SUPPLEMENTAL MATERIAL

Supplemental Tables (see Excel files)

Table S1. List of genes from RNAseq used for creating Heatmap (Figure 3).

Table S2. Genes differentially regulated after 24hrs of Dex treatment with Log2FC values.

Table S3. Taqman gene assays used for quantitative PCR (qPCR).

Figure S1. Isolated adult mouse ventricular cardiomyocytes treated with Dex exhibit GR nuclear translocation and cardiomyocyte hypertrophy.

A. Cardiomyocytes were treated with Ethanol (control) or Dex (100nM) for increasing time periods of 1hr or 24hrs, as indicated. Cardiomyocytes were fixed, and stained for GR (red) and DAPI (blue). Scale bar 10 μ M **B**. Isolated cultured adult mouse cardiomyocytes were treated with Ethanol or Dex for 24hrs. Phase contrast images are shown for cell size and quality of cardiomyocytes. **C**. Image J was used to measure cardiomyocyte surface area, from two independent cultures, tabulated and graphed as box plot using Prism7. * represents p<0.05.

Figure S2. GR binding and distribution across cardiac genome in neonatal cardiomyocytes treated with Dex.

A. Heatmap showing the tag distributions across active regions (values in z-axis/color, active regions in y-axis) in Control, Dex treated and Input samples. The data is presented in 5 clusters (default), C1 to C5 and sorted. **B**. Average plots of tag distributions of active regions at the transcription start site (TSS) and gene bodies are shown for Control (red), Dex treated (blue) or Input sampled (green). **C**. MEME/TOMTOM motif search identifies GRE in top 1000 peaks from GR-ChIP-seq. **D**. Pie chart showing the percent of genes associated with single active region (AcR) which represents genomic GR binding site vs. multiple Active Regions (AcR). **E**. Pie Chart showing locations of GR binding peaks relative to genomic annotations is presented as observed in Control and Dex treated samples.

Genes regulated after 1hr of Dex treatment

00		Ger		ieu aller 1		leauner	n.	•••••
		with	Gr binding	1			no Gr bindi	ing
		Ave.	Ave.highest	RNA	sea		RNA	sea
Gene.Name	# ActReg	Log2Ratio Ave.	Log2Ratio AcR	Log2FC.Dex1h	Log2FC.Dex24h	Gene.Name	Log2FC.Dex 1hr	Log2FC. Dex 24h
Pdk4	1	1.91	1.994	3.014	1.397	Cldn1	3.420	5.3
Arrdc3	2	2.09	2.382	2.556	0.706	Firt3	2.112	2.0
Per1	3	4.35	4.421	2.489	2.188	Fam110c	1.926	0.3
Abra	1	4.17	4.130	2.398	1.184	Zfp697	1.425	1.6
Sox8	4	2.22	2.970	2.358	1.957	Foxq1	1.420	1.8
Aspa	1	#DIV/0!	#DIV/0!	2.251	1.506	Pcdh20	1.378	1.8
Fam46b	2	4.74	5.034	2.150	3.845	LOC689064	1.256	1.3
Klf15	3	4.38	4.622	2.129	1.987	Zfp697	1.223	1.2
Arrdc2	2	4.97	5.140	1.996	0.472	Adrb2	1.193	0.7
Sesn1	4	3.79	5.122	1.975	1.281	LOC1001348	1.184	1.1
Sgk1	2	3.23	3.637	1.949	2.240	C5ar2	1.169	2.1
Cyb561	1	5.13	5.212	1.937	3.334	Hbb-b1	1.099	1.1
Cpa6	2	3.46	3.920	1.757	3.218	Gcnt1	0.975	0.4
Nfkbia	4	3.49	4.010	1.743	1.133	Hba2	0.967	1.1
Slc10a6	1	6.17	5.151	1.639	3.247	Lrrc10	0.896	1.1
Rgcc	2	4.32	5.030	1.588	4.187	RGD1309362	0.873	1.2
Pfkfb3	3	2.25	3.102	1.568	1.303	Lrrc10	0.871	1.0
Zfp189	1	4.86	4.970	1.567	0.661	Dgke Bod 1	0.831	0.2
Errfi1	4	3.11	4.047	1.463	0.970	FzdR	-0.746	0.0
Ptgs2	1	4.39	4,170	1.419	1.648	Gja1	-0.822	-0.6
Rasd1	2	3.12	3,660	1.331	0.850	Foxc2	-0.901	-0.4
KIf9	5	3 70	4 977	1 322	1 569	Efna1	-1.089	-0.1
Cebnd	1	1.40	2 115	1.323	0.742	Arc	-1.128	0.38
ceopu ro	2	1.43	E 401	1.234	1 262	G0s2	-1.129	-1.13
F3	3	4.02	5.401	1.222	1.505	Col2a1	-1.433	-2.73
Acerz	2	3.27	4.343	1.199	2.082	Dusp5	-1.745	-0.81
	4	3.53	3.950	1.100	0.208			
RGD1309079	2	2.10	3.265	1.104	1.550			
SIC28a2	1	2.54	2.747	1.103	2.608			
Relt	1	2.50	2.913	1.097	0.225			
Spsb1	1	4.75	4.285	1.085	1.588			
Ppp1r3b	1	1.17	1.467	0.991	-0.345			
Tob2	2	3.72	3.916	0.971	0.589			
Adamts1	1	2.25	2.713	0.935	0.896			
Dhrs3	2	2.29	3.269	0.929	0.627			
Usp53	4	1.85	3.282	0.917	1.109			
Fkbp5	6	4.13	5.079	0.904	2.686			
Tsc22d3	1	4.78	4.306	0.900	1.386			
Glul	3	2.76	3.610	0.892	1.758			
Mt2A	4	3.16	4.324	0.888	1.418			
Tsku	1	1.87	2.063	0.843	0.857			
Nt5dc3	3	3.87	4.984	0.832	1.083			
Rnf144b	3	3.37	4.363	0.831	0.500			
Cdc42ep2	3	3.42	3.976	0.812	0.414			
Cebpb	1	2.00	2.481	0.802	1.166			
Rhob	3	1.97	2.922	0.795	0.734			
RGD1304884	1	2.81	2.667	0.791	0.388			
Chst3	5	3.30	4.812	0.786	0.767			
Lpin1	3	4.13	4.475	0.771	0.336			
Mtus1	4	2.75	3.170	0.701	1.194			
Ddit4	2	1.63	3.174	0.699	0.565			
Vmp1	6	3.45	4,786	0.695	0.794			
Egr1	1	2.75	2,902	-0.715	0.038			
ler5	2	1.31	1.793	-0.731	-0.020			
Junb	6	2.06	3,369	-0.763	0.108			
Irs1	5	2.64	4.099	-0.792	-0.186			
Irf1	2	1.62	1 922	-0.797	-0 553			
Arid5a	1	1.02	2.662	-0.737	.0 399			
Nuak2	1	2.10	2.005	-0.8/1	-0.588			
KIF10	1	5.19	2.701	-0.921	-0.016			
Muan	2	1.56	2.118	-0.983	0.057			
	1	2.81	2.979	-0.998	-0.417			
LOC310926	2	1.73	2.681	-1.059	-1.452			
ler3	2	2.22	2.609	-1.141	-0.516			
Hes1	5	2.28	3.329	-1.155	-0.241			
Plk2	1	1.07	1.327	-1.327	-0.757			
Lif	1	2.64	3.441	-1.360	-0.547			
Socs3	2	1.85	2.451	-1.421	-0.468			
Phida1	1	1.78	2.252	-1.464	-0.483			
Cxcr4	1	1.42	2.121	-1.525	0.012			

Figure S3. Genes differentially regulated after 1hr of Dex treatment in neonatal cardiomyocytes.

A. Chart showing genes that are regulated after 1hr of Dex treatment with and without GR binding. Log2 fold change (Log2FC) is shown for GR-ChIP-seq and RNAseq data. Color scheme shows the increase (green) of decrease (red), with the color intensity corresponding to the Log2FC values. Since some genes have multiple binding sites of GR, the average peak values are shown for gene and the active region with highest peak value.

S4 Screenshot of DAVID showing functional annotation with genes regulated after 1hr Dex

DAVID Bioinformatics Resources 6.8 Laboratory of Human Retrovirology and Immunoinformatics (LHRI)

Help and Manual

*** Welcome to DAVID 6.8 *** *** If you are looking for DAVID 6.7, please visit our development site. ***

Functional Annotation Chart

Current Gene List: 02162018 Sig Diff 1hr **Current Background: Rattus norvegicus** 92 DAVID IDs

Options

Rerun Using Options Create Sublist

76 ch	art records						Com Dow	nload File
Sublis	st <u>Category</u>	¢ <u>Term</u>	🖨 RT	Genes	Count	\$ <u>%</u>	P-Value	Benjamini \$
	GOTERM_BP_DIRECT	positive regulation of transcription from RNA polymerase II promoter	<u>RT</u>		19	20.7	1.6E-6	1.5E-3
	GOTERM_BP_DIRECT	positive regulation of cell death	<u>RT</u>	=	5	5.4	1.4E-4	6.1E-2
	GOTERM_BP_DIRECT	response to lipopolysaccharide	<u>RT</u>		8	8.7	4.2E-4	1.2E-1
	GOTERM_BP_DIRECT	regulation of gene expression	<u>RT</u>		7	7.6	9.8E-4	2.1E-1
	GOTERM_BP_DIRECT	cellular response to mechanical stimulus	<u>RT</u>		5	5.4	1.7E-3	2.7E-1
	GOTERM_BP_DIRECT	positive regulation of transcription, DNA-templated	<u>RT</u>		10	10.9	1.8E-3	2.4E-1
	GOTERM_BP_DIRECT	apoptotic process	<u>RT</u>		8	8.7	2.0E-3	2.3E-1
	GOTERM_BP_DIRECT	embryo implantation	<u>RT</u>	=	4	4.3	2.2E-3	2.2E-1
	GOTERM_BP_DIRECT	liver regeneration	<u>RT</u>		4	4.3	2.4E-3	2.2E-1
	GOTERM_BP_DIRECT	cellular response to insulin stimulus	<u>RT</u>	=	5	5.4	3.0E-3	2.5E-1
	GOTERM_BP_DIRECT	cellular response to peptide	RT	-	3	3.3	3.8E-3	2.7E-1
	GOTERM_BP_DIRECT	negative regulation of transcription, DNA-templated	RT		9	9.8	4.2E-3	2.8E-1
	GOTERM_BP_DIRECT	regulation of cell proliferation	RT		6	6.5	5.6E-3	3.3E-1
	GOTERM_BP_DIRECT	decidualization	RT	=	3	3.3	9.3E-3	4.6E-1
	GOTERM_BP_DIRECT	positive regulation of gene expression	RT		7	7.6	9.3E-3	4.4E-1
	GOTERM_BP_DIRECT	cellular response to drug	RT	-	4	4.3	1.2E-2	5.0E-1
	GOTERM_BP_DIRECT	brown fat cell differentiation	RT	-	3	3.3	1.2E-2	4.8E-1
	GOTERM_BP_DIRECT	negative regulation of insulin receptor signaling pathway	RT	=	3	3.3	1.3E-2	5.0E-1
	GOTERM_BP_DIRECT	regulation of calcium ion transport	RT	-	3	3.3	1.4E-2	5.0E-1
	GOTERM_BP_DIRECT	positive regulation of vascular wound healing	RT		2	2.2	1.4E-2	4.9E-1
	GOTERM_BP_DIRECT	reactive oxygen species metabolic process	RT	-	3	3.3	1.5E-2	4.8E-1
	GOTERM_BP_DIRECT	cellular response to peptide hormone stimulus	RT	=	3	3.3	1.5E-2	4.8E-1
	GOTERM_BP_DIRECT	response to insulin	RT	-	4	4.3	1.5E-2	4.8E-1
	GOTERM_BP_DIRECT	negative regulation of JAK-STAT cascade	RT	=	3	3.3	1.8E-2	5.1E-1
	GOTERM_BP_DIRECT	negative regulation of tyrosine phosphorylation of Stat1 protein	RT	-	2	2.2	1.9E-2	5.3E-1
	GOTERM_BP_DIRECT	circadian rhythm	<u>RT</u>	-	4	4.3	2.1E-2	5.5E-1
	GOTERM_BP_DIRECT	spongiotrophoblast differentiation	RT	-	2	2.2	2.4E-2	5.8E-1
	GOTERM_BP_DIRECT	response to peptide hormone	<u>RT</u>	=	4	4.3	2.5E-2	5.8E-1
	GOTERM_BP_DIRECT	cellular response to tumor necrosis factor	<u>RT</u>		4	4.3	2.7E-2	6.0E-1
	GOTERM_BP_DIRECT	endothelial tube morphogenesis	<u>RT</u>	=	2	2.2	2.9E-2	6.1E-1
	GOTERM_BP_DIRECT	cellular response to hypoxia	<u>RT</u>		4	4.3	2.9E-2	6.0E-1
	GOTERM_BP_DIRECT	cytokine-mediated signaling pathway	<u>RT</u>	=	4	4.3	3.0E-2	5.9E-1
	GOTERM_BP_DIRECT	insulin receptor signaling_pathway	<u>RT</u>		3	3.3	3.1E-2	6.0E-1
	GOTERM_BP_DIRECT	positive regulation of protein catabolic process	RT	=	3	3.3	3.3E-2	6.2E-1
	GOTERM_BP_DIRECT	glomerular visceral epithelial cell differentiation	<u>RT</u>	-	2	2.2	3.3E-2	6.1E-1
	GOTERM_BP_DIRECT	regulation of auditory receptor cell differentiation	<u>RT</u>	=	2	2.2	3.3E-2	6.1E-1
	GOTERM_BP_DIRECT	response to progesterone	<u>RT</u>	-	3	3.3	3.4E-2	6.1E-1
	GOTERM_BP_DIRECT	negative regulation of cell proliferation	RT		6	6.5	3.5E-2	6.1E-1

Figure S4. Functional annotation of genes regulated after 1hr of Dex in neonatal cardiomyocytes using DAVID bioinformatics resource.

Genes differentially regulated after 1hr of Dex treatment were uploaded onto the DAVID Bioinformatics resources for functional annotation. The screenshot shows the top 38 GOTERM identified by DAVID.

Response to dexamethat	2	4.10E-02			
Regulation of calcium ion	Regulation of calcium ion transport				
Positive regulation of va-	2	4.90E-02			
Collagen fibril organizati	2	4.90E-02			
Heart development	3	5.00E-02			
Liver regeneartion	2	6.70E-02			
Heart morphogenesis	2	6.90E+02			
Functiona	Genes	P value			
GOTERM_CC_Direct	integral component of plasma membrane	5	2.30E-02		
GOTERM_CC_Direct	apical plasma membrane	3	5.30E-02		
GOTERM_BP_Direct	G-protein coupled receptor signaling pathway	4	4.80E-01		

S5A

Figure S5. Genes differentially regulated after 1hr of Dex treatment with no GR association in neonatal cardiomyocytes.

A. Graph represents genes that show significant differential regulation at 1hr and 24hrs of Dex treatment but are not associated with genomic GR binding. **B**. Integrated Genomic Viewer (IGV) screenshots of selected representative genes with aligned RNAseq and GR-ChIP-Seq data, after Dex treatment compared to control (ethanol) cardiomyocytes. Arrows indicate the direction of transcription of that genes, numbers in brackets in the Y axis indicate the values on signal tracks for GR-ChIP-Seq and RNAseq for each gene. The values were kept same within the samples for each gene. **C**. Transcript abundance of selected genes as measured by qPCR in cardiomyocytes treated with Dex for 1hr, 6hrs or 24hrs. Error bars represent SEM, * is p<0.05 compared to control, n=3. **D**. Functional annotation of genes that showed significant differential regulation after 1hr of Dex treatment and were not associated with GR, analyzed using DAVID bioinformatics resource.

S6 Screeshot of DAVID showing Functional Annotation with genes regulated after 24hrs of Dex

DAVID Bioinformatics Resources 6.8 Laboratory of Human Retrovirology and Immunoinformatics (LHRI)

*** Welcome to DAVID 6.8 *** *** If you are looking for <u>DAVID 6.7</u>, please visit our <u>development site</u>. ***

Functional Annotation Chart

Current Gene List: only 24hrs **Current Background: Rattus norvegicus** 617 DAVID IDs

Options

Rerun Using Options Create Sublist

42 chart records								wnload File
Sublist	Category	¢ <u>Term</u> :	RT	Genes	Count 4	<u>%</u>	P-Value	<u>Benjamini</u> 🖨
	KEGG_PATHWAY	Axon guidance	RT		20	3.2	7.6E-8	1.7E-5
	KEGG_PATHWAY	Focal adhesion	<u>RT</u>	—	24	3.9	9.5E-7	1.0E-4
	KEGG_PATHWAY	ECM-receptor interaction	RT		15	2.4	2.0E-6	1.5E-4
	KEGG_PATHWAY	Pentose and glucuronate interconversions	<u>RT</u>	E	9	1.5	2.5E-5	1.4E-3
	KEGG_PATHWAY	Metabolism of xenobiotics by cytochrome P450	RT	Ξ.	12	1.9	2.6E-5	1.1E-3
	KEGG_PATHWAY	Ascorbate and aldarate metabolism	RT	Ξ.	8	1.3	2.8E-5	1.0E-3
	KEGG_PATHWAY	Drug metabolism - cytochrome P450	RT	Ξ	12	1.9	3.0E-5	9.4E-4
	KEGG_PATHWAY	PI3K-Akt signaling pathway	RT	=	28	4.5	4.6E-5	1.3E-3
	KEGG_PATHWAY	Chemical carcinogenesis	RT	Ξ.	13	2.1	6.8E-5	1.7E-3
	KEGG_PATHWAY	Porphyrin and chlorophyll metabolism	<u>RT</u>	E	9	1.5	6.9E-5	1.5E-3
	KEGG_PATHWAY	Retinol metabolism	RT	Ξ.	12	1.9	1.3E-4	2.6E-3
	KEGG_PATHWAY	Complement and coagulation cascades	<u>RT</u>	E	11	1.8	1.8E-4	3.3E-3
	KEGG_PATHWAY	Protein digestion and absorption	RT		12	1.9	2.4E-4	4.1E-3
	KEGG_PATHWAY	Leukocyte transendothelial migration	RT	a	14	2.3	2.6E-4	4.1E-3
	KEGG_PATHWAY	Drug metabolism - other enzymes	RT		9	1.5	6.5E-4	9.5E-3
	KEGG_PATHWAY	Steroid hormone biosynthesis	<u>RT</u>	a	10	1.6	1.9E-3	2.6E-2
	KEGG_PATHWAY	Renin secretion	RT		9	1.5	2.1E-3	2.8E-2
	KEGG_PATHWAY	Dilated cardiomyopathy	<u>RT</u>	a	10	1.6	2.5E-3	3.0E-2
	KEGG_PATHWAY	Proximal tubule bicarbonate reclamation	RT	1 - C	5	0.8	6.4E-3	7.2E-2
	KEGG_PATHWAY	Hypertrophic cardiomyopathy (HCM)	RT	E	9	1.5	6.5E-3	6.9E-2
	KEGG_PATHWAY	Platelet activation	RT		12	1.9	7.3E-3	7.4E-2
	KEGG_PATHWAY	Adrenergic signaling in cardiomyocytes	<u>RT</u>	a	12	1.9	1.3E-2	1.2E-1
	KEGG_PATHWAY	Mineral absorption	RT	i	6	1.0	1.3E-2	1.2E-1
	KEGG_PATHWAY	Rap1 signaling pathway	RT	Ξ	15	2.4	1.8E-2	1.6E-1
	KEGG_PATHWAY	Pathways in cancer	RT		23	3.7	2.1E-2	1.7E-1
	KEGG_PATHWAY	Hematopoietic cell lineage	RT	E	8	1.3	2.2E-2	1.7E-1
	KEGG_PATHWAY	Oxytocin signaling pathway	RT	Ξ.	12	1.9	2.4E-2	1.8E-1
	KEGG_PATHWAY	Insulin secretion	<u>RT</u>	E	8	1.3	3.0E-2	2.1E-1
	KEGG_PATHWAY	Arrhythmogenic right ventricular cardiomyopathy (ARVC)	RT	ā —	7	1.1	3.7E-2	2.5E-1
	KEGG_PATHWAY	Bile secretion	RT	E	7	1.1	3.7E-2	2.5E-1
	KEGG_PATHWAY	Gastric acid secretion	RT	÷	7	1.1	4.1E-2	2.7E-1
	KEGG_PATHWAY	Pertussis	RT	Ξ.	7	1.1	4.1E-2	2.7E-1
	KEGG_PATHWAY	Calcium signaling pathway	RT		12	1.9	5.8E-2	3.5E-1
	KEGG_PATHWAY	Serotonergic synapse	RT	Ξ.	9	1.5	6.7E-2	3.8E-1
	KEGG_PATHWAY	Aldosterone synthesis and secretion	RT	÷	7	1.1	7.2E-2	3.9E-1
	KEGG_PATHWAY	Cell adhesion molecules (CAMs)	<u>RT</u>	=	11	1.8	7.7E-2	4.1E-1
	KEGG_PATHWAY	Regulation of actin cytoskeleton	RT		13	2.1	7.8E-2	4.0E-1
	KEGG_PATHWAY	Hippo signaling pathway	RT	Ξ.	10	1.6	8.6E-2	4.2E-1
	KEGG_PATHWAY	Chemokine signaling_pathway	RT		11	1.8	9.0E-2	4.3E-1
	KEGG_PATHWAY	p53 signaling_pathway	RT	E.	6	1.0	9.6E-2	4.4E-1
	KEGG_PATHWAY	Renin-angiotensin system	RT	1	4	0.6	9.9E-2	4.5E-1
	KEGG PATHWAY	Prion diseases	RT	1 C	4	0.6	9.9E-2	4.5E-1

Help and Manual

Figure S6. Functional annotation of genes regulated after 24hrs of Dex in neonatal cardiomyocytes using DAVID bioinformatics resource.

Genes differentially regulated only at 24hr time point after Dex treatment compared to control cardiomyocytes were uploaded onto DAVID Bioinformatics Resources for functional annotation. The screenshot shows the 42 pathways associated with the genes as identified by KEGG pathway.

S7 Screenshot of Functional annotation of genes with GR binding and no sig diff regulation

DAVID Bioinformatics Resources 6.8 Laboratory of Human Retrovirology and Immunoinformatics (LHRI)

*** Welcome to DAVID 6.8 *** *** If you are looking for <u>DAVID 6.7</u>, please visit our <u>development site</u>. ***

Functional Annotation Chart

Current Gene List: Gr binding Incremental Current Background: Rattus norvegicus 4818 DAVID IDs

Options

Rerun Using Options Create Sublist

116 cha	rt records						🗎 Do	wnload File
Sublist	Category	≑ <u>Term</u>	🗘 RT	Genes	Count 4	<u>%</u>	P-Value	≑ <u>Benjamini</u> ≑
	KEGG_PATHWAY	Protein processing in endoplasmic reticulum	RT		86	1.8	9.1E-13	2.6E-10
	KEGG_PATHWAY	Spliceosome	RT	-	73	1.5	3.1E-12	4.4E-10
	KEGG_PATHWAY	MAPK signaling_pathway	RT		114	2.4	4.5E-11	4.3E-9
	KEGG_PATHWAY	MicroRNAs in cancer	RT	-	72	1.5	2.1E-10	1.5E-8
	KEGG_PATHWAY	RNA transport	RT		79	1.6	3.9E-10	2.2E-8
	KEGG_PATHWAY	Thyroid hormone signaling pathway	RT	÷	60	1.2	1.4E-9	6.9E-8
	KEGG_PATHWAY	Proteoglycans in cancer	RT		84	1.7	3.4E-7	1.4E-5
	KEGG_PATHWAY	Proteasome	RT	1 - C	29	0.6	6.0E-7	2.1E-5
	KEGG_PATHWAY	cGMP-PKG signaling pathway	RT	÷	73	1.5	6.4E-7	2.1E-5
	KEGG_PATHWAY	Pathways in cancer	RT	-	144	3.0	7.8E-7	2.2E-5
	KEGG_PATHWAY	Non-alcoholic fatty liver disease (NAFLD)	<u>RT</u>	÷	69	1.4	1.9E-6	5.0E-5
	KEGG_PATHWAY	FoxO signaling pathway	RT	÷	60	1.2	2.6E-6	6.2E-5
	KEGG_PATHWAY	Ubiquitin mediated proteolysis	RT	÷	61	1.3	3.5E-6	7.6E-5
	KEGG_PATHWAY	Neurotrophin signaling pathway	<u>RT</u>	÷	56	1.2	4.5E-6	9.2E-5
	KEGG_PATHWAY	AMPK signaling_pathway	RT	1 - C	56	1.2	6.0E-6	1.1E-4
	KEGG_PATHWAY	Cell cycle	<u>RT</u>	÷	56	1.2	6.0E-6	1.1E-4
	KEGG_PATHWAY	Alzheimer's disease	RT	÷	74	1.5	6.1E-6	1.1E-4
	KEGG_PATHWAY	Phosphatidylinositol signaling system	RT	÷	45	0.9	8.8E-6	1.5E-4
	KEGG_PATHWAY	Glucagon signaling pathway	RT	÷	46	1.0	1.3E-5	2.0E-4
	KEGG_PATHWAY	Parkinson's disease	RT	÷	63	1.3	1.6E-5	2.4E-4
	KEGG_PATHWAY	Adrenergic signaling in cardiomyocytes	RT		61	1.3	1.7E-5	2.4E-4
	KEGG_PATHWAY	Metabolic pathways	<u>RT</u>	-	387	8.0	2.4E-5	3.3E-4
	KEGG_PATHWAY	Oxytocin signaling pathway	RT		65	1.3	2.5E-5	3.2E-4
	KEGG_PATHWAY	Huntington's disease	<u>RT</u>	-	78	1.6	3.6E-5	4.5E-4
	KEGG_PATHWAY	Citrate cycle (TCA cycle)	RT	1	20	0.4	4.3E-5	5.1E-4
	KEGG_PATHWAY	Epstein-Barr virus infection	RT	-	85	1.8	4.6E-5	5.3E-4
	KEGG_PATHWAY	Wnt signaling pathway	RT	÷	58	1.2	4.8E-5	5.3E-4
	KEGG_PATHWAY	Endocytosis	<u>RT</u>	E	103	2.1	5.1E-5	5.4E-4
	KEGG_PATHWAY	Dopaminergic synapse	RT	÷	54	1.1	5.2E-5	5.3E-4
	KEGG_PATHWAY	Prostate cancer	RT	1 - C	40	0.8	7.1E-5	7.1E-4
	KEGG_PATHWAY	Regulation of actin cytoskeleton	RT		81	1.7	9.7E-5	9.3E-4
	KEGG_PATHWAY	Estrogen signaling pathway	RT	÷	42	0.9	1.3E-4	1.2E-3
	KEGG_PATHWAY	Renal cell carcinoma	RT	1	32	0.7	1.5E-4	1.3E-3
	KEGG_PATHWAY	Insulin signaling pathway	<u>RT</u>	÷	56	1.2	1.6E-4	1.4E-3
	KEGG_PATHWAY	PI3K-Akt signaling pathway	RT		116	2.4	1.7E-4	1.4E-3
	KEGG_PATHWAY	Acute myeloid leukemia	<u>RT</u>	1 - C	28	0.6	1.7E-4	1.4E-3
	KEGG_PATHWAY	Biosynthesis of antibiotics	RT		80	1.7	2.0E-4	1.6E-3
	KEGG_PATHWAY	Ribosome	<u>RT</u>	÷	65	1.3	3.0E-4	2.3E-3
	KEGG_PATHWAY	Insulin resistance	<u>RT</u>	÷	45	0.9	4.4E-4	3.3E-3
	KEGG_PATHWAY	Colorectal cancer	<u>RT</u>	÷	29	0.6	9.3E-4	6.8E-3
	KEGG_PATHWAY	GnRH signaling pathway	<u>RT</u>	i	38	0.8	1.1E-3	7.8E-3
	KEGG_PATHWAY	Hippo signaling pathway	<u>RT</u>	÷	57	1.2	1.1E-3	7.7E-3
	KEGG_PATHWAY	Focal adhesion	RT	÷	74	1.5	1.2E-3	8.0E-3
	KEGG_PATHWAY	Long-term potentiation	RT	1 - C	29	0.6	1.2E-3	8.3E-3
	KEGG_PATHWAY	Glioma	RT	i	29	0.6	1.2E-3	8.3E-3
	KEGG_PATHWAY	Oxidative phosphorylation	RT	1	54	1.1	1.3E-3	8.4E-3
	KEGG_PATHWAY	Chronic myeloid leukemia	RT	i	32	0.7	1.6E-3	1.0E-2
	KEGG_PATHWAY	Circadian entrainment	RT	- E	39	0.8	1.7E-3	1.0E-2

Help and Manual

Figure S7. Functional annotation of genes with associated GR binding, but no significant change in transcript abundance.

Genes that were associated with GR binding but did not show significant differential change in transcript abundance on RNAseq were loaded onto DAVID Bioinformatics Resources for functional annotation. Screenshot shows top 48 pathways associated with genes as identified KEGG pathway.

Figure S8. A. Screenshot of representative genes from RNA pol II ChIP-Seq data in mice subjected to sham or TAC operations, showing promoter paused RNA pol II peaks (red arrows) in sham hearts versus promoter clearance of these peaks (green arrow) in TAC hearts. **B**. RNA pol II occupancy and dynamics on genes after sham or TAC operations in mice that show significant change in transcript abundance in neonatal cardiomyocytes after Dex. These data have been described in detail in previous publication (27), and has been uploaded to GEO series GSE50637. **C**. RNA pol II-ChIP-qPCR was performed encompassing transcription start site (TSS) for Trapp6b and Mapk1. The graph shows relative fold enrichment of bound RNA pol II/IgG at TSS with Dex treatments for 1hr or 24hrs vs. control. Error bars represents SEM and * is p<0.05. **D**. Graph represents heart weight (HW) to body weight (BW) or tibia length (TL) from mice injected with Dexamethasone for 1hr or 24hrs. **E**. Graph represents relative myh6 (alpha myosin heavy chain) and myh7 (beta myosin heavy chain) transcript abundance in mice thearts injected with Dexamethasone for 1hr or 24hrs, as indicated. Error bars for C and D indicate SEM, and * is p<0.05. n=3-4.

Amount of the second se

Top Tox Lists from IPA					
Name	P Value				
Cardiac Hypertrophy	7.41E-13				
Cardiac Failure	4.34E-10				
Cardiac Necrosis/Cell Death	6.65E-08				
Renal Necrosis/Cell Death	4.00E-06				
Acute Renal Failiure Panel (rat)	4.52E-06				

S9C Genes regulated after 24hrs of Dex vs. control	290						
COL942 RGS4	Top Tox Cardiotoxicity Related Functions						
HTR2A	Name	P	-value	# Mol	ecules		
	Cardiac Enlargement	7.67E-0	02 - 2.05E-20	54			
	Heart Failure	4.72E-0	01 - 2.08E-17		44		
(HMGA)	Cardiac Congestive Cardiac Failure	2.62E-0	02 - 4.13E-13		25		
S 10046 RAPOSF3	Cardiac Dysfunction	2.92E-0	01 - 8.21E-12		28		
SMTN AGTRY MYCCO	Cardiac Infacrtion	1.25E-0	01 - 5.85E-11		30		
KCTO2	Top Diseases and Disorders						
PSTU FOXO3	Name	P	-value	# Molecules			
Enterment I heart	Metabolic Disease	3.49E-07 - 6.11E-24		134			
GBV5	Cardiovascular Disease	5.83E-07 - 2.05E-20		218			
MOHA ARCO	Organismal Injury and Abnormalities	6.05E-0	07 - 2.05E-20		545		
	Endocrine System Disorders	5.93E-0	07 - 3.58E-20		188		
	Gastrointestinal Idsease	3.49E-0	07 - 3.58E-20		505		
PNPLA2' DOE A ANGPT2 SMAD7	Top Physiological System Development and Function						
	Name P-va			e # Molecules			
	Cardiovascular System Development and Function		3.63E-07 - 2.11E	E-30	201		
	Organismal Development 5.52E-07 - 7.86E-			E-28	301		
(RX4)	Organ Mrophology 4.08E-		4.08E-07 - 6.32E	E-24	133		
RCAN2	Skeletal and Muscular System Development and Fur	nction	3.50E-07 - 2.83E	E-20	136		
interview Enlargement of Heart	Organismal Survival		7.20E-12 - 4.19E	E-19	198		

Figure S9. Pathway analysis confirms Dex induction of cardiac hypertrophy –related genes. A. Genes involved in transcription network and differentially regulated after 1hr of Dex treatment vs. control cardiomyocytes are presented, as generated by IPA software, and with respect to their subcellular localization. **B**. Screenshot of IPA-Tox list from IPA software showing the genes that may be involved in toxicity function from genes regulated at 24hrs Dex vs. control. Top 20 of the list are shown in graph, where X axis represents functional list, while y axis is –log(p-value). Higher the –log(p-value), more significant the association. Threshold p-value is 0.05 and ratio shown is extent of overlap of data with the Tox list. Top 5 from the graph are shown in table below, with p value. **C**. Genes differentially regulated at 24hrs of Dex treatment vs. control and identified by IPA as involved in enlargement of heart is presented as a network generated by IPA software. Enlargement of heart (cardiac enlargement) was identified as the first category in cardiac hypertrophy list. **D**. Tables showing the top Tox cardiotoxicity related function, Top disease and disorders, Top physiological system development and function. The tables include the names, p-value and number of genes (#molecules) associated. Genes differentially regulated only at 24hr time point with Dex treatment vs. control were used for these analyses.