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Supplementary Methods 

Patients. Consecutive patients with metastatic or recurrent lung adenocarcinomas for 

which MSK-IMPACT data were available were included. Electronic medical record 

was used to identify patient clinical factors as well as survival outcomes. Data 

collection was approved by the MSKCC Institutional Review Board/Privacy Board. 

Overall survival (OS) was defined as the time from date of diagnosis of advanced 

disease (stage IV or recurrent cancer) until date of death or last follow-up. In this data 

set, the majority (68%) of the tumors in our cohort were biopsied and sequenced within 

30 days of diagnosis of metastatic disease. However, a fraction (21%) of the tumors 

were sampled and sequenced more than six months from the met recurrence date, with 

16% more than a year and 8% more than 2 years. We adjusted the late entry by left-

truncation as described in the next section. 

“Late entry” refers to these patients with older samples used for sequencing 

analysis at a later time in a minority of patients. Those patients with older samples taken 

at initial diagnosis of advanced lung cancer were “immortal” from their initial sampling 

time to the time of referral for MSK-IMPACT sequencing. This interval can be long 

for a small fraction of patients (8% with a delayed interval more than 2 years as 

mentioned in Supplementary Material), introducing survival bias. We show that 

standard survival analysis without adjusting for the bias can lead to over-optimistic 

survival estimates. For example, the standard Kaplan-Meier survival estimate without 

adjusting for the survival bias (termed “Naïve” analysis) for KRAS-mutant patients was 

biased upward (blue curve in Figure shown below) compared to that after adjusting for 

the survival bias (red curve). The median survival estimated from unadjusted analysis 

was 24 months for KRAS-mutant advanced lung cancer, significantly higher from 
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previously reported in the literature1,2.  We observed similar upward bias for EGFR-

mutant advanced lung cancer as well. 

 

We used the left-truncation method discussed in Kalbfleisch and Prentice 3 to 

adjust for this bias. This entails setting up Left-truncated and Right-censored (LTRC) 

data to construct the Surv function in the R penalized package for Lasso-penalized Cox 

regression. The LTRC data included (Li, Ri, δi, xi) where Li was time from diagnosis of 

advanced lung cancer to time of MSK-IMPACT sequencing; Ri was time from 

diagnosis to death or last follow-up; δi was the censoring indicator, and xi denotes 

covariate vector. We show the left-truncation analysis was effective in eliminating the 

survival bias and the median OS of 16 months was now close to what’s reported in the 

literature for KRAS-mutant advanced lung adenocarcinomas. We also note that 

although left-truncation was necessary in this analysis to adjust for survival bias, this 

bias will likely diminish as clinical sequencing increasingly becomes a part of routine 

care and adopted more widely at academic centers and community oncology setting 

with more tumors sampled and sequenced in a timely and efficient manner. The 

Stratifying by KRAS

Kaplan Meier plot comparison

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +++++++++++++++++++ +++ + ++ + + +

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +++++++++++++++++++ +++ + ++ + + +

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100
Time in Months

O
ve

ra
ll 

Su
rv

iva
l

Strata + +LT::All Naive::All

MedianOS 95%CI 3Ysurvival 5Ysurvival
Left-truncated KRAS = 1 16 (0.41,0.59) 0.31 0.26
Naive KRAS = 1 24 (0.42,0.6) 0.42 0.38
Left-truncated KRAS = 0 25 (0.45,0.56) 0.39 0.24
Naive KRAS = 0 38 (0.45,0.56) 0.54 0.42

2



	

	 3	

discussion on left truncation analysis has been included in the Supplementary Methods 

section. 

 

OncoCast. We developed OncoCast, a computational tool for integrating tumor 

sequencing and clinical data for survival prediction in cancer. OncoCast implements a 

lasso-penalized Cox regression as the core algorithm for deriving prediction rules for 

overall survival. In this study, the survival time was calculated from the time of 

metastatic disease to the time of death or last follow-up. The hazard function for overall 

survival at time t can be written as: 

λ(t) = λ0(t) exp(β1 x1 + β2 x2 + · · · + βp xp ) 
  

 
   = λ0(t) exp(βT x), 

where λ0 (t) is an unspecified baseline hazard function, β = (β1 , ..., βp ) is the vector 

of regression coefficients, and x = (x1, ..., xp ) is the vector of genomic variables. In 

our analysis, the genomic predictors include mutation, copy number, and fusion 

detected from the MSK-IMPACT sequencing assay.  In our data, tumor sequencing 

was performed using MSK-IMPACT assay including version 1 (341 genes), version 

2 (410 genes), and version 3 (468 genes) in different sets of samples. Genes 

overlapping all platform versions and altered at least once in the sample cohort were 

included for this analysis. 

 

The estimation of the parameter β is achieved though maximization of the 

partial likelihood 

𝐿 𝛽 = Π%∈' 	
exp 𝛽,𝑥%

Σ/∈01 exp 𝛽,𝑥/
 

 



	

	 4	

 where D is the set of indicies for events (e.g., death), and Rr is the set of indices of the 

individuals at risk. Denote the log partial likelihood by l(β) = logL(β), Tibshirani  4 

proposed penalized Cox regression through constrained likelihood optimization as 

𝛽 = 𝑎𝑟𝑔𝑚𝑎𝑥	𝑙(𝛽), subject to 𝛽/ 9
≤ 𝑠. 

The l1-norm constrained optimization shrinks the regression coefficients toward zero to 

achieve sparse models. Such shrinkage renders more interpretable prediction rules and 

reduces the chance of over-fitting. The amount of shrinkage was determined through a 

5-fold cross-validation. A combination of gradient ascent and Newton-Raphson 

algorithm was used for optimization using the R penalized package5. Left-truncation 

was adjusted using the Kaplan-Meier estimator of the survival function Surv(t1, t2, 

status) in which t1 is time interval between diagnosis and time of tumor 

biopsy/sequencing and t2 is time to death or last follow-up.  

 

In the OncoCast pipeline, the core penalized Cox regression is wrapped in an 

ensemble learning framework using a repeated sample-splitting approach. In particular, 

we generated m different sample splits into a training (two-thirds) and test (one-third) 

set from the entire cohort of sample size n. An l1-penalized Cox regression model was 

fitted and tuned in each of the m training cohorts using a 5-fold cross-validation and 

then applied to derive a predicted risk score for the test cohort samples. We added a 

small l2 penalty (0.01×l1) for improved numerical stability in the presence of correlated 

features. The risk score takes the form of the linear predictor η=βx. In a sparse model, 

many of the coefficient estimates will be exactly zero and thus reducing the variance of 

prediction and allows variable selection 
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We set m = 200 to obtain an averaged risk score for the cohort, which was then 

scaled between 0 and 10 for interpretability. A sensitivity analysis on m was conducted 

in which we varied m from 100 to 1000, which showed that the prediction performance 

was not significantly affected by the choice of m. In each of the m = 200 penalized 

models, we recorded the genes with non-zero coefficient estimate. These genes had 

non-zero weights in the linear predictor and contributed to the prediction. For each gene, 

we calculated the selection frequency (proportion of times with non-zero coefficient 

estimates) across the m models as a measure of the relative importance for individual 

gene alterations.  

 

Allele-specific copy number and clonal heterogeneity analysis. Allele-specific copy 

number and clonal heterogeneity analysis were performed using the FACETS 

algorithm6  taking into account tumor purity and ploidy. The details FACETS analysis 

of whole-exome and MSK-IMPACT sequencing data had been described in several 

previous studies7-9  and will not be repeated here. 

 

Mutation clonality and multiplicity. Carter et al.10 introduced the cancer cell fraction 

and multiplicity concept for somatic point mutation. Cancer cell fraction (CCF) is the 

fraction of tumor cells carrying the mutation. CCF close to 1 indicates that the mutation 

is clonal in the tumor sample. Subclonal mutations have low CCF. For somatic 

mutations, multiplicity refers to the number of mutant copy. Denote the major and 

minor integer copy-number as m, n, and the possible multiplicity of the somatic 

mutation sÎ{1,…,m}. For clonal somatic mutations, the variant allele frequency can be 

written as 

𝑉𝐴𝐹 =
𝜌𝜏𝑠

𝑠 1 − 𝜌 + 𝜌𝑡 
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where ρ is tumor purity, τ is cancer cell fraction, s denotes mutant copy, and t = m + n 

denotes total copy number at the mutant locus in the tumor. Here given 𝜌, 𝜏 obtained 

from FACETS, we derived an empirical estimate of s that minimizes 𝑎𝑏𝑠(𝜏 − 1). The 

ratio of mutant copy over the total copy number (r = s/t) was summarized for each 

mutation in each sample. For heterozygous loss regions, r = 1. For regions with 

segmental copy number gains, a high mutant copy ratio r indicates that the point 

mutation likely preceded the segmental duplications. 

 

Each mutation was classified into clonal and subclonal status using the cancer 

cell fraction (CCF). Binomial exact confidence interval (CI) was calculated around the 

point estimate of CCF. Mutations with lower bound of 95% CI ≥ 75% were classified 

as clonal. Mutations with CCF ≥ 80% and lower bound of 95% CI below 75% were 

classified as likely clonal. Mutations with CCF < 80% and lower bound of 95% CI <75% 

were classified as subclonal. 

 

Mutation burden and signature analysis. Mutation burden was calculated as the 

number of nonsynonymous mutations per sample divided by the total genomic 

coverage of the MSK-IMPACT platform. Mutation signatures were identified for each 

sample according to distribution of the six substitution classes (C>A, C>G, C>T, T>A, 

T>C, T>G) and the bases immediately 5’ and 3’ of the mutated base, producing 96 

possible mutation subtypes. Decomposition analysis was applied to map the mutation 

pattern in each sample to the 30 signatures that had been previously described11. Each 

signature was assigned a weight that corresponded to the percentage of mutations 

explained by each given signature. 
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Software availability. The OncoCast R package is available at 

https://github.com/shenmskcc/OncoCast. An interactive web interface was developed 

using R Shiny with two main functions: GeneView and PatientView. In GeneView, 

users can interactively explore gene importance and co-mutation pattern by risk groups. 

The relative importance of a gene is measured by the selection frequency and the 

average regression coefficients that quantify how much the gene weighs in the risk 

score and overall prediction. The two measures can be interactively visualized in the 

volcano plot. In PatientView, users can type in a patient’s mutational profile and specify 

the clinical characteristics. The genomic risk score (averaged across the m penalized 

models) along with the predicted probability of survival at different time marks will be 

calculated and viewable in a dynamic plot. The Shiny app is available at 

https://github.com/shenmskcc/LungIMPACT. 
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Supplementary	Figure	1.	Mutation	(a)	and	co-mutation	(b)	frequencies	of	cancer	genes	in	n=1,054	MSK-
IMPACT	sequenced	advanced	lung	adenocarcinoma	samples.	Panel	c	displays	the	distribution	of	patient	
characteristics	including	age,	sex	and	smoking	status.



Supplementary	Figure	2
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Supplementary	Figure	2.	OncoCast analysis	workflow.



low intermediate-low intermediate-high high
Survival	difference

Hazard	ratio 1 1.04 1.22 1.9
95%	CI -- 0.67-1.62 0.69-2.14 1.07-3.36
P-value -- 0.85 0.49 0.03

Survival	difference	adjusted	for	age,	sex,	tumor	stage
Hazard	Ratio 1 1.31 1.45 1.91
95%	CI 0.83-2.06 0.81-2.59 1.06-3.42
P-value 0.24 0.2 0.03

Co-mutation		%
STK11,	KEAP1	 0 0 0 0.54
KRAS,	STK11 0 0 0.26 0.41
KRAS,	KEAP1	 0 0 0.09 0.41

Supplementary	Figure	3.	Validation	of	the	prognostic	model	in	n=542	TCGA	resected	lung	
adenocarcinoma	samples.
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Supplementary	Figure	4

Supplementary	Figure	4.	Mutant	allele	copy	number	analysis	of	cancer	genes.



Supplementary	Figure	5
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Supplementary Figure 5.Intratumor clonal heterogeneity summarized as Shannon 
index, overall mutation burden, and tumor ploidy estimated by the FACETS 
algorithm stratified by the four metastatic lung cancer risk groups. 



MedianOS 95%CI 1Ysurvival 3Ysurvival Predicted	
risk	score

17.4 (14.9,20.9) 0.65 0.22 4.12

Profile	3:	Male,	
smoker,	age≥65,	
KRASmut

MedianOS 95%CI 1Ysurvival 3Ysurvival Predicted	
risk	score

7.5 (6.1,10.9) 0.31 0.02 9.25

Profile	4:	Male,	smoker,	
age≥65,	TP53mut,	STK11
mut,	KEAP1mut

Supplementary	Figure	6



Supplementary	Table	1

Supplementary Table 1. Univariate and multivariate Cox regression models 
evaluating the genetic risk score and treatment types.

*for	6	unit	increase

Univariate
Hazard	Ratio Lower	95%	CI Upper	95%	CI P-value

Genetic	risk	score* 3.6 2.68 4.83 <2E-16 
Targeted 0.58 0.46 0.72 1E-06 
Immuno 0.97 0.76 1.23 0.8
Chemo 1.47 1.11 1.96 0.008

Multivariate

Genetic	risk	score	* 3.12 2.2 4.41 1E-10 
Targeted 0.8 0.62 1.05 0.1
Immuno 0.85 0.67 1.09 0.19
Chemo 1.21 0.89 1.64 0.2



Supplementary	Table	2

Supplementary Table 2. Univariate and multivariate Cox regression models evaluating the 
risk score and mutation burden.

*for	6	unit	increase

Univariate

Hazard	Ratio
Lower	95%	

CI
Upper	95%	

CI P-value
Risk	score* 3.60 2.68 4.83 <2E-16 
mutation	burden	(log-scale) 1.28 1.15 1.44 1.48E-05 

Multivariate

Hazard	Ratio
Lower	95%	

CI
Upper	95%	

CI P-value
Risk	score* 3.33 2.38 4.65 2.24E-12 
mutation	burden	(log-scale) 1.47 0.49 3.18 0.33


