SUPPORTING INFORMATION

Hyperpolarized [6-¹³C,¹⁵N₃]-Arginine as a Probe for *in Vivo* Arginase Activity

Andrew Cho^{1,2}, Roozbeh Eskandari³, Kristin L. Granlund³, and Kayvan R. Keshari^{1,3,4,*}

¹Department of Biochemistry & Structural Biology, Weill Cornell Graduate School, New York, New York 10065, United States

²Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, New York 10065, United States

³Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States

⁴Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States

In vivo [6-¹³C,¹⁵N₃]-Arginine Tracing Experiment

Method:

3 female athymic nude mice, 10–11 weeks old, were used for this experiment. Each mouse was administered 250 µL 25 mM [6-¹³C,¹⁵N₃]-arginine (6250 nmol [6-¹³C,¹⁵N₃]-arginine) in 100 mM Tris, 1 mM EDTA, pH 7.4 *via* intravenous tail-vein injection over the course of 10s. The mouse was subsequently anesthetized with isoflurane and sacrificed *via* cervical dislocation 90s following the end of injection. Blood was collected *via* intracardiac puncture immediately following sacrifice, and the liver was subsequently collected and frozen in liquid nitrogen. Blood samples were set aside at room temperature for 30 mins to allow coagulation, after which they were centrifuged at 14000 RPM, 4°C for 10 min and the serum (supernatant) was collected for metabolite extraction.

In separate Eppendorf tubes, each liver or serum sample was treated with 4% perchloric acid in H₂O (v/v) to precipitate proteins (200 μ L perchloric acid solution was added to every 100 mg liver or 100 μ L serum). The liver samples were blended with a handheld tissue homogenizer, and liver and serum samples were centrifuged at 14000 RPM, 4°C for 15 min. Every 1 mL of supernatant was subsequently mixed with 2 mL 78:22 chloroform:tri-n-octylamine (v/v), and the mixture was centrifuged at 4000 RPM, 4°C for 15 min. Afterwards, the aqueous layer was collected, frozen, and dried overnight on a lyophilizer. The resulting dried powder was resuspended in 700 μ L D₂O containing 1 mM Gd-DOTA and 250 μ M [2-¹³C]-glycine as a chemical shift reference and concentration standard. ¹³C-NMR spectra were acquired on a 14.1T Bruker NMR spectrometer. [¹³C,¹⁵N₂]-urea and [6-¹³C,¹⁵N₃]-arginine concentrations in each sample were calculated by comparing the corresponding peak integral to that of the glycine standard. [¹³C,¹⁵N₂]-urea and [6-¹³C,¹⁵N₃]-arginine concentration values for each mouse were

normalized to sample weight, averaged, and reported per 1 g liver or 1 mL serum, which is the approximate total liver mass and serum volume in these mice. Values are reported in nanomoles and as a percentage of the total injected moles of $[6^{-13}C, {}^{15}N_3]$ -arginine.

Results:

 $[^{13}C, ^{15}N_2]$ -urea per 1 g liver: 94.6 nmol ± 36.7 nmol, $1.51\% \pm 0.59\%$ of injected dose

[6-¹³C, ¹⁵N₃]-arginine per 1 g liver: Not Detected

 $[^{13}C, ^{15}N_2]$ -urea per 1 mL serum: 78.7 nmol ± 8.8 nmol, 1.26% ± 0.14% of injected dose

 $[6^{-13}C, {}^{15}N_3]$ -arginine per 1 mL serum: 154.8 nmol ± 21.9 nmol, 2.48% ± 0.35% of injected dose

Serum

Figure S1: ¹³C-NMR of serum and liver metabolite extracts from Mouse 1 (left), with the carbon resonance of $[^{13}C, ^{15}N_2]$ -urea, carbon-6 resonance of $[6-^{13}C, ^{15}N_3]$ -arginine, and carbon-2 resonance of $[2-^{13}C]$ -glycine indicated with arrows. The chemical shift range corresponding to urea (~163 ppm) and the carbon-6 resonance of arginine (~157 ppm) have been enlarged and are shown on the right.

Synthesis of [6-¹³C,¹⁵N₃]-Arginine

General Synthetic and Analytical Methods. [¹³C, ¹⁵N₂]-thiourea and potassium [¹⁵N]-cyanide were purchased from Cambridge Isotope Laboratories, N-tert-Boc-L-aspartic acid tert-butyl ester (compound 4) was purchased from Carbosynth, and all other reagents were purchased from Sigma-Aldrich. All reagents were used without further purification. 230-400 mesh, grade 60 silica gel (Fisher Chemical) was used for column chromatography and MilliporeSigma 60 F254, 0.25 mm thickness, glass thin layer chromatography (TLC) plates (Thomas Scientific) were used for analytical TLC. TLC plates were visualized by fluorescence quenching under UV light or staining with vanillin or ninhydrin. ¹H- and ¹³C-NMR for characterization of all intermediates and the final product were acquired in CDCl₃ or D₂O (Cambridge Isotope Laboratories) at 25°C on a Bruker Avance III 600 MHz Spectrometer at the Memorial Sloan Kettering Nuclear Magnetic Resonance Core Facility. All chemical shift values are reported in parts per million (δ). The residual proton signals of CDCl3 or D2O and the carbon signals of CDCl3 or MeOH were used as a chemical shift reference. Splitting patterns are labeled as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; ddd, doublet of doublets of doublets. The gray chemical shift value in the ¹³C-spectrum of compounds 2 and 9 corresponds to the MeOH reference, while all other gray values correspond to unidentified impurities. Electrospray ionization high-resolution mass spectroscopy (ESI-HRMS) was performed on a Waters LCT Premier Time-of-Flight Mass Spectrometer at the Memorial Sloan Kettering Nuclear Magnetic Resonance Core Facility.

Synthetic Methods

2-methylisothiouronium- ${}^{13}C{}^{15}N_2$ iodide (2)

In an oven-dried round bottom flask equipped with a magnetic stir bar, 2.5 g [^{13}C , $^{15}N_2$]-thiourea (31.6 mmol, 1 equiv.) was dissolved in 100 mL MeOH. To this, 5.15 g iodomethane (36.3 mmol, 1.15 equiv.) was added and this reaction mixture was stirred at reflux for 3 hours. The reaction mixture was cooled to room temperature and concentrated under vacuum to give pure **compound 2** as a white solid in 97% yield (6.7 g). ¹H-NMR (600 MHz, D₂O): δ = 2.58 (d, 3H, ³*J*_{H,C} = 4.8 Hz) ppm. ¹³C-NMR (151 MHz, D₂O, MeOH reference): δ = 173.3 (t, ¹*J*_{C,N} = 19.2 Hz), 13.6 ppm. ESI-HRMS: m/z calculated for C¹³CH7¹⁵N₂S (M+H)⁺ 94.0304, found 94.0304.

Methyl N,N'-bis(tert-butoxycarbonyl)carbamimidothioate-¹³C-¹⁵N₂ (3)

An oven dried round bottom flask was equipped with a magnetic stir bar and charged with 4.7 g **compound 2** (21.3 mmol, 1 equiv.), 75 mL DCM, and 71.5 mL saturated NaHCO₃ in H₂O. To this, 18.6 g di-tert-butyl dicarbonate (85.2 mmol, 4 equiv.) was added and the reaction mixture was stirred at ambient temperature over 5 days. The reaction mixture was diluted with 120 mL 1:1 DCM:H₂O (v/v), the organic phase was collected, and the aqueous phase was extracted with DCM (2 x 100 mL). The pooled organic phase was washed with H₂O (2 x 120 mL) and brine (120 mL), dried with MgSO₄, and concentrated under vacuum. Crude product was purified by flash chromatography (3% diethylether in hexanes, v/v) and dried to yield a white solid in 78.5% yield (4.9 g). ¹H-NMR (600 MHz, CDCl₃): δ = 11.61 (d, 1H, ¹J_{H,N} = 90.6 Hz), 2.39 (d, 3H, ³J_{H,C} = 4.8 Hz), 1.52 (s, 9H), 1.50 (s, 9H) ppm. ¹³C-NMR (151 MHz, CDCl₃): δ = 171.7–171.4 (m), 161.0–160.7 (m), 151.0–150.7 (m), 83.3, 81.1, 28.1, 14.5 (d, ²J_{C,C} = 4.8 Hz) ppm. ESI-HRMS: m/z calculated for C11¹³CH₂₂Na¹⁵N₂O₄S (M+Na)⁺ 316.1172, found 316.1195.

(S)-4-(*tert*-butoxy)-3-((*tert*-butoxycarbonyl)amino)-4-oxobutanoic acid (5)

An oven dried 2-neck round bottom flask was equipped with a magnetic stir bar and an argon inlet. The flask was charged with 5 g compound 4 (17.3 mmol, 1 equiv.) and sealed under an argon atmosphere. 120 mL dry THF and 2.63 g triethylamine (26.0 mmol, 1.5 equiv.) were added to the flask, and the mixture was cooled in an ice-salt bath to between -5 and -10° C. To this, 2.82 g ethyl chloroformate (26.0 mmol, 1.5 equiv.) was added dropwise as the reaction mixture was stirred vigorously. While stirring, the mixture was subsequently removed from the ice bath and allowed to equilibrate to ambient temperature over 30 minutes, after which the reaction mixture was filtered and set aside. Meanwhile a second round bottom flask was equipped with a stir bar and charged with 1.37 g sodium borohydride (36.3 mmol, 2.1 equiv.) and 10 mL H₂O. This was cooled in an ice bath and the filtrate from the first reaction was added dropwise while stirring vigorously. After all the filtrate was added, the flask was removed from the ice bath and stirred at ambient temperature for 1 hour. The reaction mixture as washed with saturated NaHCO₃ (1 x 100 mL), the organic phase was collected, and the aqueous phase was extracted with EtOAc (3 x 100 mL). All organic fractions were pooled, dried with MgSO₄, and concentrated in vacuo. The crude product was purified by flash chromatography (35:75 EtOAc: Hexanes, v/v) and dried, affording a colorless oil in 83% yield (3.95 g). ¹H-NMR (600 MHz, CDCl₃): $\delta = 5.35$ (d, 1H, ³J_{H,H} = 7.2 Hz), 4.39–4.29 (1H, m), 3.73–3.58 (2H, m), 2.17–2.08 (m, 1H), 1.57–1.47 (m, 1H), 1.45 (s, 9H), 1.43 (s, 9H) ppm. ¹³C-NMR (151 MHz, CDCl₃): δ = 172.1, 156.8, 82.4, 80.5, 58.3, 51.0, 36.7, 28.4, 28.1 ppm. ESI-HRMS: m/z calculated for C₁₃H₂₅NaNO₅ (M+Na)⁺ 298.1629, found 298.1630.

tert-butyl N-(tert-butoxycarbonyl)-O-tosyl-L-homoserinate (6)

To an oven dried round bottom flask equipped with a magnetic stir bar, 3.7 g **compound 5** (13.4 mmol, 1 equiv.) and 6.78 g triethylamine (67 mmol, 5 equiv.) were dissolved in 25 mL DCM and cooled in an ice bath. After cooling, 5.11 g p-toluenesulfonyl chloride (26.8 mmol, 2 equiv.) and 0.164 g DMAP (1.34 mmol, 0.1 equiv.) were added and the reaction mixture was stirred at room temperature for 1 hour. The reaction mixture was subsequently diluted with 100 mL DCM and washed with H₂O (4 x 60 mL), brine (1 x 60 mL), dried with MgSO₄, and concentrated under vacuum. Crude product was purified *via* flash chromatography (3:7 EtOAC:Hexanes, v/v) and dried under vacuum to yield a white tacky solid in 76% yield (4.4 g). ¹H-NMR (600 MHz, CDCl₃): $\delta = 7.74$ (d, 2H, ³*J*_{*H*,*H*} = 7.8 Hz), 7.31 (d, 2H, ³*J*_{*H*,*H*} = 7.8 Hz), 5.04 (d, 1H, ³*J*_{*H*,*H*</sup> = 7.8 Hz), 4.17–4.08 (m, 1H), 4.08–3.97 (m, 2H), 2.40 (s, 3H), 2.23–2.06 (m, 1H), 2.06–1.93 (m, 1H), 1.40 (s, 9H), 1.36 (s, 9H) ppm. ¹³C-NMR (151 MHz, CDCl₃): $\delta = 170.6$, 155.2, 144.9, 132.7, 129.9, 128.0, 82.6, 79.8, 66.6, 51.0, 31.5, 28.3, 27.9, 21.6 ppm. ESI-HRMS: m/z calculated for C₂₀H₃₁NaNO₇S (M+Na)⁺ 452.1722, found 452.1719.}

tert-butyl (S)-2-((*tert*-butoxycarbonyl)amino)-4-¹⁵N-(cyano)butanoate (7)

An oven-dried round bottom flask was equipped with a magnetic stir bar and charged with 4.4 g **compound 6** (10.2 mol, 1 equiv.), 3.06 g NaI (20.4 mmol, 2 equiv.), and 50 mL acetone. This mixture was stirred at reflux for 1 hour, cooled to room temperature, and diluted in 25 mL DCM. The reaction mixture was filtered, and the orange filtrate was dried under vacuum. The dry filtrate was diluted in an additional 90 mL DCM, filtered, and the filtrate was dried under vacuum in a round bottom flask. The flask containing the dry filtrate was equipped with a magnetic stir bar and charged with 50 mL DMSO and 0.809 g potassium [¹⁵N]-cyanide (12.2 mmol, 1.2 equiv.). The

flask was placed in an oil bath set to 80°C and the reaction mixture was stirred under a reflux condenser for 18 hours. Afterwards, the magnetic stir bar was removed, the reaction mixture was frozen, and DMSO was removed under reduced pressure with a lyophilizer. The dried reaction mixture was diluted in 200 mL H₂O and extracted with EtOAc (3 x 200 mL), after which the pooled organic phase was washed with H₂O (2 x 300 mL) and brine (1 x 300 mL). The organic phase was dried under vacuum, and the crude product was purified with flash chromatography (2:8 EtOAc:Hexanes, v/v), yielding a white solid in 52% yield (1.5 g). ¹H-NMR (600 MHz, CDCl₃): δ = 5.17 (d, 1H, ³*J*_{*H*,*H*} = 6.0 Hz), 4.27–4.18 (m, 1H), 2.51–2.33 (m, 2H), 2.31–2.18 (m, 1H), 2.01–1.89 (m, 1H), 1.48 (s, 9H), 1.44 (s, 9H) ppm. ¹³C-NMR (151 MHz, CDCl₃): δ = 170.3, 155.5, 119.1 (d, ¹*J*_{*C*,*N*} = 16.9 Hz), 83.3, 80.4, 53.1, 29.3, 28.4, 28.1, 13.8 (d, ²*J*_{*C*,*N*} = 3.0 Hz) ppm. ESI-HRMS: m/z calculated for C14H24NaN¹⁵NO4 (M+Na)⁺ 308.1604, found 308.1597.

tert-butyl (E)- N^2 , N^{ω} , $N^{\omega'}$ -tris(*tert*-butoxycarbonyl)-L-argininate- $C^{\omega_-13}C$ - N^{δ} , N^{ω} , $N^{\omega'}$ - ^{15}N (8)

In an oven dried round bottom flask equipped with a magnetic stir bar, 1.7 g **compound 7** (5.96 mmol, 1 equiv.) was dissolved in 45 mL acetic acid. 1.26 g 10% Pd/C (w/w, dry basis, ~50% water, approx. 0.1 equiv. Pd) was subsequently added to the flask, and the flask was placed inside a Parr apparatus. The sealed Parr apparatus was depressurized with a vacuum line and subsequently charged with 70 PSI H₂. The reaction mixture was stirred at room temperature for 2 hours, after which H₂ gas was released from the vessel outlet. The reaction mixture was exposed to vacuum within the Parr apparatus for an additional 5 minutes to remove residual H₂ gas dissolved in the solvent. The Parr apparatus was subsequently opened, the magnetic stir bar was removed, and the mixture was filtered over a pad of celite. The filtrate was collected, frozen, and dried under reduced pressure in a lyophilizer. The resulting oil was the acetate salt of the reduced nitrile (confirmed by

NMR) and was used for the next step without purification. The oil was added to an oven dried round bottom flask equipped with a magnetic stir bar, which was combined with 50 mL DMSO, 1.92 g **compound 3** (6.56 mmol, 1.1 equiv.), and 3.02 g triethylamine (29.8 mmol, 5 equiv.). This reaction mixture was stirred at ambient temperature for 24 hours, after which the mixture was frozen and dried under reduced pressure in a lyophilizer to remove DMSO. The crude product was purified *via* flash chromatography (2:8 EtOAc:Hexanes, v/v) to yield a light yellow oil in 54% yield (1.73g). ¹H-NMR (600 MHz, CDCl₃): δ = 11.47 (d, 1H, ^{*l*}*J*_{*H*,N} = 91.8 Hz), 8.46–8.23 (m, 1H), 5.16–4.99 (m, 1H), 4.23–4.12 (m, 1H), 3.45–3.35 (m, 2H), 1.88–1.73 (m, 1H), 1.68–1.59 (m, 2H), 1.59–1.50 (m, 1H), 1.47 (s, 9H), 1.46 (s, 9H), 1.44 (s, 9H), 1.42 (s, 9H) ppm. ¹³C-NMR (151 MHz, CDCl₃): δ = 171.7, 163.6–162.9 (m), 156.2 (ddd, ^{*l*}*J*_{*C*,N} = 8.4 Hz, ^{*l*}*J*_{*C*,N} = 14.4 Hz, ^{*l*}*J*_{*C*,N} = 24.6 Hz), 155.4, 153.3 (d, ^{*l*}*J*_{*C*,N} = 24.3 Hz), 83.3, 82.1, 79.8, 79.5, 53.6, 40.7–40.1 (m), 30.3, 28.4, 28.4, 28.1, 28.1, 24.9 ppm. ESI-HRMS: m/z calculated for C₂₄¹³CH₄N¹⁵N₃O₈ (M+H)⁺ 535.3314, found 535.3338.

$[6^{-13}C, {}^{15}N_3]$ -L-Arginine-HCl (9)

An oven dried round bottom flask was equipped with a magnetic stir bar and charged with 1.73 g **compound 8** (3.23 mmol). To this, 100 mL 1:9 trifluoroacetic acid:DCM (v/v) was added and the solution was stirred at ambient temperature for 18 hours. The mixture was dried under reduced pressure, after which 120 mL 1:1 DCM:H₂O (v/v) was added to the flask and the solution was transferred to a separatory funnel. The aqueous layer was collected, and the organic phase was extracted with H₂O (2 x 50 mL). Aqueous fractions were pooled, washed with 70 mL DCM, and dried under reduced pressure. The trifluoroacetate counter-ion was exchanged with a chloride counter-ion through 3 cycles of treatment with 100 mL 1M HCl and drying under reduced pressure.

Pure [6-¹³C,¹⁵N₃]-L-Arginine-HCl was crystallized from the remaining crude material using an adaptation of a previously reported method.¹ 640 mg of crude product was redissolved in 380 µL aniline (4.20 mmol, 1.3 equiv.) and 3 mL 1:9 H₂O:EtOH (v/v) at 50°C. This solution was left undisturbed at room temperature for 24 hours as [6-¹³C,¹⁵N₃]-L-Arginine-HCl crystallized out of solution. The resulting white solid was collected, washed with cold ethanol, and dried in an 80°C oven for 3 hours, yielding the pure monohydrochloride salt as a white powder in 53.2% yield (368 mg). ¹H-NMR (600 MHz, D₂O): δ = 3.74 (t, 1H, ²*J*_{C,N} = 6.0 Hz), 3.24–3.18 (m, 2H), 1.93–1.82 (m, 2H), 1.74–1.55 (m, 2H) ppm. ¹³C-NMR (151 MHz, D₂O, MeOH Reference): δ = 174.9 ppm, 157.4 (q, ^{*1*}*J*_{C,N} = 21.7 Hz), 54.9, 41.1 (d, ²*J*_{C,N} = 10.0 Hz), 28.2, 24.5 ppm. ESI-HRMS: m/z calculated for C₁₂¹³CH₁₅N¹⁵N₃O₂ (M+H)⁺ 179.1139, found 179.1140.

¹ Cox, J. J. Biol. Chem. **1928**, 78, 475–479.

<u>NMR Spectra</u> Compound 2, ¹H-NMR, 14.1T

Compound 2, ¹³C-NMR, 14.1T

Compound 3, ¹³C-NMR, 14.1T

Compound 5, ¹H-NMR, 14.1T

Compound 5, ¹³C-NMR, 14.1T

Compound 6, ¹H-NMR, 14.1T

Compound 6, ¹³C-NMR, 14.1T

Compound 7, ¹H-NMR, 14.1T

Compound 7, ¹³C-NMR, 14.1T

Compound 8, ¹³C-NMR, 14.1T

Compound 9 – [6-¹³C,¹⁵N₃]-L-Arginine, ¹H-NMR, 14.1T

Compound 9 – [6-¹³C,¹⁵N₃]-L-Arginine, ¹³C-NMR, 14.1T

High Resolution Mass Spectrometry

Compound 2

Elemental Composition Report

Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 110.0 Element prediction: Off Number of isotope peaks used for i-FIT = 4

Monoisotopic Mass, Even Electron Ions 47 formula(e) evaluated with 1 results within limits (up to 20 closest results for each mass) Elements Used: H: 0-8 14N: 0-1 15N: 0-2 S: 0-1 12C: 0-1 13C: 0-1 I: 0-1

C13CH6N2SHI 091516_13C15N-SMeThiomea-Exact 5 (0.132) Cm (3:6)

94.0	304												0.100	
10004.0	96.0270	135.057	9 157.0843	180.0462 2	13.1450_222.0888	25	4.9370 284.9	⁵¹⁵ 308.	314. 1598	9648 316.96	637349.18	865	379.1996	m/-
80	100	120 14	0 160	180	200 220	240	260 2	280	300	320	340	360	380	111/2
Minimum: Maximum:			5.0	5.0	-1.5 110.0									
Mass	Calc	. Mass	mDa	PPM	DBE	i-FIT	Forr	nula						
94.0304	94.03	304	0.0	0.0	0.5	60.9	Н7	15N2	S 12	c 13c				

Compound 3

Elemental Composition Report

Single Mass Analysis

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 110.0 Element prediction: Off Number of isotope peaks used for i-FIT = 4

Monoisotopic Mass, Even Electron Ions

4177 formula(e) evaluated with 2 results within limits (up to 20 closest results for each mass) Elements Used: H: 0-25 O: 0-4 Na: 0-5 S: 0-1 12C: 0-11 13C: 0-1 15N: 0-2

C1113CH2215N2O4S AC-BocSMeTU 2 (0.053) Cm (2:5)

AC-BocSMeTU	2 (0.053) Cm (2:5	5)							1	: TOF MS ES+ 5 61e+003
100 % 142.03	14 ^{157.0846}	229.1423 26	1.1163 ^{294.1}	316.1181 368	357.1449	3.2436 426.2629	454.2931	513.0581	550.6354	576.3906
120 140	160 180 200	220 240	260 280 3	300 320 3	40 360 380	400 420 440	460 480	500 520	540 560	580 600
Minimum: Maximum:		5.0	5.0	-1.5 110.0						
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Formula				
316.1181	316.1172 316.1195	0.9 -1.4	2.8 -4.4	2.5 -0.5	374.6 568.6	H22 O4 Na H22 O Na5	a S 12C3 5 12C10	11 13C 13C 15N	15N2 2	

Page 1

Page 1

1: TOF MS ES+ 5 46e+003

Compound 5

Elemental Composition Report

Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 110.0 Element prediction: Off Number of isotope peaks used for i-FIT = 4

Monoisotopic Mass, Even Electron Ions 92 formula(e) evaluated with 1 results within limits (up to 20 closest results for each mass) Elements Used: C: 0-13 H: 0-25 N: 0-1 O: 0-5 Na: 0-5 C13H25N05 AC-BocHSOtbu 4 (0.088) Cm (3:6)

100-										42	6.2612	4	54.29	24					4.3	30e+003
% 15	7.0844	198.110	9 229.1	1420 2	61.1134	298.1629	339.	1904 3	65.1368			ſ	.455.2	2983	513.	0577	550.	6287	573.3	352 m/7
120 140	160 18	0 200	220	240	260 28	0 300	320 3	40 360	380	400 42	20 440) 4	60 4	480	500	520	540	560	580	600
Minimum: Maximum:			5.	.0	5.0	- 1	1.5 10.0													
Mass	Calc. 1	Mass	mI	Da	PPM	D	BE	i-FI	Г	Form	ula									
298.1629	298.16	30	- (0.1	-0.3	3 1	.5	20.3		C13	H25	Ν	05	Na						

Compound 6

Elemental Composition Report

Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 110.0 Element prediction: Off Number of isotope peaks used for i-FIT = 4

Monoisotopic Mass, Even Electron Ions 62 formula(e) evaluated with 1 results within limits (up to 20 closest results for each mass) Elements Used: C: 0-20 H: 0-31 N: 0-1 O: 0-7 Na: 0-1 S: 0-1 C20H31NO5 AC-BocTOSOtbu 5 (0.127) Cm (2:5) 452.1722

100	265.1178	340.0482 ³⁹	6.1103	447.2169 453.17	⁵⁵ 493.1986	550.1725 ^{569.3068}	653.2720	730.2635	759.3202
200 225	250 275 300	325 350 3	375 400	425 450 475	500 52	5 550 575 600	625 650 67	75 700 725	750 775 800
Minimum: Maximum:		5.0	5.0	-1.5 110.0					
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Formula			
452.1722	452.1719	0.3	0.7	5.5	181.6	С20 Н31 1	N 07 Na	S	

Page 1

1: TOF MS ES+ 1.58e+005

1: TOF MS ES+

Compound 7

Elemental Composition Report

Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 110.0 Element prediction: Off Number of isotope peaks used for i-FIT = 4

Monoisotopic Mass, Even Electron Ions 37 formula(e) evaluated with 1 results within limits (up to 20 closest results for each mass) Elements Used: C: 0-14 H: 0-26 14N: 0-1 15N: 0-1 O: 0-4 Na: 0-1 C14H24N15NO4 091516_15N-BocNitotBu-Exact-02 41 (0.949) Cm (41:44)

100-											349.	1647									1.76e	+005
% 	2.0307		196	.0358	23	7.0622	2	293.124	8 308.	1597		350.16	84	406.15	595 ⁴²¹	.23274	47.735	0	507.2	651 ^{52:}	2.5905	m/z
120 1	140 1	160	180	200	220	240	260	280	300	320	340	360	380	400	420	440	460	480	500	520	540	111/2
Minimum: Maximum:					5.0		5.0		-1.5 110.0													
Mass	Ca	alc.	Mass		mDa		PPM	1	DBE	i	-FIT		Formu	ıla								
308.1597	30	08.16	04		-0.7		-2.3		3.5	6	7.0		C14	H24	14N	15N	04	Na				

Compound 8

Elemental Composition Report

Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 110.0 Element prediction: Off Number of isotope peaks used for i-FIT = 4

Monoisotopic Mass, Even Electron lons 3600 formula(e) evaluated with 1 results within limits (up to 20 closest results for each mass) Elements Used: 12C: 0-24 13C: 0-1 H: 0-47 14N: 0-1 15N: 0-3 O: 0-8 C2413CH46N15N3O8 AC-Prot-Arg 25 (0.580) Cm (19:28) 1: TOF MS ES+ 4.90e+005 557.3124 100-

Minimum: Maximum:		5.0	5.0	-1.5 110.0								
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Formul	a					
535.3314	535.3338	-2.4	-4.5	4.5	22317.2	12C24	13C	H47	14N	15N3	08	

1: TOF MS ES+

Compound 9 – [6-¹³C,¹⁵N₃]-L-Arginine

Elemental	Composition R	eport						Page 1
Single Mas Tolerance = Element pre Number of is	ss Analysis 5.0 PPM / DBE diction: Off sotope peaks used	: min = -1.5 I for i-FIT =	5, max = 11 4	0.0				
Monoisotopic 383 formula(e Elements Use 12C: 0-5 1	Mass, Even Electron e) evaluated with 1 re ed: 3C: 0-1 H: 0-15	n lons esults within 14N: 0-1	limits (up to 15N: 0-3	20 closest re O: 0-3	esults for each	mass)		
Label-Arg 7 (0.	161) Cm (6:7)							1: TOF MS ES+
100-3		17	9.1139					4.0101004
% = 83.0669 0) 134.0949_143.06	178.117 17	3 201.0	952	242.1206 264.10	017 279.1627 321.04	62 342.1656 35	57.2160 379.1987 ^{391.2827}
80 1	00 120 140	160	180 200	220	240 260	280 300	320 340	360 380 400
Minimum: Maximum:		5.0	5.0	-1.5 110.0				
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Formula		
179.1139	179.1140	-0.1	-0.6	1.5	1547.7	12C5 13C H15	14N 15N3	02