Supporting information for

Onydecalins, Fungal Polyketides with Anti-Histoplasma and Anti-TRP Activity

Zhenjian Lin,[†] Sujal Phadke,[‡] Zhenyu Lu,[§] Sinem Beyhan,[‡] May H. Abdel Aziz,[§] Chris Reilly, [§] Eric W. Schmidt^{*,†}

[†]Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112

^{*}Department of Infectious Diseases, J. Craig Venter Institute, La Jolla, CA 92037

[§]Department of Pharmacology & Toxicology, University of Utah, Salt Lake City, UT 84112

List of the supporting information.

- Figure S1. ¹H NMR spectrum of compound **1** in DMSO-*d*₆.
- Figure S2. HSQC of compound 1 in DMSO-*d*₆.
- Figure S3. HMBC of compound 1 in DMSO-d₆.
- Figure S4. 1 H- 1 H COSY of compound 1 in DMSO- d_{6} .
- Figure S5. ROESY of compound 1 in DMSO- d_6 .
- Figure S6. ¹H NMR of TFA salt of compound 1 in DMSO- d_6 .
- Figure S7. ¹³C NMR of TFA salt of compound 1 in DMSO-*d*₆.
- Figure S8. HSQC of TFA salt of compound 1 in DMSO- d_6 .
- Figure S9. HMBC of TFA salt of compound 1 in DMSO-*d*₆.
- Figure S10. COSY of TFA salt of compound 1 in DMSO-d₆.
- Figure S11. ¹H NMR of compound **2** in DMSO-*d*₆.
- Figure S12. ¹³C NMR of compound **2** in DMSO-*d*₆.
- Figure S13. HSQC of compound 2 in DMSO-*d*₆.
- Figure S14. ¹H-¹H COSY of compound **2** in DMSO-*d*₆.
- Figure S15. ROESY of compound 2 in DMSO-d₆.
- Figure S16. ¹H NMR of compound **3** in CDCl₃.
- Figure S17. ¹³C NMR of compound **3** in CDCl₃.
- Figure S18. HSQC of compound 3 in CDCl₃.
- Figure S19. HMBC of compound 3 in CDCl₃.

- Figure S20. ¹H-¹H COSY of compound **3** in CDCl₃.
- Figure S21. NOESY of compound 3 in CDCl₃.
- Figure S22. ¹H NMR of compound 4 in CDCl₃.
- Figure S23. ¹³C NMR of compound 4 in CDCl₃.
- Figure S24. HSQC of compound 4 in CDCl₃.
- Figure S25. HMBC of compound 4 in CDCl₃.
- Figure S26. ¹H-¹H COSY of compound 4 in CDCl₃.
- Figure S27. NOESY of compound 4 in CDCl₃.
- Figure S28. ADEQUATE spectrum of ¹³C labeled compound 1 in DMSO-*d*₆.
- Figure S29. The ¹H NMR of ¹³C labeled and natural compound **1**.
- Figure S30. The ¹³C NMR of ¹³C labeled and natural compound **1**.
- Figure S31. CD spectrum of compound 1
- Figure S32. CD spectrum of compound 2
- Figure S33. CD spectrum of compound 3
- Figure S34. CD spectrum of compound 4
- Figure S35. Dose response of TRPV channel inhibition.
- Figure S36. Effects of onydecalins on *H. capsulatum* growth.
- Figure S37. Effects of onydecalins on fungal growth

Table S1. Antagonist activity of compounds 1-4 against a panel of TRP channel.

Scheme S1. Proposed biogenesis of compound 1-4. Red: ¹³C-¹³C coupled carbons resulting from feeding with U-¹³C-glucose. Squares: ¹³C-enriched carbons resulting from feeding with U-¹³C-glucose.

Figure S1. ¹H NMR spectrum of compound **1** in DMSO-*d*₆.

Figure S3. HMBC of compound 1 in DMSO-*d*₆.

Figure S4. ¹H-¹H COSY of compound 1 in DMSO- d_6 .

Figure S5. ROESY of compound 1 in DMSO-d₆.

Figure S6. ¹H NMR of TFA salt of compound 1 in DMSO- d_6 .

Figure S7. ¹³C NMR of TFA salt of compound **1** in DMSO-*d*₆.

Figure S8. HSQC of TFA salt of compound 1 in DMSO-d₆.

Figure S9. HMBC of TFA salt of compound 1 in DMSO-*d*₆.

Figure S10. COSY of TFA salt of compound 1 in DMSO-d₆.

Figure S11. ¹H NMR of compound **2** in DMSO- d_6 .

Figure S13. HSQC of compound **2** in DMSO-*d*₆.

Figure S14. ¹H-¹H COSY of compound **2** in DMSO- d_6 .

Figure S15. ROESY of compound **2** in DMSO-*d*₆.

Figure S16. ¹H NMR of compound **3** in CDCl₃.

Figure S17. ¹³C NMR of compound **3** in CDCl₃.

Figure S18. HSQC of compound 3 in CDCl₃.

Figure S19. HMBC of compound 3 in CDCl₃.

Figure S20. ¹H-¹H COSY of compound **3** in CDCl₃.

Figure S21. NOESY of compound 3 in CDCl₃.

2.0 11.0 10.0 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 f1 (ppm)

0.0

Figure S23. ¹³C NMR of compound **4** in CDCl₃.

Figure S25. HMBC of compound 4 in CDCl₃.

Figure S26. ¹H-¹H COSY of compound 4 in CDCl₃.

Figure S27. NOESY of compound 4 in CDCl₃.

Figure S28. ADEQUATE spectrum of 13 C labeled compound 1.

Figure S29. The ¹H NMR of ¹³C labeled and natural compound **1**.

Figure S30. The ¹³C NMR of ¹³C labeled and natural compound **1**.

Figure S32. CD spectrum of compound 2

Figure S34. CD spectrum of compound 4

Figure S35. Dose response of TRPV channel inhibition.

Figure S36. Effects of onydecalins on *H. capsulatum* growth. Itraconazole, amphotericin B, and compounds **3** and **4** were tested for their antifungal properties against *H. capsulatum* at a series of concentrations. Plates were incubated at 37 °C with 5% CO₂ for 10-14 days. The images shown were from the wells containing each compound at the indicated concentration (μ g/ml). These experiments were repeated at least three independent times and representative images are shown.

Figure S37. Effects of onydecalins on fungal growth. Four compounds were tested for their anti-fungal properties at a series of concentrations (0.25 to 64 μ g/ml) against *A. fumigatus* and *C. albicans*. The plates containing *C. albicans* and *A. fumigatus* were incubated for 48 hours at 30 °C and 37 °C, respectively. None of the compounds inhibited the growth of *A. fumigatus* and *C. albicans* at any of the ten concentrations tested. The images shown were from the wells containing the highest (64 μ g/ml) concentration of the respective compound. These experiments were repeated at least three independent times.

Table S1. Antagonist activity of compounds 1-4 against a panel of TRP channel subtypes (IC₅₀ values in

μM*).

compound	TRPA1	TRPM8	TRPV1	TRPV3	TRPV4
1	> 100	> 100	81.6	> 100	45.9
2	> 100	18.5	> 100	> 100	> 100
3	NT	> 100	NT	> 100	> 100
4	NT	61.6	NT	NT	> 100
capsazepine			0.5		
HC-067047					0.024
AMTB		5			

NT=not tested

Scheme S1. Proposed biogenesis of compound 1-4. Red: ¹³C-¹³C coupled carbons resulting from feeding with U-¹³C-glucose. Squares: ¹³C-enriched carbons resulting from feeding with U-¹³C-glucose.