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Supplementary Notes

Supplementary Note 1: Sponge MOX are capable of storing methane-derived carbon in the
form of glycogen: Our metabolic reconstructions, based on the genomes and transcriptomes of
the sponge MOX symbionts, suggest that the intracellular vacuoles we observed in the symbionts
with transmission electron microscopy contained glycogen. The genes needed to synthesize
glycogen were present and expressed in the sponge MOX symbionts (glgC, glgA and glgB genes,
which encode the glucose-1-phosphate adenylyltransferase, glycogen synthase and 1,4-alpha-
glucan branching enzyme, respectively). In addition to glycogen, many bacteria also store carbon
in the form of polyhydroxyalkanoates (PHAs). However, type I methanotrophs have so far not
been shown to be able to synthesize PHAs [1]. Correspondingly, no genes that encode PHA
synthases were found in the genomes of the sponge-associated MOX.

Supplementary Note 2: Convergence of respiratory nitrate reductases in the sponge and mussel
symbionts: Genome comparisons of symbiotic and free-living MOX revealed that a NarGHIJ gene
cluster that encodes a respiratory nitrate reductase (Nar) was ubiquitously found in the genomes
of MOX hosted by both sponges and mussels, while rarely present in those of free-living
gammaproteobacterial MOX (7 out of 54 publicly available genomes). Comparative phylogenetic
analyses of the narG gene revealed that the sequences from sponge and mussel MOX symbionts
formed a monophyletic clade with Methyloprofundis sedimentii, a MOX isolated from whale falls
that is very closely related to the mussel MOX symbionts [2]. In contrast, the narG gene sequences
from all other free-living MOX whose genomes have been sequenced belong to a very distant clade
(Supplementary Figure S9). Phylogenetic clustering of the narG genes in mussel and sponge MOX
symbionts suggests a high level of functional convergence between their Nar protein complexes
and indicates adaptation via kinetic specialization to different substrate levels within hosts than in
the free-living environment. Similar to Nar from pathogenic bacteria of humans, these proteins
may allow the symbiotic MOX to survive hypoxia and mitigate exposure to reactive nitrogen

species [3].

Supplementary Note 3: Genes unique to the sponge-associated MOX: The majority of
orthologous genes unique to the MOX symbionts from both sponge species were poorly-annotated
short ORFs with a median length of 240 bp. These ORFs were not found in free-living relatives,
e.g. two MMG2 MOX from the North Sea sandy sediments enrichments, as well as
Methylomarinum, Methylomonas, Methylobacter and Methylomicrobium spp.. Some of these ORFs
were homologous to phage genes and phage defense systems, such as clustered regularly
interspaced short palindromic repeats (CRISPRs) and sequences that encoded CRISPR-associated

proteins Cas, as well as restriction-modification systems. Other unique genes were involved in



exopolysaccharide production (e.g. glycosyltransferases, oligosaccharyltransferase , capsule
polysaccharide export proteins etc). These highly variable capsule polysaccharides, such as O-
antigens, are suggested to play a role in interactions between pathogenic and symbiotic bacteria
and their hosts [4, 5]. Alternatively, the variable capsular polysaccharides are also known to play a
role in the interaction between bacteria and their phages [6]. Thus, many of the annotatable genes
unique to the sponge MOX symbionts may be involved in interactions with their animal hosts or

with phages.

Supplementary Note 4: Fatty acids and sterols in Campeche sponges: The most abundant fatty
acids in H. (S.) methanophila were the short-chain n-fatty acids Cisiws and Cisiw7, as well as the
long-chain #n-Cassass fatty acid. The two fatty acids n-Cisiws and n-Cisioy Were accompanied by a
series of w8 and w7 n-fatty acids, ranging from Cis to Czs. The most prominent A5,9 fatty acid »-
Casansor was accompanied by other A5,9 fatty acids and two brominated A5,9 fatty acids
(Supplementary Figure S10). The fatty acid pattern of I. methanophila was somewhat different,
with 71-Casaasgzas the most prominent fatty acid, accompanied by n-Cieiwsand saturated n-Cie fatty
acids. I. methanophila also contained various n-fatty acids with 18 carbon atoms and one and two
double bonds (Supplementary Figure S10). A series of monounsaturated n-fatty acids from Cy to
Cas also occurred in the I. methanophila, and the double bond positions of the various fatty acids

were more variable than in H. (S.) methanophila.

The sterols of H. (S.) methanophila comprised compounds with double bond positions at carbons
5 and 24 (A5,24 sterols), with 24-methyl-cholesta-5,24-dien-3-ol as major sterol, accompanied by
the minor A5,24 sterols desmosterol, fucosterol and iso-fucosterol, as well as cholesterol (see
Supplementary Table S4). The Cs-hopanoid diplopterol was the only cyclic non-sterol
compound detected. H. (S.) methanophila also contained 24-methyl-cholesta-5,24-dien-3p-ol as a
major sterol, which was accompanied by only cholesterol and diplopterol. Since diplopterol was
identified in both sponges, both samples were analyzed for bacteriohopanepolyols with coupled
high-performance liquid chromatography mass spectrometry, but no bacteriohopanepolyols were
identified.

Supplementary Note 5: Stable isotope composition of bulk tissue: §"°C and §"°N values of sponge
bulk tissue were —40.6%o0 and 1.7%o for the H. (S.) methanophila individual from Chapopote,
—37.1%o and 2.7%o for the H. (S.) methanophila individual from Mictlan and —42.0%o and 0.0%o
for the I. methanophila individual from Chapopote. The §"°C value of asphalt encrusted by sponges
was —27.6%o (nitrogen was below detection limits). Bulk tissues of encrusting sponges contained
asphalt impurities, which may have introduced errors to the bulk §*C measurement, resulting in
§C values that were more positive than those of the corresponding fatty acids. For comparison,

bulk tissue 6"*C and 6N values of B. heckerae, which co-occur with sponges at Chapopote



averaged —47.0£5.0%o and 1.5%1.2%o. Given that bathymodiolin mussels acquire their carbon as
well as nitrogen from their symbionts [7], the very similar §"°N values between Campeche mussels

and sponges indicate that the latter most likely also gain their nutrition from their symbionts.

Supplementary Note 6: Campeche sponges gain their nutrition from the symbiotic MOX,
rather than filtering free-living MOX: The isotopic signatures of Campeche sponges, as well as
the elongation patterns of their fatty acids suggest that their MOX symbionts contribute
significantly to their nutrition. While we cannot entirely exclude filter-feeding on free-living MOX
as an additional source of nutrition, several lines of evidence suggest that the symbionts provided
their hosts with most of their nutrition. First, we found very few Illumina reads that mapped to the
16S rRNA gene sequences of MOX bacteria other than the symbiotic ones. These reads represented
only a small fraction of all the low-abundance 16S rRNA reads from free-living microbes that had
been likely retained by the sponges. Second, if the sponges gained a significant amount of their
nutrition from filter-feeding, their carbon isotopic signatures should not have been in the same
range as that of methane, but rather heavier, given the non-selective filtration behavior of sponges,
and the diversity of autotrophic and heterotrophic microorganisms in seep waters. A third line of
evidence for the nutritional dependence of the sponges on their symbiotic MOX is the strong
dilution of external MOX signal at the sterol composition level. Many Type I methanotrophs,
including the symbionts of bathymodiolin mussels, are able to synthesize 4-methylated sterols [8,
9]. The sponge-associated MOX appeared to lack the key enzymes that catalyze the synthesis of 4-
methylated sterols (Supplementary Figure S11). We were not able to detect 4-methylated sterols
in the lipid extracts from Campeche sponges, confirming our metabolic reconstruction. Given that
it is unlikely that the free-living MOX in the vicinity of the sponges were not capable of 4-
methylated sterol synthesis, the external MOX sterol signal was strongly diluted by that of the
symbiotic MOX, confirming the very low contribution of non-symbiotic MOX to the sponge
biomass. Fourth, our ultrastructural observations revealed that the MOX morphotypes in the
sponges were in various stages of digestion. These digestion stages were often observed when the
symbiotic MOX morphotypes were present in high densities in the mesohyl matrix, suggesting
direct feeding on the symbiotic MOX.

Supplementary Methods

Supplementary Methods 1, downstream genome analyses: The genomes were annotated with
RAST [10] and the DOE-JGI Microbial Genome Annotation Pipeline [11]. Annotations were
manually cross-checked and verified using NCBI’s BLAST [12]. Average nucleotide identity (ANI)

values were calculated with the ANT calculator (http://enve-omics.ce.gatech.edu/ani/). Conserved

domains were annotated with NCBI CD-search [13]. Pangenomes were analyzed with panX [14].

Toxin-antitoxin systems were identified with TAfinder wusing default parameters
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(http://202.120.12.133/TAfinder/index.php). Polymorphic toxin systems were identified as
described previously [15]. Clusters of orthologous groups (COGs) annotation for each individual
genome was performed with eggNOG-mapper [16, 17]. COG counts were normalized to their sum

in each genome, and principal component analysis was performed with PAST3 [18].

The relative 16S rRNA read abundances in the metagenomes and metatranscriptomes were
determined as follows: Illumina reads were mapped to the SILVA132 small subunit (SSU) rRNA
gene database [19] with phyloFlash (https://github.com/HRGV/phyloFlash) using 0.7 identity

cutoff. The mapped reads were assembled with Spades V3.10 [20, 21]. Metagenomic and
metetranscriptomic reads were re-mapped to the assembled 16S rRNA gene sequences using

BBMap (Bushnell B, http://sourceforge.net/projects/bbmap/) with 0.98 minimum identity, and

coverage values for each individual sequence were normalized to their sum. To validate if we have
assembled thel6S rRNA gene sequence for the most of phyla with the assembly-independent
method implemented in phyloFlash, that is, estimating the number of reads that mapped to each
sequence in the SILVA132 database (the relative abundance of mapping-based taxa. To validate if
thel6S rRNA gene sequences were assembled for the most of the phyla: 1) We verified if each
metagenomics bin contained a 16S rRNA gene and 2) We compared the phylogenetic diversity
revealed by the assembly of the 165 rRNA gene sequences with that determined by the assembly-
independent relative abundance of mapping-based taxa (that is, the number of reads that mapped
to each sequence in the SILVA132 database). To estimate abundance by genome coverage, we
mapped metagenomic reads using BBmap with 0.98 minimum identity to each metagenome
assembled genome (MAG), and divided by the total number of reads that mapped to all the MAGs

assembled for each library.

Supplementary Methods 2, phylogenies: Maximum Likelihood phylogenies were reconstructed
with MEGA7 [22], based on the best-predicted model, following alignment of metagenomics
sequences and representative sequences in the NCBI database by MAFFT [23]. The percentage of
trees in which the associated taxa clustered together was determined based on 1,000 bootstrap

resamplings.

Supplementary Methods 3, bulk tissue stable isotope, and elemental C and N measurements:
Samples were acidified overnight over fuming HCL in a desiccator, oven-dried overnight at 50°C,
and transferred to tin cups for analysis. Organic carbon and nitrogen content and bulk carbon and
nitrogen isotopic compositions (8§"*C and §"°N) were measured using a carbon-hydrogen-nitrogen
(CHN) elemental analyzer (Thermo Flash EA 1112) coupled with a continuous flow isotope ratio
mass spectrometer (Thermo Delta Plus XP, Thermo Fisher Scientific, Schwerte, Germany). USG40
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and caffeine standards, calibrated against international standards (IAEA N1 and N2), were
measured every 4-6 samples to ensure the accuracy of measured values (~ 10 caffeine standards
and ~5 USGS 40 international standards per mass spec run).. Instrument precision was 0,15 %o for
§"C and 0,08%o for §"°N, based on replicate analyses of standards measured in parallel with the
samples. As a quality control, measurement runs where the standard deviation of the standards

exceeded 0.2 %o were not analyzed.
Supplementary Methods 4, Chapopote mosaic mapping

Photographs used for the photomosaic were acquired with the ROV MARUM-Quest during cruise
M114/2 (Station 90-1, GeoB: 19333-1) using a downward-facing PROSILICA GT6600 with 29
megapixels (6576 x 4384) resolution. The photographs were taken from an altitude of 2.5m above
the seafloor. The photomosaic was constructed with the LAPM Tool [24, 25] from 133
photographs. The mosaic was georeferenced using Ultra Short Baseline (USBL) as well as Doppler
Velocity Log (DVL) acoustic positioning.
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Supplementary Tables

Supplementary Table S1 Genome assembly statistics. GC, guanine + cytosine; bp, base pairs; mbp,

million base pairs.

Host Million DNA Million RNA # contigs Total length Largest GC (%) N50 (mbp) Compl ination
reads reads (21000 bp) (> 1000 bp) contig (mbp) (%) (%)
Encrusting sponge Chapopote ‘ 28 30 63 2.22 0.22 37.76 0.05 96.5 0.3
Encrusting sponge Mictlan ‘ 29 38 82 2.01 0.11 37.83 0.04 95.0 0.3
Branching sponge Chapopote 1 ‘ 43 n.a. 126 2.02 0.12 37.68 0.04 94.6 0.5
Branching sponge Chapopote 2 ‘ 41 n.a. 116 2.09 0.12 37.73 0.05 95.6 0.5

Supplementary Table S2 (Excel): Eukaryote-like domains in sponge MOX genomes and their expression

values. ORF, open reading frame; TPM, transcripts per million.

Supplementary Table S3 (Excel): Unique genes in core genomes of the free-living (‘Methylomonadaceae’
+ Marine Methylotrophic Group II sediment enrichment genomes) and the sponge-associated methane

oxidizers.

Supplementary Table S4 Composition of lipid biomarkers and their §°C values in sponge tissue. MOX,
methane-oxidizing bacteria; ND, not detected; NM, not measured; *, co-elution of various

monounsaturated fatty acids leads to a mixture of §"°C values of neighboring fatty acids; i, iso-, bm,

biomass.
H. (S.) methanophila I. methanophila

Compounds Putative source(s) Contents 61*C Contents 8*C

(ug/g bm) (%o0) (ng/gbm) (%o)
saturated fatty acids
n-Cia various 0.11 -39 0.19 -36
n-Cis various 0.10 -43 0.12 NM
n-Cis various 0.38 -36 1.99 -35
n-Ciz various ND 0.13 -35
n-Cis various 0.18 -28 0.67 -34
n-Cao various ND 0.20 -35
n-Cai various ND 0.07 NM
n-Ca2 various ND 0.35 -38
n-Cas various ND 0.15 NM
n-Ca various ND 0.24 -36
n-Coas various ND 0.13 NM
n-Cas various ND 0.27 NM



n-Cas

terminally-branched fatty acids
iso-Cis

anteiso-Cis

iso-Cy7

anteiso-Ci7

monounsaturated fatty acids
n-Cis:108
n-C16:1w7
n-Cies1u6
n-Clézle
1-Cisi1w9
f’l-Cl&le
n-Cig:rw7
n-CZO:le
1-Cao1w7
n-CZO:lwé
1-Ca2:109
n-C22:1w8
n-Caziwr
1-Coa:109
1-Cas1w8
n-C24:1w7
n-Casi18

n-Cas:107

demospongic acids
n-Cie2as9

n-Cis2as9

n-Caoaaz

1-Ca6:34592 (18)
1-Cas:3159,19

n-Cae2459

various

bacteria
bacteria
bacteria

bacteria

MOX
MOX
MOX
MOX
sponge
MOX
MOX
sponge
sponge
sponge
sponge
sponge
sponge
sponge
sponge
sponge
sponge

sponge

sponge
sponge
sponge
sponge
sponge

sponge

ND

0.02
0.03
ND
ND

1.03
0.69
0.20
0.12
ND
0.22
0.27
0.03
0.06
ND
0.08
0.08
0.20
ND
0.14
0.30
0.05

0.04

0.18
ND
ND
0.90
0.00

0.13

NM
NM

-46*
-46*
-47*

-47*

-44*
-44%
-47*

-47*

-47*

-47*

-48*
-48*
-47*

-47*

-46

-47
-47*

-47*

0.40

0.05
0.07
0.05

0.07

1.86
0.26
0.07
0.09
0.31
ND
0.68
0.16
0.38
0.11
0.24
ND
0.31
0.34
ND
0.25
ND
ND

0.79
0.59
0.26
ND
ND
ND

NM

NM
NM
NM
NM

-51
-48
-50
-49

-34

-49
-46*
-46*
-46*

-36

-40

-51

-51

-42
-51

-44
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br-Cassas.io
br-Casanss

n-Cas:3459:2 (21, 19)

Sterols

cholesterol

cholesta-5,24-dien-3(3-ol (desmosterol)
24-methyl-cholesta-5,24-dien-3-ol
24-ethylcholesta-5,24 E-dien-3p-ol (fucosterol)
24-ethylcholesta-5,24Z-dien-3-ol (i-fucosterol)

Hopanols
Diplopterol

sponge
sponge

sponge

sponge
sponge
sponge
sponge

sponge

bacteria

0.21

0.08

ND

0.15
0.10
1.84
0.32
0.05

0.26

-46

-47

ND
ND

2.89

2.10
ND
3.30
ND
ND

0.90

-51

-43

-43

-43
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Supplementary Figure S1 Differential sequencing coverage of > 2000 bp scaffolds from the sponge

metagenomic libraries. Each circle represents a metagenomic scaffold. The circles are colored according to

their GC content, the diameter of these circles is proportional to scaffold length. x” symbols represent

scaffolds that contain tRNAs, crossed circles represent scaffolds that contain 16S rRNA genes. Ellipses

show examples of bins chosen for reassembly of sponge MOX symbionts. The sizes of the complete bins

shown here (all contigs included in the ellipse) are 2.44 Mbp for the branching sponge and 2.29 Mbp for

the encrusting sponge.
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Supplementary Figure S2 A photomosaic of the Chapopote ‘bubble’ site where the sponges were
collected (photos taken from 2.5 m above the seafloor). Areas dominated by sponges (green), mussels
(red) and tubeworms (yellow) are highlighted.
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'.-I: MMG?2 bacterium, hydrocarbon seep, New Zealand (JF268387.1)
— MMG2 symbiont of squat lobster Shinkaia crosnieri (AB476240.1)
L MMG?2 bacterium, hydrate ridge, Cascadia Margin (A]535221.1)
L MMG?2 bacterium, poecilosclerid sponge, Gulf of Mexico (AB453739.1)
L MMG?2 bacterium, hydrocarbon seep, New Zealand (JF268343.1)

Methylomicrobium/Methylobacter/Methylosarcinal Methylovulum/Methylosoma spp.

MMGL - Methyloprofundus sedimenti and the symbiotic MOX of Bathymodiolus spp. MMG1

Cycloclasticus spp.
L Methylosphaera hansonii (NR_026033.1)

® :<MMG3 Methylophaga spp.

0.02

Supplementary Figure S3 Phylogeny of the 16S rRNA genes from the symbiotic MOX of sponges
collected at the Campeche and Mictlan seeps. The dataset included metagenomic 16S rRNA gene
sequences from this study and sequences from the NCBI database (94 sequences total). Bootstrap values
below 50% are not shown. The tree is drawn to scale, with branch lengths representing the number of
substitutions per site. The analysis included 1,262 positions. The genome of the North Sea sediment
enrichment genome D14 lacked the fully assembled 16S rRNA gene sequence. Star marks the 16S rRNA
gene sequences which were excluded from the tree calculation due to its short length, which would have
hindered the phylogeny resolution, and whose position in the tree was estimated based on a phylogeny of
separately aligned truncated sequences. MMG is Marine Methylotrophic Group.
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I Republic of the Congo, organic-rich lobe sediments 492CT5 pmoA B8 (KY351428.1)
Guaymas Basin, Folliculinid ciliate symbiont clone GY DR399 (KX021876.1)
USA, Del Mar Seep, Folliculinid ciliate symbiont clone SD DR470 7274 (KX021877.1)
Hydrate Ridge methane seep clone HR AT18-10 FA (KX021875.1)
New Zealand, methane seep, clone NZ 45 pmoA 68 (KC751370.1)
Kuroshima Knoll, southern Ryukyu Arc, methane seep clone:Kuro-pmoA-17 (AB176938.1)
New Zealand, methane seep, clone NZ 45 pmoA 68 (KC751370.1)
Escarpment cold seep site, clone BR1pmoA30 (EU982958.1)
Siboglinum cf. poseidoni symbiont, clone W10 M11 (FR729005.1)
Republic of the Congo, organic-rich lobe sediments clone 492CT5 pmoA A8 (KY351416.1)
Republic of the Congo, organic-rich lobe sediments 491CT12 pmoA C6 (KY351183.1)
Escarpment cold seep site, clone BRIpmoA11 (EU983006.1)
Methylococcaceae bacterium SF-BR (AB453965.1 )
Republic of the Congo, organic-rich lobe sediments clone 486CT9 pmoA G10 (KY351033.1)
Republic of the Congo, organic-rich lobe sediments clone 486CT9 pmoA E5 (KY351009.1)
North Sea MMG2 isolate D14 (LT555367.1)
North Sea MMG2 isolate E33 (LT555366.1)
North American continental margin methane sep clone Bubsed 2H (EU444857.1)

—.—‘ Shinkaia crosnieri epibiont, clone ihePR661 145 (AB794867.1)
) —mmm MMGI - Methyloprofundus sedimenti and Bathymodiolus spp. MOX MMG1
Methylomarinum vadi strain IT-4(AB302947.2 ) ‘Methylomonadaceae’ I
Methylomarinum vadistrain: T2-1 (AB453964.1) (Methylococcaceae)
Methylomarinum sp.SSMP1 (KU740209.1)
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Methylobacter sp. BB5.1 (AF016982.1) ‘Methylomonadaceae’ IT
AO_|7— Methylobacter tundripaludum (AJ414658.1) (Methylococcaceae)
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Supplementary Figure S4a Phylogeny of pmoA genes from the symbiotic MOX of sponges collected at
the Campeche and Mictlan seeps. The dataset included pmoA sequences from this study and from the
NCBI database (54 nucleotide sequences total). The tree is drawn to scale, with branch lengths

representing the number of substitutions per site. The analysis included 344 positions.
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Supplementary Figure S4b Phylogeny of concatenated PmoCAB and PxmABC proteins (39 amino acid

sequences total). Sequences were first aligned for each subunit, following concatenation of individual

alignments in the ABC order. The tree is drawn to scale, with branch lengths measured in the number of

substitutions per site. The analysis included 886 positions.
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Supplementary Figure S5 TEM images of H. (S.) methanophila embryo tissue a, Overview of an embryo.

mi=micromere cells, ma=macromere. b, electron-dense blastomeres (bl) with lipid droplet inclusions (li).
¢, Lipid droplet inclusions in blastomeres. d, nucleolated larval cells with homogeneous (ko) and
heterogeneous yolk (he), n = nucleus, co = collagen fibers. e and f, methane-oxidizing symbionts
accumulated between follicle-like cells (f) and embryo, and on the periphery of follicle-like cells.

bc=bacteria in bacteriocytes; c¢f= collagen fibrils; n=nucleus; sp=sponge cell.
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Supplementary Figure S6 Pangenome analysis of methane-oxidizing bacteria (MOX). Orthologous gene
counts are shown. a, Comparison of the sponge MOX symbiont genomes assembled in this study. b,
Comparison between the genomes of the sponge MOX symbionts and related free-living and symbiotic
MOX. “Sponge MOX symbionts” group includes the genomes of MOX from the four sponge individuals
analyzed in this study. “North Sea enrichment MMG2” group includes the two genomes of the Marine
Methylotrophic Group 2 bacteria enriched from the North Sea sediments. “Methylomonadaceae isolates”
group comprises the 18 representative genomes of Methylomonadaceae (main text, Figure 4), which were
downloaded from NCBI. “MMG1” group comprises genomes of Methyloprofundus sedimenti, as well as
those of MOX hosted by mussels Bathymodiolus sp. SMAR and B. platifrons. * clade-specific genes; **
unique to the sponge MOX symbiont core genome; *** mussel symbionts only (not including M.
sedimenti).
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BGC0000837: Arylpolyene Vf biosynthetic gene cluster Vibrio fischeri (40% of genes show similarity)
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BGC0000836: Arylpolyene Ec biosynthetic gene cluster Escherichia coli (25% of genes show similarity)
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Supplementary Figure S7: Aryl polyene synthesis cluster in H. (S.) methanophila MOX symbiont
genome. Vibrio fischeri and Escherichia coli Vf and Ec aryl polyene synthesis domains are shown as
references. Homologs are shown in the same color. The second alignment is colored according to the

average expression values of respective genes (color legend is shown in figure on bottom right).
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a
1 2500 5000 7500 10000 12500 14616 bp
query 1 e ———————————————————————
@ o L -
1
consensus [ } t T Sk
MPI . it . wisiia i TN
uery 1 :
query IS (94%)
o :
o H
n 3 : ﬂ
H. (S.) methanophila Cycloclasticus
consensus  } - HAONIHHET- T g o H—— Ik
MPI U e ) " P N e
query 1 [ HHIC_HICH H O T OHICIHARC O H i ]
[ HIOICT—HHH 1 T 1 K 1 ORU94421.1 (98%)
TOHH——H I { 1 ORU92747.1 (81%)
— - CH—— OO0 0 g H — ORU91689.1 (51%
———CHIH - n 1 D ORU9454441§75%§
MO CHIH O D0 0 T i ———  ORU94587.1 (45%
- H——— O ——H ; I B ORU94767.1 (42%)
HHHHOH—————HIHHITHE— L it g B HH— ORU91839.1 (59%)
b 1. methanophila methane-oxidizing symbiont
1 2500 4603 bp
query 2 DUF285: related to leucine rich repeats
@ o
consensus W—DDHMWW—WMW?WMWM ® Cadherin-like beta sandwich domain
MPI (N -7 i Y | | 11} PP i
query 2 T EMmEr T (519) @ Autotransporter beta-domain
(T (57%)
[T (579 . . .
- Eiséiﬁ @ Fibronectin type 3 domain
== e
) “ HI——— TN  (47%) PKD domain
———INIHT (43%)

Supplementary Figure S8 (a,b) Structure of and occurrence of eukaryote-like protein (ELP)-encoding
sequences in the genomes of sponge symbionts (a, b) and in sponge metagenomes (c, d). a, The structure
of the longest ELP in H. (S.) methanophila MOX symbiont. Eukaryote-like domains (ELDs), which
comprised leucine-rich repeats and cadherin-like domains, as well as an autotransporter beta-domain,
which encodes a pore-forming element of the type V secretion system are shown. BLAST hits for this
sequence (query 1) within the genome of H. (S.) methanophila MOX and Cycloclasticus symbionts are
shown below. b, The structure of the longest ELP in I. methanophila MOX symbiont. Eukaryote-like
domains (ELDs), which comprised leucine-rich repeats cadherin-like, polycystic kidney disease (PKD)
and fibronectin type 3 domains are shown. BLAST hits for this sequence (query 2) within the genome of
H. (S.) methanophila MOX are shown below. In panels a and b, identity values at amino acid level
between the query and the sequences identified by BLAST are shown in parentheses. Consensus sequence
and the mean pairwise identity (MPI) over all pairs in the column are included (100%, green; 30-99%,
yellow; below 30%, red).
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Supplementary Figure S8 (c, d) Structure of and occurrence of eukaryote-like protein (ELP)-encoding
sequences in the genomes of sponge symbionts (a, b) and in sponge metagenomes (c, d). ¢, d: Scaffolds
that contain ELPs (green circles) in the metagenomes of H. (S.) methanophila (c) and I. methanophila (d),
revealed by BLAST analysis using the longest assembled ELP genes as queries. In panel ¢, red circles mark
scaffolds that contain the autotransporter beta domains identified by BLAST using the respective partial
ELP sequence as a query.
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Supplementary Figure S9 Phylogeny of narG genes from the symbiotic MOX of sponges collected at the
Campeche and Mictlan seeps (highlighted in green). The dataset included narG sequences from this study
and from the NCBI database (73 amino sequences total). The tree is drawn to scale, with branch lengths

representing the number of substitutions per site. The analysis included 1167 positions.
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Supplementary Figure S10 Partial gas chromatograms (total ion current) of fatty acid (a, b) and alcohol
fractions (¢, d) in H. (S.) methanophila (a, ¢) and I. methanophila (b, d). Istd= internal standard. Symbols
and detailed nomenclature; fatty acids (a, b): gray circles= saturated fatty acids, white circles=
monounsaturated fatty acids, black stars= demospongic acids, red stars= brominated demospongic acids,
white triangle= iso-fatty acids, black triangle= anteiso-fatty acids, w= position of double bond counting
from the methyl-end of the chain, A= position of double bonds counting from the carboxylic acid end.
Nomenclature alcohols (c, d): 27*3=cholest-5-en-3B-ol (cholesterol), 272%?*= cholesta-5,24-dien-3B-ol
(desmosterol), 28°5**= 24-methylcholesta-5,24-dien-3-ol, 294>*'= 24-ethylcholesta-5,24 E-dien-3p-ol
(fucosterol), 28°3**= 24-ethylcholesta-5,24Z-dien-3B-ol (iso-fucosterol), c= contaminants.
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Supplementary Figure S11 Hopanoid synthesis in sponge MOX symbionts. The reconstruction is based
on genomes of I. methanophila and H. (S.) methanophila MOX and on transcriptomes of H. (S.)
methanophila MOX. Enzymes and their subunits are abbreviated with the name of the encoding gene.
Boxes are colored according to the expression value of a respective transcript (color legend for expression
values is shown on the bottom of figure).
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