sequence assembly using trace signals and
 additional sequence information. Computer Science and Biology: Proceedings of the German
 Conference on Bioinformatics (GCB). 1999;99:45-56.

Joshi NA, Fass JN. Sickle: A sliding-window, adaptive, quality-based trimming tool
for FastQ files *[Software]* (Version 1.33) 2011 [Available from:
<u>https://github.com/najoshi/sickle</u>.

Peng Y, Leung HC, Yiu SM, Chin FY. IDBA-UD: a de novo assembler for single-cell
and metagenomic sequencing data with highly uneven depth. Bioinformatics. 2012;28:14208.

195 7. Hyatt D, Chen G-L, LoCascio P, Land ML, Larimer FW, Hauser LJ. Prodigal:
196 Prokaryotic gene recognition and translation initiation site identification. BMC
197 Bioinformatics. 2010;11:19.

198 8. Camacho C, Coulouris G, Avagyen V, Ma N, Papadopoulos J, Bealer K, et al.
199 BLAST+: architecture and application. BMC Bioinformatics. 2009;10:421.

- Temperton B, Gilbert JA, Quinn JP, McGrath JW. Novel analysis of oceanic surface
   water metagenomes suggests importance of polyphosphate metabolism in oligotrophic
   environments. PLoS ONE. 2011;6:e16499.
- 203 10. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient
  204 alignment of short DNA sequences to the human genome. Genome Biol. 2009;10.
- Liao Y, Smyth GK, Shi W. FeatureCounts: An efficient general purpose program for
  assigning sequence reads to genomic features. Bioinformatics. 2014;30:923-30.
- 207 12. Kielbasa SM, Wan R, Sato K, Horton P, Frith MC. Adaptive seeds tame genomic
  208 sequence comparison. Genome Res. 2011;21:487-93.
- 209 13. Gregg MC, Yakushev E. Surface ventilation of the Black Sea's cold intermediate layer
- in the middle of the western gyre. Geophys Res Lett. 2005;32:L03604.

Further examples for phosphorus rich particles with chains of magnetite from the suboxic zone of the Black Sea. The approximate diameter of the spherical cells (4.6 - 6.6 µm) are given below.



- 221 Identification of magnetosomes from the suboxic zone of the Black Sea by EDX analysis. (A)
- A chain of magnetosomes within a cell. (**B**) Spectrum of a magnetite crystal showing the high iron content.

223 iron 224



- 229 Chains of magnetites detected in sediment traps from the redoxcline in the Gotland Basin of
- the Baltic Sea. Similar chains were also observed in samples taken from the redoxcline.



#### 

# **Figure 4**

Example for the specific staining of large spherical cells with the probe specific for *Magnetococcus* related bacteria in samples from the Black Sea. (A) All microbial cells stained with 4,6-Diamidin-2-phenylindol (DAPI). (B) Cells hybridized with the probe specific for *Magnetococcus* related bacteria.



Maximum likelihood tree of the abdundant sequences derived from the Black Sea samples 269 affiliated to the Magnetococcaceae and related sequences from the ARB Silva database. A 270 core tree based on 1274 unambiguously aligned sequence positions of the full-length 271 sequences from the database was calculated and short sequences added without changing the 272 tree toplogy. Magnetococcus marinus MC-1 was set as outgroup. Original sequence 273 definitions in the GenBank database were replaced with a consistent nomenclature including 274 accession number, name and for the sequences from this study the number of reads detected. 275 Bold sequences indicate the sequences with a 100% match to MaCo983. Short 16S rRNA 276 277 sequences that were used for the phylogenetic analysis are deposited in the European Nucleotide Archive (ENA) under accession numbers LT960764-LT960776. 278



# 282 Table 1

283 Concentration of total dissolved phosphorus in µmol/l determined by ICP-OES and phosphate

determined colorimetrically at different water depths.

| Depth (m) | diss P (µM) | Phosphate (µM) |
|-----------|-------------|----------------|
| 72        | 1.6         | 1.3            |
| 77        | 1.6         | 1.4            |
| 87        | 1.3         | 1.3            |
| 90        | 0.9         | 0.7            |
| 92        | 0.2         | 0.0            |
| 96        | 2.2         | 1.7            |
| 99        | 4.6         | 4.0            |
| 103       | 6.7         | 6.9            |

286

# 287 **Table 2**

288 Relative abundance of particles rich in iron (>15%), rich in manganese (>10%), and rich in P

289 (>20%) in % of all particles.

290

| Depth (m) | Fe-rich (%) | Mn-rich (%) | P-rich(%) |
|-----------|-------------|-------------|-----------|
| 72        | 3.3         | 57.7        | 0.0       |
| 87        | 6.8         | 41.9        | 1.1       |
| 90        | 3.3         | 60.3        | 0.2       |
| 95        | 17.8        | 29.3        | 13.5      |
| 100       | 28.6        | 6.8         | 2.9       |
| 103       | 25.1        | 40.3        | 18.1      |
| 110       | 34.2        | 0.7         | 0.2       |
| 118       | 15.8        | 0.2         | 0.1       |

291

292

# 293 **Table 3**

294 Concentration of phosphorus, iron and manganese in the particulate pool determined by ICP-

295 OES in nmol/l.

| Depth (m) | P <sub>part</sub> (nM) | Fe <sub>part</sub> (nM) | Mn <sub>part</sub> (nM) |
|-----------|------------------------|-------------------------|-------------------------|
| 72        | 21.8                   | 34.3                    | 45.2                    |
| 87        | 20.8                   | 33.4                    | 28.5                    |
| 90        | 29.4                   | 25.3                    | 47.7                    |
| 95        | 48.6                   | 28.6                    | 6.7                     |
| 100       | 52.6                   | 31,8                    | 5.3                     |
| 103       | 29.9                   | 24.5                    | 15.6                    |
| 110       | 25.2                   | 22.7                    | 5.1                     |
| 118       | 24.4                   | 21.1                    | 2.0                     |