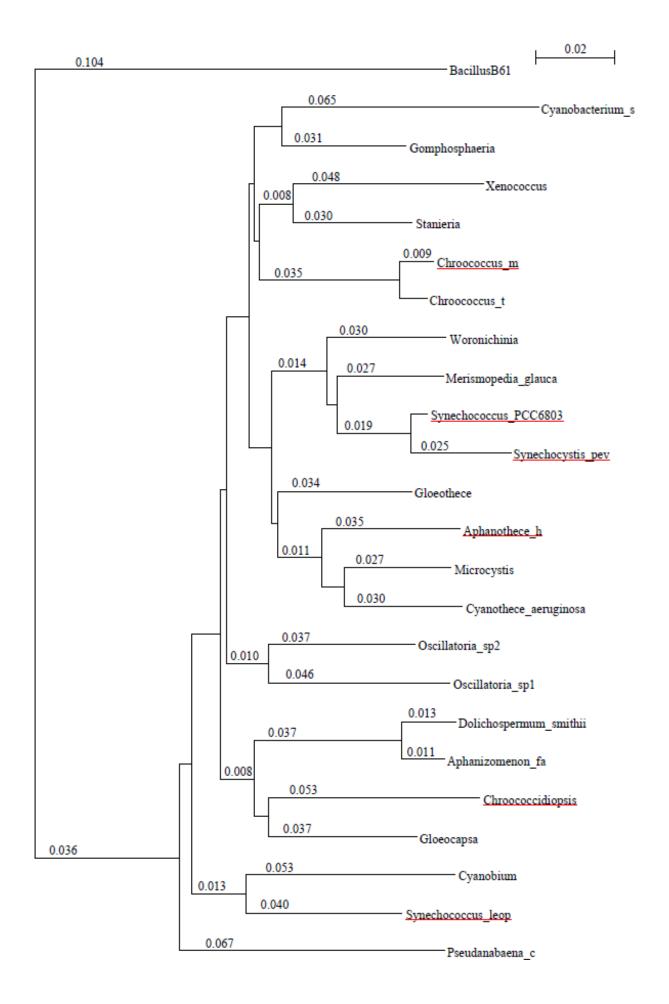
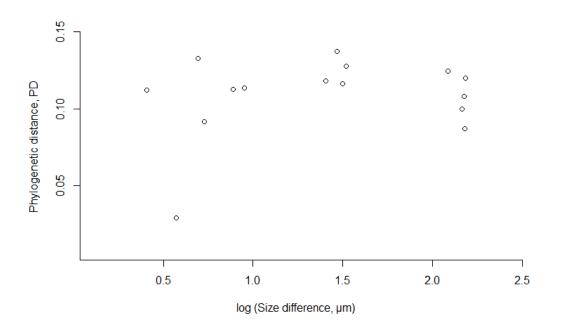
Supplementary Information S.I. 1

Supplementary Table S1. Relationship between chlorophyll *a* levels of each species growing as monoculture, measured with a laboratory fluorimeter (Turner BioSystems, USA), and their density and biovolume, which were measured with a particle counter (CASYTM Roche Innovatis AG, Germany). Each regression was performed across the range of densities that were observed in our experiment. N = samples size, R^2 = variance explained by the regression.


Species	Fluorimeter-particle counter (density)		Fluorimeter-particle counter (biovolume)	
	R ²	N	R ²	N
Synechococcus leopoliensis	0.830	15	0.902	15
Synechocystis sp PCC 6803	0.887	20	0.953	20
Synechocystis pevalekii	0.943	15	0.981	15
Chroococcus minutus	0.830	20	0.915	20
Chroococcidiopsis cubana	0.972	13	0.993	13
Aphanothece hegewaldii	0.833	20	0.943	20

Supplementary Table S2. Comparison of monoculture counts of each species used in the experiment when counted under a light microscope, or on the particle counter (CASYTM Roche Innovatis AG, Germany). Each regression was performed across the range of densities that were observed in our experiment. N = samples size, R^2 = variance explained by the regression.

Species	R ²	Ν
		_
Synechococcus leopoliensis	0.998	7
Synechocystis sp PCC 6803	0.999	8
Synechocystis pevalekii	0.999	8
Chroococcus minutus	1.000	10
Chroococcidiopsis cubana	0.891	8
Aphanothece hegewaldii	0.886	7


Supplementary Information S.I. 2

Supplementary Figure S1. Maximum Likelihood phylogeny constructed using RAxML version 7.2.8 (Stamatakis et al 2008). This molecular phylogeny includes 23 common freshwater cyanobacterial species estimated using partial 16S ribosomal RNA sequences and *Bacillus subtilis* strain B6-1 as outgroup, all available on GenBank. We aligned gene sequences with ClustalX2 (Neighbour-joining distance method) and excluded positions with gaps and correcting for multiple substitutions. Species used in this experiment are underlined in red.

Supplementary Information S.I. 3

Supplementary Figure S3. Relationship between cyanobacterial size differences (μ m) and phylogenetic distance, for each pairwise combination (N = 15). No correlation was found between the two variables (R² = 0.05, *P* = 0.4).

References

Stamatakis, A., Hoover, P. & Rougemont, J. (2008). A Rapid Bootstrap Algorithm for the RAxML Web Servers. *Syst. Biol.*, **57**, 758–771.