BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>editorial.bmjopen@bmj.com</u>

BMJ Open

Associations between lipid profiles of adolescents and their mothers based on a nationwide health and nutrition survey

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-024731
Article Type:	Research
Date Submitted by the Author:	18-Jun-2018
Complete List of Authors:	Nam, Ji Hyung; Department of Internal Medicine, Dongguk University Ilsan Hospital, Dongguk University College of Medicine Shin, Jaeyong ; Department of Preventive Medicine & Institute of Health Services Research, Yonsei University College of Medicine Jang, Sung-In; College of Medicine Yonsei University, Department of Preventive Medicine Kim, Ji Hyun ; Department of Pediatrics, Dongguk University Ilsan Hospital, Dongguk University College of Medicine Han, Kyu-Tae ; Research and Analysis Team, National Health Insurance Service Ilsan Hospital Lee, Jun Kyu ; Department of Internal Medicine, Dongguk University Ilsan Hospital, Dongguk University College of Medicine Lim, Yun Jeong ; Department of Internal Medicine, Dongguk University Ilsan Hospital, Dongguk University College of Medicine Park, Eun-Cheol; Yonsei University College of Medicine, Department of Preventive Medicine and Institute of Health Services Research
Keywords:	Dyslipidemia, Cholesterol, Lipids, Adolescent, Mother

SCHOLARONE[™] Manuscripts

2/

BMJ Open

2 3 4	1	Associations between lipid profiles of adolescents and their mothers based
5 6	2	on a nationwide health and nutrition survey
7 8	3	
9 10 11	4	Ji Hyung Nam, ^{1,2} Jaeyong Shin, ³ Sung-In Jang, ³ Ji Hyun Kim, ⁴ Kyu-Tae Han, ⁵ Jun Kyu Lee, ¹
12 13	5	Yun Jeong Lim, ¹ Eun-Cheol Park ³
14 15	6	
16 17 18	7	¹ Department of Internal Medicine, Dongguk University Ilsan Hospital, Dongguk University
19	8	College of Medicine, Goyang, Republic of Korea
20 21 22	9	² Department of Medicine, Graduate School, Yonsei University, Seoul, Republic of Korea
22 23 24	10	³ Department of Preventive Medicine & Institute of Health Services Research, Yonsei
25 26	11	University College of Medicine, Seoul, Republic of Korea
27 28	12	⁴ Department of Pediatrics, Dongguk University Ilsan Hospital, Dongguk University College
29 30 31	13	of Medicine, Goyang, Republic of Korea
32 33	14	⁵ Research and Analysis Team, National Health Insurance Service Ilsan Hospital, Goyang,
34 35	15	Republic of Korea
36 37	16	
37 38 39	17	Correspondence to
40 41	18	Eun-Cheol Park, MD, PhD
42 43 44	19	Department of Preventive Medicine & Institute of Health Services Research
44 45 46	20	Yonsei University College of Medicine
47 48	21	50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
49 50	22	Phone number: 82-2-2228-1862 / Fax number: 82-2-392-8133
51 52	23	E-mail: <u>ecpark@yuhs.ac</u>
53 54 55	24	
56 57	25	1
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

26 ABSTRACT

Objectives Dyslipidemia is a metabolic disease influenced by environmental and genetic factors. Especially family history related to the genetic backgrounds is a strong risk factor of lipid abnormality. The aim of this study is to evaluate the association between the lipid profiles of adolescents and their mothers.

Design A cross-sectional study.

Setting The data were derived from the Korea National Health and Nutrition Examination
Survey (KNHANES IV-VI) between 2009 and 2015.

Participants 2884 adolescents aged 12-18 years and their mothers were included.

Primary outcome measures Outcome variables were adolescents' lipid levels. Mothers' lipid levels were interesting variables. The lipid profiles included total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C). Multiple linear regressions were performed to identify an amount change in adolescents' lipid levels by each unit increase of their mothers' lipids. The regression models included various clinical characteristics and health behavioral factors of both adolescents and mothers.

Results The mean levels of adolescents' lipids were 156.6, 83.6, 50.4, and 89.4 mg/dL, respectively for TC, TG, HDL-C, and LDL-C. Positive correlations between lipid levels of adolescents and mothers were observed for TC, TG, HDL-C, and LDL-C (r = 0.257, 0.200,0.275, and 0.274, respectively). Adolescent TC level was increased by 0.23 mg/dL for each unit increase of their mother's TC (P<.001). The beta coefficients were 0.16, 0.24, and 0.24, respectively, in each model of TG, HDL-C, and LDL-C (all P<.001). The linear relationships were more prominent in the non-dyslipidemic mothers' group.

Conclusions Mothers' lipid levels are associated with adolescents' lipids, therefore, it can 50 serve as a reference for the screening of adolescent's dyslipidemia. Moreover, mother's

1	
2 3	51
4 5 6	52
7 8	53
9 10	54
11 12	55
13 14	56
15 16	57
17 18 19	58
20 21	59
22 23	60
24 25	61
26 27	62
28 29	63
30 31	64
32 33 34	65
35 36	66
37 38	67
39 40	68
41 42	69
43 44 45	70
45 46 47	71
48 49	72
50 51	73
52 53	74
54 55	75
56 57	
58 59 60	
00	

perception to dyslipidemia seems to have a positive effect on offspring's lipid control by

- affecting health behavioral factors.
 - Keywords: Dyslipidemia, Cholesterol, Lipids, Adolescent, Mother.
 - For beer terien only

1		
2 3 4	76	Strengths and limitations of this study
5 6 7	77	► This study analyzed linear relationships of lipid profiles between adolescents and their
8 9	78	mothers. We adjusted for various health behavioral factors of adolescents and their mothers,
10 11 12	79	as well as using a large national database.
13 14	80	 Relationships between lipids of adolescents and their mothers were different according to
15 16 17	81	subgroups of mother's dyslipidemia or obesity.
18 19 20	82	▶ This is a cross-sectional study, thus there was no causal relationship. The nutritional
21 22	83	factors that can be significant confounding factors were not considered in the analyses.
23 24 25	84	
26 27	85	
28 29	86	
30 31	87	
32 33	88	
34 35	89	
36 37 28	90	
38 39 40	91	
41 42	92	
43 44	93	
45 46	94	
47 48	95	
49 50 51	96	
52 53	97	
54 55	98	
56 57		4
58 59		For poor review only http://http:/
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

INTRODUCTION

Dyslipidemia is a well-known risk factor for cardiovascular disease (CVD) in individuals of all ages.¹ In Korea, CVD is the second-leading cause of death after cancer.² Triglyceride (TG) and high-density lipoprotein cholesterol (HDL-C) are major components of metabolic syndrome (MetS). Likewise, the TG to HDL-C ratio, a predictor for small dense low-density lipoprotein cholesterol (LDL-C), is an independent determinant of arterial stiffness in adolescents and young adult,³ which can subsequently accelerate atherosclerosis and increase cardiovascular events in the second decade of life.⁴ Meanwhile, lipid level is strongly linked to the body mass index (BMI), which is one of the reliable indicators for obesity in adolescents.⁵ Pediatric obesity is affected by various family settings such as eating habits. lifestyle, and education.⁶ The prevalence of pediatric obesity in Korea has been increased rapidly from 5.8% in 1997 to 11.5% in 201,⁷ which is close to the 13.3% in the United States.⁸ This has increased interest in obesity-related disorders in adolescence, such as metabolic, cardiovascular, or psychosocial complication.⁹ Obesity and dyslipidemia is no longer the problem of adults alone, therefore, adequate screening and control of dyslipidemia in adolescence has become important in Korea.

In addition to obesity, various factors such as physical activity, economic status, education level, nutritional and dietary factors, sleep duration, and psychiatric problems, among others, have been associated with lipid concentration.¹⁰⁻¹² Meanwhile, family histories usually provide important information regarding pediatric diseases.¹³ Regarding the highly heritable traits of dyslipidemia, several studies showed that there was a close relationship in the lipid concentration between parents and their offspring.¹⁴⁻¹⁶ This familial clustering implies that there may be common denominators including health behavioral factors within a family as well as genetic backgrounds. In the present study, we investigated clinical and health

behavioral factors affecting adolescents' lipid levels, and evaluated the association betweenthe lipid profiles of adolescents and their mothers.

METHODS

128 Data source

This is a cross-sectional study using a secondary data of the Korea National Health and Nutrition Examination Survey (KNHANES). KNHANES is an ongoing surveillance system conducted by Korea Centers for Disease Control and Prevention (KCDC) since 1998 that assesses health and nutrition status, and monitors health risk factors and the prevalence of chronic diseases.¹⁷ A special survey team visits four regions every week (192 regions per year) and conducts a health examination, health interview, and nutrition survey. Among 59,015 individuals who were surveyed in KNHANES between 2009 and 2015, we selected 4,148 adolescents aged 12–18 years with available lipid profile data. Next, we obtained data for the mothers of these adolescents during the same survey period by matching household identification numbers. After the exclusion of 1,264 individuals with missing information about adolescent's or mother's baseline characteristics or clinical findings, 2,884 adolescents were eligible for the study (Figure 1). Use of the data from KNHANES was approved by the Institutional Review Board of the KCDC (2009-01CON-03-2C, 2010-02CON-21-C, 2011-02CON-06-C, 2012-01EXP-01-2C, 2013-07CON-03-4C, and 2013-12EXP-03-5C). This survey has been available for use without approval since 2015.

145 Outcome variables and health behavioral factors

Both adolescent's and mother's lipid profiles consisted of total cholesterol (TC), TG, HDL-C,
and LDL-C. Outcome variables in the study were adolescents' lipid levels. Mothers' lipid
levels, which represent genetic linkage, were interesting variables. In order to examine their

Page 7 of 30

BMJ Open

relationship, we adjusted various clinical and health behavioral factors of both adolescents and mothers. The level of LDL-C was calculated using the Friedewald equation. If the TG level was 400 mg/dL or more, measurement of LDL-C was performed by using the immunochemical method. Adolescents were divided into two age groups based on whether they were high school students. In terms of obesity, we divided the study subjects into two groups using an 85% cut-off of the body mass index (BMI) based on the age groups and sex for adolescents, and divided into three groups (<23, 23–24.9, ≥ 25 kg/m²) for mothers.^{18 19} The values of fasting glucose were also divided into two groups based on the level of impaired fasting glucose ($\geq 100 \text{ mg/dL}$). Degree of stress was divided into three groups based on individuals' perception. In addition, frequency of eating out, walking, and exercise per week were investigated for adolescent health behaviors. For mothers' variables, we used data regarding smoking and alcohol habits, degree of education and family income, economic activity, and frequency of eating out per week. Mother's dyslipidemia was defined based on TC level of 240 mg/dL or more, and included cases of individuals diagnosed or treated with dyslipidemia even if the TC level was normal. **Statistical methods** Lipid profiles were analyzed as continuous variables with mean and standard deviation (SD) in both adolescents and their mothers. Independent sample *t*-tests or one-way analysis of variances (ANOVA) were used for categorical independent variables to analyze the

- relationship with adolescents' lipid levels. The correlation of lipid levels between adolescents and their mothers was analyzed using Pearson correlation (r) with 95% confidence interval (CI). The r values were interpreted as slight (>0–0.2), fair (>0.2–0.4), moderate (>0.4–0.6),
- 172 substantial (>0.6–0.8), and almost perfect (>0.8). Next, multiple linear regressions with

parameter estimates (beta coefficients) were performed to identify an amount change in adolescents' lipid levels by each unit increase of their mothers' lipids. The regression models included clinical characteristics and health behavioral factors of both adolescents and mothers. In order to find the most adequate model fits among 16 possible combinations between four adolescents' and their mothers' lipid profiles, we calculated adjusted R squared values, which represent the explanatory power of the model. Lastly, the beta coefficients were also determined in the subgroups by sex and mother's characteristics (age group, BMI, degree of education, economic activity, and presence or absence of dyslipidemia) using multiple linear regression. All 2-sided P values < 0.05 were considered significant. Statistical analyses were performed using SAS version 9.4 (SAS Institute, Cary, NC, USA).

Patient and public involvement

185 This study is a population-based survey study. Patients and public were not involved.

4.0,

RESULTS

Table 1 shows baseline characteristics and their associations with adolescent lipid levels. The mean age of the study population was 14.7 ± 1.9 years (range, 12–18 years), and 52.8% of the adolescents were male. A total of 9.3% of the individuals were overweight. The mean levels (ranges) of adolescents' lipids were 156.6 ± 27.0 (82–350), 83.6 ± 46.4 (15–602), 50.4 ± 9.8 (22–96), and 89.4 ± 23.3 mg/dL (9–296), respectively, for TC, TG, HDL-C, and LDL-C. HDL-C level was decreased in the older age group (P=0.023). While TC, HDL-C, and LDL-C levels were significantly higher in female adolescents than in their male counterparts, TG was not different by sex. Individuals with increased BMI showed higher TC, TG, and LDL-C levels, and lower HDL-C levels compared with those within the normal percentile range for BMI. The frequency of eating out was inversely associated with TC level (P=0.027), while

BMJ Open

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47 48	
40 49	
49 50	
50	
52	
52 53	
55 54	
54 55	
55 56	
50 57	
57 58	
50 59	
60	
00	

increased frequency of walking was associated with decreased TC and LDL-C levels (P=0.005 and P=0.009, respectively). TG level was increased in the adolescents whose mothers were obese (BMI ≥ 25 kg/m²), while the level of HDL-C was inversely associated with the mother's BMI and increasing age. Other health behaviors of the mothers' did not show any significant associations with their adolescents' lipid levels.

203

204 Adolescent TC level demonstrated a fair positive correlation with mother's TC level (r =205 0.257 [95% confidence interval (CI), 0.223–0.291]) (Supplementary Figure S1). TG, HDL-C, 206 and LDL-C levels also had fair positive correlations between adolescents and their mothers, vielding r = 0.200 [95% CI, 0.164–0.235], r = 0.275 [95% CI, 0.241–0.308], and r = 0.274207 208 [95% CI, 0.240-0.307], respectively. For reference, the correlations among the four 209 adolescent lipid profiles demonstrated an almost perfect correlation between the TC and LDL-C levels (r = 0.918 [95% CI, 0.913–0.924]), and showed a significant negative 210 211 correlation between HDL-C and TG (r = -0.345 [95% CI, -0.376-0.312]).

212

213 Based on the adjusted R squared values, the four most adequate regression models were 214 selected (Supplementary Table S1). Table 2 displays the multiple linear regressions of the 215 four adequate models. Adolescent TC increased by 0.23 mg/dL on average as their mothers' 216 TC increased by 1 mg/dL. The beta coefficients were 0.16, 0.24, and 0.24, respectively, in each model of TG, HDL-C, and LDL-C. TC increased by 13.32 mg/dL in the female 217 218 adolescents compared with their male counterparts; other lipid parameters except for TG 219 were also higher in female adolescents compared with their male counterparts. BMI had a 220 positive association with the levels of TC, TG, and LDL-C, while HDL-C was negatively 221 associated with BMI. The frequency of eating out and walking tended to be inversely

associated with TC and LDL-C. Exercise more than 3 days per week was associated with increased TC and LDL-C levels compared with no exercise. With regard to mother's variables, overall adolescents' lipid levels tended to decrease as their mothers' age increased, and other lipids apart from HDL-C tended to decrease when the mother's BMI increased. Increased mothers' alcohol consumption was also significantly associated with decreased adolescents' HDL-C. Mothers' education, working hours, frequency of eating out, and family income did not affect adolescent lipid levels.

Figure 2 represents the amount change in adolescents' lipid levels with each unit increase of mothers' lipids in the subgroups. In most subgroups, there were significant positive relationships between lipids in adolescents and mothers, with the exception of subgroups with relatively small sample sizes (Table 3). The beta coefficients of TC, HDL-C, and LDL-C were high in female adolescents compared with their male counterparts, whereas that of TG was more prominent in the male adolescents. The beta coefficient was high in adolescents whose mothers were not obese compared to those with obese mothers. In addition, the beta coefficient for TC was higher in adolescents with non-dyslipidemic mothers than in those with dyslipidemic mothers (0.259 vs. 0.121). The difference in beta coefficients according to mother's obesity or dyslipidemia was also found in other lipid profiles.

DISCUSSIONS

There is significance in that our study analyzed linear relationships of TC, TG, HDL-C, and LDL-C, respectively, with an amount change of adolescents' lipid levels for each unit increase of their mothers' lipids. We adjusted for various health behavioral factors of adolescents and their mothers, as well as using a large national database. Moreover, we found that relationships between lipids of adolescents and their mothers were different according to

BMJ Open

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
∠∪ ว1
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49 50
50
51
52
53
54
55
56
57
58
58 59
JJ

60

247 subgroups of mother's dyslipidemia or obesity.

248

249	Atherosclerosis is triggered by childhood obesity associated with lipid abnormalities, rather
250	than obesity itself. ²⁰ The prevalence of dyslipidemia was 6.5% in Korea by the cut-off of
251	National Cholesterol Education Program (NECP) and American Heart Association (AHA)
252	guidelines. ²¹ Meanwhile, the most frequent components among five MetS criteria in
253	adolescence were high TG (21.2%) and low HDL-C (13.6%). ²² When cut-off values of a
254	recent guideline were applied to our data, ²³ the percentages of abnormal TC (\geq 200 mg/dL),
255	TG (≥130 mg/dL), HDL-C (<40 mg/dL), and LDL-C (≥130 mg/dL) were 6.6%, 11.9%,
256	13.3%, and 5.0%, respectively. Atherogenic dyslipidemia, characterized by the combination
257	of high TG and small dense LDL-C, and low HDL-C, was a common form of dyslipidemia in
258	young individuals (aged, 2–18 years) and had a strong familial aggregation. ²⁴ Even taking
259	into consideration the argument that a higher cut-off level of TG (\geq 150 mg/dL) is appropriate
260	for Korean adolescents, ²⁵ the rate of high TG observed in the present study was 7.7%. That is,
261	our data showed a more considerable proportion of abnormal TG and HDL-C in adolescents
262	compared to other lipid parameters. Thus, the present study provides further evidence that
263	dyslipidemia especially atherogenic dyslipidemia is a big problem in Korean adolescents,
264	with the concern that it leads to CVD during the remainder of the lifespan.
265	
266	It has been reported that dyslipidemia was associated with increased odds of dyslipidemia in

It has been reported that dyslipidemia was associated with increased odds of dyslipidemia in first-degree relatives (OR = 2.2).²⁶ This familial clustering is in turn caused by both genetic backgrounds and shared environmental factors within a family. A previous study found that genes contribute more than environment to familial correlation of lipids and obesity.¹⁵ In this

regard, numerous genetic determinants regulating lipid concentrations has been investigated.²⁷ In addition, an animal study demonstrated that maternal dyslipidemia affected offspring's lipid levels by activation of endogenous cholesterol synthesis.²⁸ Whatever the cause or, a family history must be a major risk factor for adolescent's dyslipidemia. Meanwhile, even in the subgroup of mothers who had normal TC levels and had never been diagnosed with dyslipidemia, the positive relationships in lipids between the adolescents and their mothers were significant for all lipid parameters. These findings may reflect environmental impacts such as healthy diet, exercise habits, and efforts to improve lifestyles within families, rather than just a hereditary influence. Of course, there may also be an impact from other genetic factors such as diabetes or hypertension in first-degree relatives.²⁶ Interestingly, the beta coefficient was prominent in adolescents with non-obese mothers compared to those with obese mothers. It is possible that the genetic background of non-obese dyslipidemic mothers affected the lipid levels of their offspring. However, the mean BMI of dyslipidemic mothers was higher than that of non-dyslipidemic mothers (24.7 kg/m^2) vs. 23.2 kg/m²). Moreover, the beta coefficient was also prominent in adolescents with non-dyslipidemic mothers compared to those with dyslipidemic mothers. Thus, it is more likely that the mothers' perception regarding dyslipidemia influences the adolescents' lipid levels. Awareness of dyslipidemia was relatively low despite its higher prevalence worldwide.²⁹ A mother's perception of lipid levels could affect her children's lipids through efforts related to lifestyle and diet changes.³⁰ A recent Korean study highlighted education and counseling in order to change health behavior in addition to awareness of dyslipidemia.³¹ Our results from subgroup analyses support these previous studies and highlight the influence of the mother's perception of dyslipidemia and resultant lifestyle changes.

294 There is no doubt that lifestyle modification plays a central role in lipid control. Moreover,

Page 13 of 30

BMJ Open

considering the high rates of abnormal TG and HDL-C and the restricted indications of lipid-lowering agents in youth, lifestyle changes should play a larger role in adolescent patients. Our results showed that frequent walking was negatively associated with TC and LDL-C levels, which is predictable. Meanwhile, frequent eating out was associated with decreased TC and LDL-C, a finding that conflicts with a general notion that eating out induces a high calorie intake or overeating. Eating out was defined as all foods except home-cooked dishes in this survey, then including school meals as well as dining out and delivery foods. Actually, the frequency of eating out showed a great discrepancy between adolescents and mothers in this study. Thus, school foods may compensate for negative effects of eating out by providing regular and well-balanced meals. The positive correlation between exercise and lipid levels, which is also an unexpected result, seems to be influenced by exercise intensity. Exercise frequency alone was not sufficient to explain the effect of exercise adequately; thus, the strength and duration of exercise should be considered. Our data regarding health behavioral factors should be more detailed and concrete. However, it is certain that health behavioral habits influence the lipid levels of adolescents, and therefore adolescents with dyslipidemia and their families should be encouraged to improve their lifestyles.

Cholesterol levels in children and adolescents are highly dependent on age and sex.³² Our data showed that the levels of TC, LDL-C, and HDL-C were higher in female adolescents that in males. In addition, the beta coefficients per unit increase of mother's TC, LDL-C, and HDL-C were also prominent in females. It is possible that mothers with female offspring are either more obese and dyslipidemic or otherwise. However, mother's mean BMI was similar between male and female adolescents (23.3 ± 3.2 and 23.5 ± 3.3 kg/m², respectively, *P*=0.161);

furthermore, the rate of mother's dyslipidemia showed no statistical difference between male

and female adolescents (10.8% vs. 9.8%, respectively, P=0.373). Thus, the difference of beta coefficient by sex may be due to a distinct difference in lipid levels by sex. This is supported by our result that the TG level was higher in male than in female adolescents and the beta coefficient of TG was also higher in male adolescents.

This study has several limitations. First, because it is a survey-based study, our data are vulnerable to recall bias. Second, as it is a cross-sectional design, there was no causal relationship. This factor will be particularly important in consideration of the impacts due to environmental factors. Further well-designed cohort studies are warranted. Third, individuals who responded to the national survey could have greater health concerns. They may have better health behavioral habits, or family members with chronic diseases. However, this survey was uniformly performed in all regions of Korea and targeted all age groups; thus, our data can be considered nationally representative samples. Fourth, the nutritional factors, which were not considered in the analyses because of insufficient information and large missing values, can be significant confounding factors. Further studies based on detailed surveys for health behavioral factors and nutritional elements are needed. Fifth, we did not evaluate the father's lipid levels. If the father's lipid levels had also been considered, the genetic backgrounds of lipids might be emphasized more. Finally, various comorbidities such as hypothyroidism, Cushing's disease, liver disease, and nephrotic syndrome, among others, as well as long-term use of steroid can affect lipid level,³³ and these could be also confounding factors. However, these chronic diseases are extremely rare during the adolescent period, and thus could be negligible.

In conclusion, a mother's lipid levels were positively associated with her adolescents' lipid levels because of both genetic and environmental factors within the family. Adolescent

60

BMJ Open

1		
2 3 4	344	dyslipidemia creates a large risk factor burden for cardiovascular diseases; therefore, timely
5 6	345	screening for dyslipidemia is important, especially for indicated adolescents. Our positive
7 8	346	correlation between lipids of adolescents and their mothers supports that the mother's lipid
9 10	347	level is an appropriate reference for the screening of the adolescent's dyslipidemia. Moreover,
11 12	348	the mother's perception regarding dyslipidemia seems to have a positive effect on offspring
13 14	349	lipid control by affecting health behavioral factors.
15 16	350	
17 18 19	351	Acknowledgements The authors thank the participants for their cooperation and the staffs of
20 21	352	KNHANES (https://knhanes.cdc.go.kr/knhanes/index.do) for their hard work.
22 23	353	Contributors E.C.P and S.I.J designed the study. J.H.N. and J.S. analyzed and interpreted the
24 25	354	data. J.H.N., J.K.L., and Y.J.L. drafted the manuscript. J.H.K. and K.T.H critically revised the
26 27	355	manuscript. All authors read and approved the final version.
28 29	356	Funding This work was not supported by any funding.
30 31	357	Competing interests The authors declare no competing interest.
32 33 34	358	Participant consent This nationwide survey is fully anonymized and does not require
35 36	359	informed consent.
37 38	360	Ethics approval This study was analyzed using KNHANES secondary data. Use of the data
39 40	361	was approved by the Institutional Review Board of the KCDC.
41 42	362	Availability of data and material All data analyzed during this study are available in the
43 44	363	KCDC and KNHANES repository, [https://knhanes.cdc.go.kr/knhanes/sub03/sub03_01.do]
45 46 47	364	
48 49	365	REFERENCES
50 51	366	1. Berenson GS, Srinivasan SR, Bao W, et al. Association between multiple
52 53	367	cardiovascular risk factors and atherosclerosis in children and young adults. The
54 55	368	Bogalusa Heart Study. N Engl J Med 1998;338:1650-6.
56 57		15
58		

2. Cause-of-death statistics in the Republic of Korea, 2014. J Korean Med Assoc 2016;59:221-32. Urbina EM, Khoury PR, McCoy CE, et al. Triglyceride to HDL-C ratio and increased 3. children, adolescents, young adults. arterial stiffness in Pediatrics and 2013;131:e1082-90. 4. McGill HC, Jr., McMahan CA, Zieske AW, et al. Associations of coronary heart disease risk factors with the intermediate lesion of atherosclerosis in youth. The Pathobiological Determinants of Atherosclerosis in Youth (PDAY) Research Group. Arterioscler Thromb Vasc Biol 2000;20:1998-2004. 5. Margolis KL, Greenspan LC, Trower NK, et al. Lipid screening in children and adolescents in community practice: 2007 to 2010. Circ Cardiovasc Qual Outcomes 2014;7:718-26. Smetanina N, Albaviciute E, Babinska V, et al. Prevalence of overweight/obesity in 6. relation to dietary habits and lifestyle among 7-17 years old children and adolescents in Lithuania. BMC Public Health 2015;15:1001. Korea Centers for Disease Control and Prevention. Korea Health Statistics 2014: 7. Korea National Health and Nutrition Examination Survey (KNHANES VI-2); Ministry of Health and Welfare: Seoul, Korea. 2014. Ogden CL, Carroll MD, Curtin LR, et al. Prevalence of high body mass index in US 8. children and adolescents, 2007-2008. JAMA 2010;303:242-9. 9. Ha KH, Kim DJ. Epidemiology of Childhood Obesity in Korea. Endocrinol Metab (Seoul) 2016;31:510-8. 10. Wang CJ, Li YQ, Wang L, et al. Development and evaluation of a simple and effective prediction approach for identifying those at high risk of dyslipidemia in rural adult residents. PLoS One 2012;7:e43834. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1			
2 3	394	11.	Danese A, Moffitt TE, Harrington H, et al. Adverse childhood experiences and adult
4 5 6	395		risk factors for age-related disease: depression, inflammation, and clustering of
7 8	396		metabolic risk markers. Arch Pediatr Adolesc Med 2009;163:1135-43.
9 10	397	12.	Buitrago-Lopez A, van den Hooven EH, Rueda-Clausen CF, et al. Socioeconomic
11 12	398		status is positively associated with measures of adiposity and insulin resistance, but
13 14	399		inversely associated with dyslipidaemia in Colombian children. J Epidemiol
15 16	400		Community Health 2015;69:580-7.
17 18 19	401	13.	Tarini BA, McInerney JD. Family history in primary care pediatrics. Pediatrics
20 21	402		2013;132:S203-10.
22 23	403	14.	Kathiresan S, Manning AK, Demissie S, et al. A genome-wide association study for
24 25	404		blood lipid phenotypes in the Framingham Heart Study. BMC Med Genet 2007;8
26 27	405		Suppl 1:S17.
28 29	406	15.	Hunt SC, Hasstedt SJ, Kuida H, et al. Genetic heritability and common environmental
30 31 32	407		components of resting and stressed blood pressures, lipids, and body mass index in
33 34	408		Utah pedigrees and twins. Am J Epidemiol 1989;129:625-38.
35 36	409	16.	Predazzi IM, Sobota RS, Sanna S, et al. Sex-Specific Parental Effects on Offspring
37 38	410		Lipid Levels. J Am Heart Assoc 2015;4:e001951.
39 40	411	17.	Kweon S, Kim Y, Jang MJ, et al. Data resource profile: the Korea National Health and
41 42	412		Nutrition Examination Survey (KNHANES). Int J Epidemiol 2014;43:69-77.
43 44 45	413	18.	Park HW, Yoo HY, Kim CH, et al. Reference values of body composition indices: the
45 46 47	414		Korean National Health and Nutrition Examination Surveys. Yonsei Med J
48 49	415		2015;56:95-102.
50 51	416	19.	Jee SH, Sull JW, Park J, et al. Body-mass index and mortality in Korean men and
52 53	417		women. N Engl J Med 2006;355:779-87.
54 55	418	20.	D'Adamo E, Guardamagna O, Chiarelli F, et al. Atherogenic dyslipidemia and
56 57 58			17
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 18 of 30

BMJ Open

2 3	419		cardiovascular risk factors in obese children. Int J Endocrinol 2015;2015:912047.
4 5 6	420	21.	Lim JS. The current state of dyslipidemia in Korean children and adolescents and its
7 8	421		management in clinical practice. Ann Pediatr Endocrinol Metab 2013;18:1-8.
9 10	422	22.	Kim S, So WY. Prevalence of Metabolic Syndrome among Korean Adolescents
11 12	423		According to the National Cholesterol Education Program, Adult Treatment Panel III
13 14	424		and International Diabetes Federation. Nutrients 2016;8:558.
15 16	425	23.	Expert Panel on Integrated Guidelines for Cardiovascular H, Risk Reduction in C,
17 18	426		Adolescents, National Heart L, Blood I. Expert panel on integrated guidelines for
19 20 21	427		cardiovascular health and risk reduction in children and adolescents: summary report.
22 23	428		Pediatrics 2011;128 Suppl 5:S213-56.
24 25	429	24.	Montali A, Truglio G, Martino F, et al. Atherogenic dyslipidemia in children:
26 27	430		evaluation of clinical, biochemical and genetic aspects. PLoS One 2015;10:e0120099.
28 29	431	25.	Yoon JM. Dyslipidemia in children and adolescents: when and how to diagnose and
30 31	432		treat? Pediatr Gastroenterol Hepatol Nutr 2014;17:85-92.
32 33 34	433	26.	Khoury M, Manlhiot C, Gibson D, et al. Universal screening for cardiovascular
35 36	434		disease risk factors in adolescents to identify high-risk families: a population-based
37 38	435		cross-sectional study. BMC Pediatr 2016;16:11.
39 40	436	27.	Calandra S, Tarugi P, Speedy HE, et al. Mechanisms and genetic determinants
41 42	437		regulating sterol absorption, circulating LDL levels, and sterol elimination:
43 44	438		implications for classification and disease risk. J Lipid Res 2011;52:1885-926.
45 46	439	28.	Goharkhay N, Tamayo EH, Yin H, et al. Maternal hypercholesterolemia leads to
47 48 49	440		activation of endogenous cholesterol synthesis in the offspring. Am J Obstet Gynecol
50 51	441		2008;199:273 e271-6.
52 53	442	29.	Zhang FL, Xing YQ, Wu YH, et al. The prevalence, awareness, treatment, and control
54 55	443		of dyslipidemia in northeast China: a population-based cross-sectional survey. Lipids
56 57			18
58 59			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60			For peer review only intep.//onljopen.onlj.com/site/about/guidelines.xhtml

Page 19 of	30	BMJ Open
1		
2 3	444	Health Dis 2017;16:61.
4 5 6	445	30. Price JH, Casler SM. African-American mothers' perceptions of cholesterol and its
7 8	446	effects on their children. J Natl Med Assoc 1996;88:145-50.
9 10	447	31. Cho IY, Park HY, Lee K, et al. Association Between the Awareness of Dyslipidemia
11 12	448	and Health Behavior for Control of Lipid Levels Among Korean Adults with
13 14	449	Dyslipidemia. Korean J Fam Med 2017;38:64-74.
15 16	450	32. Skinner AC, Steiner MJ, Chung AE, et al. Cholesterol curves to identify population
17 18 19	451	norms by age and sex in healthy weight children. Clin Pediatr (Phila) 2012;51:233-7.
20 21	452	33. Vodnala D, Rubenfire M, Brook RD. Secondary causes of dyslipidemia. Am J Cardiol
22 23	453	2012;110:823-5.
24 25	454	
26 27	455	FIFURE LEGENDS
28 29 30	456	Figure 1 Study flow showing sample selection. We selected 2,884 adolescents aged 12-18
31 32	457	whose mothers' data were also available.
33 34	458	Figure 2 Bar graphs showing standardized beta coefficients of adolescent's lipids for each
35 36	459	unit increase of their mother's lipids in subgroups. HDL-C, high-density lipoprotein
37 38	460	cholesterol; LDL-C, low-density lipoprotein cholesterol; TC, total cholesterol; TG,
39 40 41	461	triglyceride.
42 43		
44 45		
46 47		
48 49		
50 51 52		
53 54		
55 56		10
57 58		19
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	No. (%)				TG			HDL-C			LDL-C		
		Mean	SD	P value	Mean	SD	P value	Mean	SD	P value	Mean	SD	P valu
All (n=2884)		156.6	27.0		83.6	46.4		50.4	9.8		89.4	23.3	
Adolescent variables													
Age (years)				0.509			0.631			0.023			0.71
12-14	1454 (50.4)	156.9	26.4		84.0	47.0		50.8	9.8		89.2	22.8	
15-18	1430 (49.6)	156.2	27.6		83.1	45.8		50.0	9.8		89.6	23.8	
Sex				<.001			0.187			<.001			<.00
Male	1522 (52.8)	151.4	27.1		84.6	49.7		48.7	9.6		85.9	23.5	
Female	1362 (47.2)	162.3	25.9		82.4	42.3		52.4	9.7		93.4	22.5	
BMI*				0.020			<.001			<.001			0.00
<85%	2617 (90.7)	156.1	26.6		81.0	44.6		51.1	9.7		88.9	22.9	
≥85%	267 (9.3)	160.7	30.7		109.1	55.5		44.2	8.0		94.6	26.3	
Glucose (mg/dl)				0.259			0.405			0.940			0.32
≤100	2752 (95.4)	156.4	26.8		83.4	46.2		50.4	9.8		89.3	23.1	
>100	132 (4.6)	159.6	32.1		86.8	49.9		50.5	10.0		91.7	27.7	
Stress level				0.475			0.920			0.627			0.36
Non	476 (16.5)	156.9	28.3		82.8	43.9		50.1	9.6		90.2	24.6	
Mild	1714 (59.4)	156.9	26.8		83.7	45.7		50.6	9.9		89.6	23.3	
Moderate	694 (24.1)	155.5	26.8		83.8	49.7		50.3	9.7		88.4	22.5	
Eating out/week	× /			0.027			0.129			0.459			0.10
≥7	1121 (38.9)	154.8	26.3		81.0	40.4		50.1	9.7		88.4	22.9	
5-6	1676 (58.1)	157.5	27.4		85.1	50.0		50.6	9.8		89.9	23.6	
1-4	66 (2.3)	159.3	25.6		85.6	44.9		50.4	10.5		91.6	21.0	
<1	21 (0.7)	164.6	33.3		90.4	48.2		48.4	9.5		98.0	27.2	
Walking/week	()			0.005			0.839			0.474			0.00
0-1 day	321 (11.1)	159.1	26.4		84.9	56.3		50.8	10.1		91.4	22.1	
2-4 days	502 (17.4)	157.9	27.0		84.4	44.6		50.1	9.5		90.8	23.7	
5-6 days	760 (26.4)	157.9	28.6		83.8	47.6		50.8	9.9		90.4	24.3	
7 days	1301 (45.1)	154.6	26.2		82.8	43.6		50.2	9.8		87.8	22.7	
Exercise/week				0.140			0.403			0.012			0.54
Non	1846 (64.0)	157.3	26.8		84.4	47.0		50.8	10.0		89.5	22.8	
1-2days	633 (22.0)	155.7	27.5		81.9	45.5		49.5	9.1		89.7	24.0	
≥3days	405 (14.0)	154.7	27.4		82.2	45.0		50.1	9.8		88.2	24.5	
Mother variables	()												
Age (years)				0.103			0.548			0.017			0.48
30-39	505 (17.5)	157.7	25.8		85.5	46.7		51.2	9.7		89.3	21.9	
40-49	2154 (74.7)	156.7	27.4		83.3	46.7		50.4	9.9		89.6	23.7	
50-59	225 (7.8)	153.1	26.1		82.0	43.0		49.0	8.7		87.6	22.1	
BMI (kg/m^2)	223 (1.0)	100.1	20.1	0.426	02.0	12.0	0.022	12.0	0.7	0.001	07.0	22.1	0.34
2 (Ng/m)				0.120			0.022			0.001			0.01
					20								

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

8 9 10

11 12 13

23

24

25

26

27

28

29

30

31

45 46 47 Part time

Eating out/week

 ≥ 7

5-6

1-4

<23	1430 (49.6)	156.6	26.4		82.2	42.9		51.1	9.7		89.0	22.3	
23-24.9	684 (23.7)	155.6	26.7		81.9	44.6		50.1	9.7		89.1	23.2	
≥25	770 (26.7)	157.4	28.5		87.6	53.4		49.5	10.0		90.5	25.1	
Smoking status				0.468			0.503			0.132			
Non	2648 (91.8)	156.4	27.1		83.4	46.8		50.5	9.8		89.2	23.3	
Ex-	89 (3.1)	159.2	26.1		82.1	41.1		49.8	9.5		92.8	22.7	
Current	147 (5.1)	158.3	27.3		87.8	40.7		48.9	9.6		91.7	23.9	
Drinking status				0.410			0.632			0.378			
Non	718 (24.9)	155.4	27.0		82.7	47.5		50.8	9.8		88.0	23.1	
$\leq 1/month$	1250 (43.3)	157.0	27.2		83.2	46.3		50.2	9.7		90.2	23.6	
$\geq 2/\text{month}$	916 (31.8)	156.8	26.9		84.8	45.6		50.4	9.9		89.4	23.0	
Education level				0.767			0.098			0.490			
Elementary	96 (3.3)	155.5	27.5		84.9	47.5		49.8	9.8		88.7	24.9	
Middle	177 (6.1)	157.1	28.5		84.5	46.0		49.9	8.8		90.3	24.6	
High	1624 (56.3)	157.0	27.6		85.2	48.6		50.3	9.9		89.6	23.9	
University	987 (34.2)	155.9	25.8		80.6	42.3		50.8	9.7		89.0	21.8	
Income (1,000\)				0.207			0.454			0.282			
<1,000	219 (7.6)	157.9	28.6		87.9	49.3		50.0	9.5		90.2	24.6	
1,000-1,999	696 (24.1)	154.7	24.7		84.2	50.9		49.9	9.5		88.0	21.3	
2,000-2,999	976 (33.8)	156.9	27.2		83.3	45.3		50.8	9.8		89.5	23.7	
≥3,000	993 (34.4)	157.3	28.1		82.4	43.4		50.6	10.1		90.2	23.9	
Working hours	× ,			0.968			0.882			0.793			
Non	1679 (58.2)	156.5	26.4		83.2	46.4		50.3	9.8		89.6	22.7	
Full-time	906 (31.4)	156.7	27.9		84.0	47.4		50.6	9.5		89.2	24.4	

BMJ Open

 $\frac{<1}{\text{*Based on body mass index (kg/m²) for age percentiles in male and female}}$

156.3

155.5

157.1

156.0

27.9

27.9

28.5

26.5

0.498

299 (10.4)

370 (12.8)

615 (21.3)

1278 (44.3)

BMI, body mass index; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; SD, standard deviation; TC, total cholesterol; TG, triglyceride.

84.3

80.2

83.5

83.5

85.7

42.9

40.0

43.4

46.8

51.6

0.355

50.3

51.1

50.0

50.4

50.5

10.5

9.7

9.7

10.0

9.5

0.409

89.0

88.3

90.4

88.9

90.1

23.2

25.8

24.1

22.5

22.6

0.398

		TC &	TC		TG & TG]	HDL-C & HDL-C				LDL-C &	LDL-C	
	β	S.B.	S.E.	P value	β	S.B.	S.E.	P value	β	S.B.	S.E.	P value	β	S.B.	S.E.	<i>I</i> val
Mother lipids (beta coefficient) Adolescent variables	0.229	0.268	0.015	<.001	0.161	0.215	0.014	<.001	0.240	0.294	0.015	<.001	0.236	0.284	0.015	<.
Age (years)																
12-14	Ref				Ref				Ref				Ref			
15-18	-0.168	-0.003	1.066	0.875	-0.788	-0.009	1.885	0.676	-0.476	-0.024	0.382	0.213	0.539	0.012	0.920	0.
Sex																
Male	Ref				Ref				Ref				Ref			
Female	13.317	0.246	1.045	<.001	1.767	0.019	1.849	0.339	2.936	0.150	0.375	<.001	9.954	0.213	0.902	<.
BMI (%)*																
<85	Ref				Ref				Ref				Ref			
≥85	10.931	0.117	1.727	<.001	29.963	0.187	3.056	<.001	-5.514	-0.163	0.620	<.001	10.299	0.128	1.491	<.
Glucose (mg/dl)																
≤100	Ref				Ref				Ref				Ref			
>100	4.240	0.033	2.279	0.063	3.483	0.016	4.036	0.388	0.448	0.010	0.818	0.584	2.768	0.025	1.967	0.
Stress level																
Non	Ref				Ref				Ref				Ref			
Mild	-0.117	-0.002	1.319	0.929	1.583	0.017	2.334	0.498	0.521	0.026	0.473	0.271	-0.979	-0.021	1.138	0.
Moderate	-2.199	-0.035	1.525	0.150	1.739	0.016	2.697	0.519	0.103	0.005	0.547	0.851	-2.552	-0.047	1.316	0.
Eating out/week																
≥ 7	Ref				Ref				Ref				Ref			
5-6	2.599	0.047	1.037	0.012	2.939	0.031	1.835	0.109	0.107	0.005	0.372	0.773	2.030	0.043	0.896	0.
1-4	2.142	0.012	3.231	0.508	3.127	0.010	5.715	0.584	0.036	0.001	1.159	0.976	1.397	0.009	2.789	0.
<1	8.908	0.028	5.653	0.115	6.660	0.012	9.998	0.505	-0.848	-0.007	2.028	0.676	8.283	0.030	4.879	0.
Walking/week																
0-1 day	Ref				Ref				Ref				Ref			
2-4 days	-1.422	-0.020	1.821	0.435	-0.919	-0.008	3.222	0.775	-0.371	-0.014	0.653	0.570	-0.864	-0.014	1.572	0.
5-6 days	-1.349	-0.022	1.699	0.427	-1.070	-0.010	3.004	0.722	-0.092	-0.004	0.610	0.880	-1.119	-0.021	1.466	0.
7 days	-3.466	-0.064	1.598	0.030	-2.035	-0.022	2.827	0.472	-0.021	-0.001	0.574	0.970	-3.143	-0.067	1.380	0.
Exercise/week																
Non	Ref				Ref				Ref				Ref			
1-2days	1.528	0.023	1.199	0.203	-2.743	-0.024	2.122	0.196	-0.374	-0.016	0.430	0.385	2.361	0.042	1.035	0.
≥3days	2.992	0.038	1.459	0.040	-3.400	-0.025	2.581	0.188	0.939	0.033	0.523	0.073	3.018	0.045	1.260	0.
Mother variables																
Age (years)																
30-39	Ref				Ref				Ref				Ref			
							22									

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

5

6 7 8

9 10 11

12

13 14

15

16 17

18

19

20 21

22

23

24 25

26

27

28

29

30

31

32

33

45 46 47 Eating out/week

≥7

5-6

1-4

<1

	40-49	-1.270	-0.020	1.322	0.337	-1.716	-0.016	2.337	0.463	-0.972	-0.043	0.474	0.040	0.046	0.001	1.141	0.968	
	50-59	-6.554	-0.065	2.211	0.003	-6.270	-0.036	3.897	0.108	-2.071	-0.057	0.789	0.009	-3.230	-0.037	1.904	0.090	
	BMI (kg/m^2)																	
	<23	Ref				Ref				Ref				Ref				
	23-24.9	-1.637	-0.026	1.191	0.169	-3.390	-0.031	2.120	0.110	0.175	0.008	0.432	0.685	-0.849	-0.016	1.029	0.409	
	≥25	-2.467	-0.040	1.173	0.035	-4.209	-0.040	2.153	0.051	0.612	0.028	0.431	0.156	-1.513	-0.029	1.011	0.135	
0	Smoking status																	
1	Non	Ref				Ref				Ref				Ref				
ו ר	Ex-	1.855	0.015	2.220	0.403	-2.802	-0.013	3.945	0.478	-1.544	-0.035	0.797	0.053	4.246	0.040	1.918	0.027	
2	Current	1.614	0.010	2.774	0.561	-3.711	-0.014	4.904	0.449	-1.431	-0.025	0.996	0.151	3.601	0.027	2.393	0.133	
3	Drinking status																	
4	Non	Ref				Ref				Ref				Ref				
5	$\leq 1/month$	0.056	0.001	1.301	0.966	2.098	0.021	2.302	0.362	-1.724	-0.082	0.472	0.000	1.168	0.023	1.123	0.299	
6	$\geq 2/\text{month}$	-0.014	0.000	1.205	0.991	0.417	0.004	2.130	0.845	-0.928	-0.047	0.432	0.032	0.757	0.016	1.040	0.467	
7	Education level																	
/	Elementary	Ref				Ref				Ref				Ref				
8	Middle	1.689	0.015	3.272	0.606	1.770	0.009	5.787	0.760	-0.154	-0.004	1.174	0.895	1.228	0.013	2.825	0.664	
9	High	-0.329	-0.006	2.829	0.907	1.296	0.014	5.000	0.796	-0.414	-0.021	1.014	0.684	-0.355	-0.008	2.442	0.885	
0	University	-1.680	-0.029	2.930	0.566	-1.693	-0.017	5.178	0.744	-0.299	-0.015	1.051	0.776	-1.301	-0.026	2.529	0.607	
1	Income (1,000\)	D C				D.C				D C				D.C				
1 2	<1,000	Ref	0.027	2.015	0.200	Ref	0.012	2500	0 (02	Ref	0.020	0.702	0.525	Ref	0.010	1 720	0.500	
2	1,000-1,999	-1.700	-0.027	2.015	0.399	-1.408	-0.013	3.566	0.693	-0.460	-0.020	0.723	0.525	-0.964	-0.018	1.739	0.580	
3	2,000-2,999	0.419	$0.007 \\ 0.014$	1.985	0.833	-1.328	-0.014	3.516	0.706	0.105	0.005	0.713	0.883	0.485	0.010	1.713	0.777	
4	\geq 3,000	0.821	0.014	2.024	0.685	-1.818	-0.019	3.585	0.612	0.076	0.004	0.727	0.917	0.994	0.020	1.747	0.570	
5	Working hours	Ref				Dof				Ref				Ref				
6	Non Full-time	0.834	0.014	1.175	0.478	Ref 3.312	0.033	2.079	0.111	0.206	0.010	0.422	0.626	-0.150	-0.003	1.015	0.883	
-		0.834	0.014	1.175	0.478	0.496	0.033	2.079	0.111		0.010	0.422	0.828	-0.130	0.003	1.390	0.883	
/	Part time	0.279	0.003	1.010	0.803	0.490	0.003	2.848	0.802	0.008	0.000	0.378	0.989	0.008	0.001	1.390	0.901	

BMJ Open

0.025 *Based on body mass index (kg/m²) for age percentiles in male and female

0.025

0.010

1.684

1.593

1.771

0.331

0.735

0.351

Ref

1.637

0.539

1.652

BMI, body mass index; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; SD, standard deviation; S.B., standardized beta; S.E., standard error; TC, total cholesterol; TG, triglyceride.

2.977

2.818

3.134

0.241

0.270

0.180

Ref

0.604

0.572

0.636

-0.036

-0.019

-0.005

0.151

0.516

0.851

-0.868

-0.372

-0.119

Ref

0.033

0.008

0.019

1.453

1.375

1.528

0.199

0.785

0.477

1.868

0.374

1.088

Ref

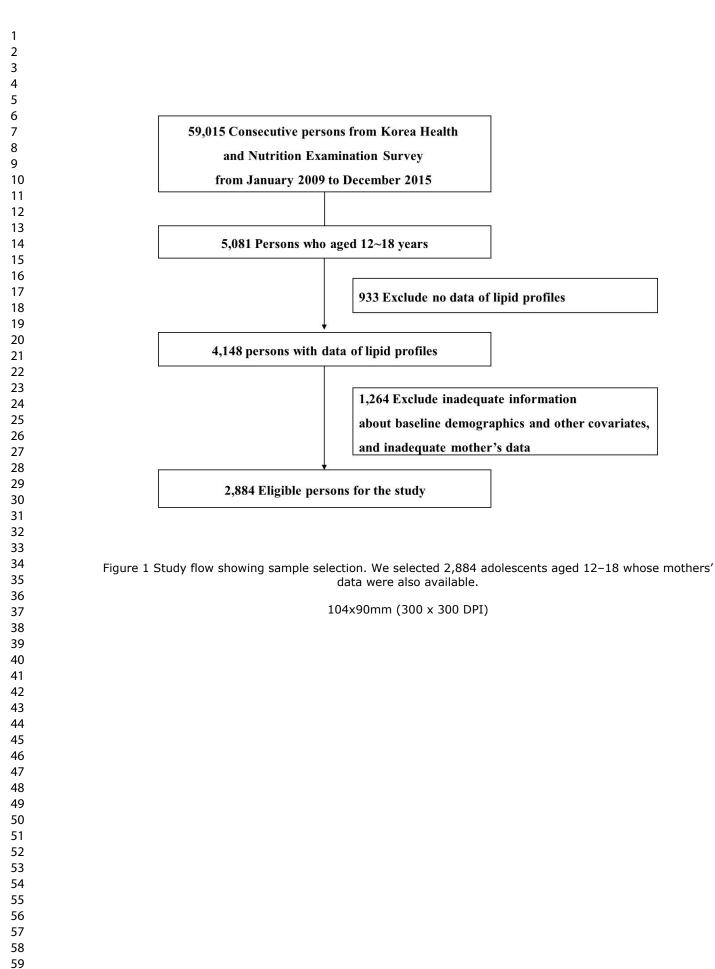
0.031

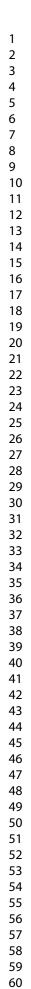
0.033

0.037

3.492

3.111


4.206


Table 3 Subgroup analyses based on sex and mother characteristics

			TC &	& TC			TG &	& TG		I	HDL-C &	& HDL-	C _	1	LDL-C &	& LDL-	C
		β*	S.B.	S.E.	P value	β*	S.B.	S.E.	P value	β*	S.B.	S.E.	P value	β*	S.B.	S.E.	P valu
Sex																	
Male	1522 (52.8)	0.221	0.258	0.021	<.001	0.199	0.245	0.021	<.001	0.215	0.273	0.020	<.001	0.228	0.274	0.021	<.0
Female	1362 (47.2)	0.244	0.299	1.510	<.001	0.122	0.181	0.020	<.001	0.271	0.331	0.022	<.001	0.250	0.312	0.021	<.0
Mother variables																	
Age (years)																	
30-39	505 (17.5)	0.228	0.274	0.036	<.001	0.150	0.186	0.040	<.001	0.224	0.278	0.038	<.001	0.247	0.315	0.035	<.0
40-49	2154 (74.7)	0.239	0.273	0.018	<.001	0.164	0.210	0.017	<.001	0.250	0.302	0.018	<.001	0.250	0.292	0.018	<.0
50-59	225 (7.8)	0.099	0.127	0.053	0.062	0.157	0.291	0.039	<.001	0.207	0.287	0.051	<.001	0.058	0.081	0.048	0.2
BMI (kg/m^2)																	
<25	2114 (73.3)	0.249	0.288	0.018	<.001	0.185	0.221	0.018	<.001	0.250	0.313	0.017	<.001	0.265	0.315	0.017	<.(
≥25	770 (26.7)	0.172	0.202	0.030	<.001	0.129	0.183	0.025	<.001	0.180	0.189	0.034	<.001	0.168	0.203	0.030	<.(
Education level																	
Elementary	96 (3.3)	0.154	0.185	0.111	0.171	0.212	0.287	0.105	0.047	0.056	0.064	0.110	0.616	0.136	0.185	0.098	0.1
Middle	177 (6.1)	0.222	0.240	0.073	0.003	0.241	0.055	0.379	<.001	0.133	0.187	0.060	0.028	0.279	0.316	0.065	<.(
High	1624 (56.3)	0.226	0.264	0.021	<.001	0.141	0.190	0.019	<.001	0.257	0.314	0.020	<.001	0.226	0.268	0.021	<.(
University	987 (34.2)	0.233	0.278	0.026	<.001	0.174	0.209	0.028	<.001	0.247	0.296	0.027	<.001	0.253	0.314	0.025	<.(
Dyslipidemia [†]																	
No	2587 (89.7)	0.259	0.257	0.019	<.001	0.190	0.232	0.017	<.001	0.255	0.305	0.016	<.001	0.263	0.273	0.018	<.(
Yes	297 (10.3)	0.121	0.182	0.040	0.003	0.096	0.189	0.032	0.003	0.151	0.222	0.045	0.001	0.137	0.224	0.035	<.(
Economic activity	· · · ·																
No	1679 (58.2)	0.202	0.240	0.020	<.001	0.186	0.251	0.019	<.001	0.258	0.325	0.019	<.001	0.205	0.250	0.019	<.(
Yes	1205 (41.8)	0.267	0.308	0.024	<.001	0.121	0.159	0.024	<.001	0.214	0.251	0.025	<.001	0.280	0.332	0.023	<.(
The other covariate	s were adjuste	d for the	ese regre	ssions													
*An amount chang	e in adolescent	ts' lipid l	levels by	each un	it increase	of their	mothers	' lipids									
tIncluded cases dia	an agad and/an	two at a d .	مربقا ما مربع	linidanai				110001	harra 24)							

⁺Included cases diagnosed and/or treated with dyslipidemia, and cases with cholesterol level above 240mg/dl.

BMI, body mass index; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; SD, standard deviation; S.B., standardized beta; S.E., standard error; TC, total cholesterol; TG, triglyceride.

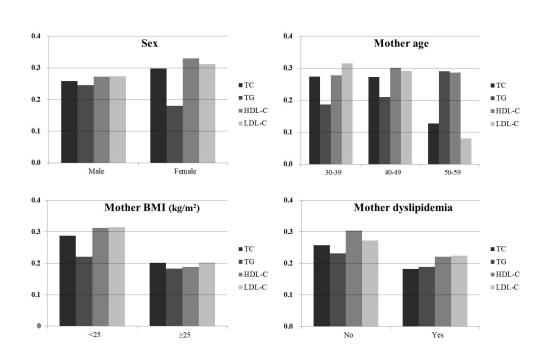
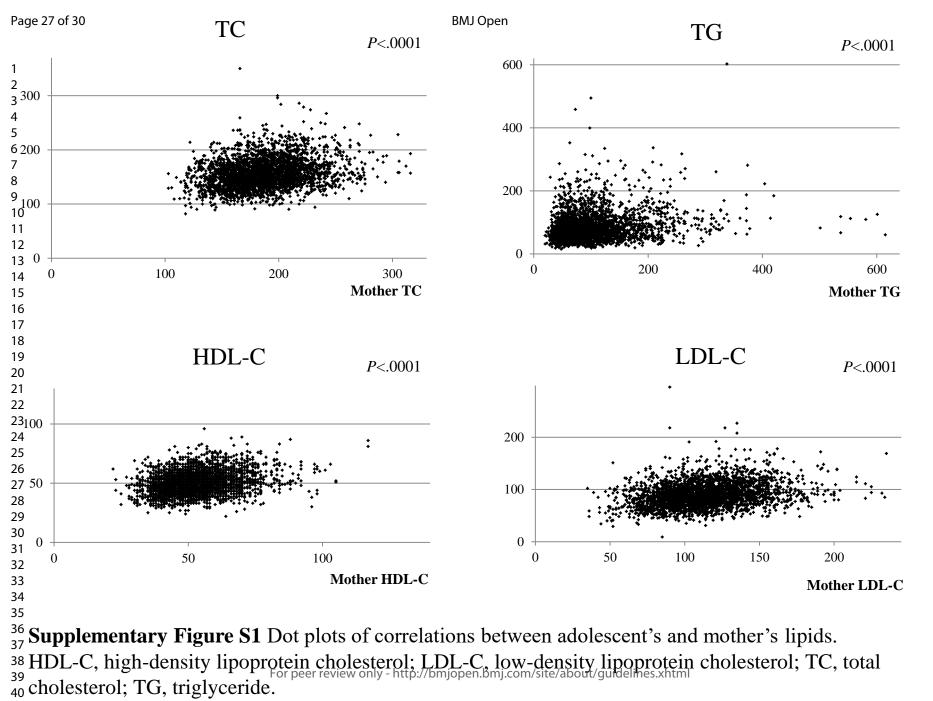



Figure 2 Bar graphs showing standardized beta coefficients of adolescent's lipids for each unit increase of their mother's lipids in subgroups. HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TC, total cholesterol; TG, triglyceride.

124x90mm (300 x 300 DPI)

Supplementary Table S1 Adjust	ed R squares for regression mod	odels of lipid profiles between adolescent and mother	
-------------------------------	---------------------------------	---	--

Adjusted R ²				Adolescents	
		TC	TG	HDL-C	LDL-C
	TC	0.1245	0.0296	0.0723	0.1095
Mothers	TG	0.0585	0.0692	0.0678	0.0445
	HDL-C	0.0592	0.0424	0.1400	0.0442
	LDL-C	0.1164	0.0288	0.0640	0.1218

The other covariates were adjusted for these regressions.

 HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TC, total cholesterol; TG, triglyceride.

beer teriew only

BMJ Open

2	
3 4	
5 6	
6 7	
8 9	
9 10	
11 12	
13 14	
14	
15 16 17	
18	
19 20	
21 22	
23	
24 25	
25 26 27	
27 28	
29	
30 31	
32 33	
34	
35 36 37	
37	
38 39	
40 41	
42	
43 44	
45	
46 47	

STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of cross-sectional studies

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	#1, #2
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	#2, #3, #4
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	#5
Objectives	3	State specific objectives, including any prespecified hypotheses	#6
Methods			
Study design	4	Present key elements of study design early in the paper	#6
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	#6, #7
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants	#6
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	#7
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	#7
Bias	9	Describe any efforts to address potential sources of bias	#7,#8
Study size	10	Explain how the study size was arrived at	#6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	#7, #8
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	#7, #8
		(b) Describe any methods used to examine subgroups and interactions	#8
		(c) Explain how missing data were addressed	#6
		(d) If applicable, describe analytical methods taking account of sampling strategy	Not applicable
		(e) Describe any sensitivity analyses	Not applicable
Results			

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility,	#6
		confirmed eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	#6
		(c) Consider use of a flow diagram	#6
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	#8 <i>,</i> #9
		(b) Indicate number of participants with missing data for each variable of interest	#6
Outcome data	15*	Report numbers of outcome events or summary measures	#8
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	#8, #9, #10
		(b) Report category boundaries when continuous variables were categorized	#7
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	#9, #10
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	#10
Discussion			
Key results	18	Summarise key results with reference to study objectives	#10
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	#14
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	#11, #12, #13
Generalisability	21	Discuss the generalisability (external validity) of the study results	#11
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	#15

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Associations between lipid profiles of adolescents and their mothers based on a nationwide health and nutrition survey in South Korea

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-024731.R1
Article Type:	Research
Date Submitted by the Author:	11-Dec-2018
Complete List of Authors:	Nam, Ji Hyung; Department of Internal Medicine, Dongguk University Ilsan Hospital, Dongguk University College of Medicine Shin, Jaeyong ; Department of Preventive Medicine & Institute of Health Services Research, Yonsei University College of Medicine Jang, Sung-In; College of Medicine Yonsei University, Department of Preventive Medicine Kim, Ji Hyun ; Department of Pediatrics, Dongguk University Ilsan Hospital, Dongguk University College of Medicine Han, Kyu-Tae ; Research and Analysis Team, National Health Insurance Service Ilsan Hospital Lee, Jun Kyu ; Department of Internal Medicine, Dongguk University Ilsan Hospital, Dongguk University College of Medicine Lim, Yun Jeong ; Department of Internal Medicine, Dongguk University Ilsan Hospital, Dongguk University College of Medicine Park, Eun-Cheol; Yonsei University College of Medicine, Department of Preventive Medicine and Institute of Health Services Research
Primary Subject Heading :	Public health
Secondary Subject Heading:	Paediatrics
Keywords:	Dyslipidemia, Cholesterol, Lipids, Adolescent, Mother

SCHOLARONE[™] Manuscripts

Page 1 of 33

1

BMJ Open

 on a nationwide health and nutrition survey in South Korea Ji Hyung Nam,^{1,2} Jaeyong Shin,³ Sung-In Jang,³ Ji Hyun Kim,⁴ Kyu-Tae Han,⁵ Jun Kyu La Yun Jeong Lim,¹ Eun-Cheol Park³ College of Medicine, Coyang, Republic of Korea ² Department of Internal Medicine, Graduate School, Yonsei University, Seoul, Republic of Korea ³ Department of Preventive Medicine & Institute of Health Services Research, Yon University College of Medicine, Seoul, Republic of Korea ⁴ Department of Pediatrics, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Goyang, Republic of Korea ⁵ Orea ⁶ Orea ⁶ Orea ⁷ Department of Pediatrics, Dongguk University Ilsan Hospital, Dongguk University College ⁶ Orea ⁷ Orea ⁷ Orea ⁸ Orea ⁸ Orea ⁹ Or	ised
 ⁹ ³ ¹⁰ ⁴ Ji Hyung Nam,^{1,2} Jaeyong Shin,³ Sung-In Jang,³ Ji Hyun Kim,⁴ Kyu-Tae Han,⁵ Jun Kyu Lo ¹² ¹³ ⁵ Yun Jeong Lim,¹ Eun-Cheol Park³ ¹⁶ ⁶ ¹⁷ ¹ Department of Internal Medicine, Dongguk University Ilsan Hospital, Dongguk University ⁸ College of Medicine, Goyang, Republic of Korea ⁹ ² Department of Medicine, Graduate School, Yonsei University, Seoul, Republic of Korea ⁹ ³ Department of Preventive Medicine & Institute of Health Services Research, Yon ¹⁰ ¹ University College of Medicine, Seoul, Republic of Korea ¹² ⁴ Department of Pediatrics, Dongguk University Ilsan Hospital, Dongguk University Colleg ¹³ of Medicine, Goyang, Republic of Korea 	
 Ji Hyung Nam,^{1,2} Jaeyong Shin,³ Sung-In Jang,³ Ji Hyun Kim,⁴ Kyu-Tae Han,⁵ Jun Kyu Lo Yun Jeong Lim,¹ Eun-Cheol Park³ ⁷ ¹ Department of Internal Medicine, Dongguk University Ilsan Hospital, Dongguk University 8 College of Medicine, Goyang, Republic of Korea ² Department of Medicine, Graduate School, Yonsei University, Seoul, Republic of Korea ³ Department of Preventive Medicine & Institute of Health Services Research, Yon ⁴ University College of Medicine, Seoul, Republic of Korea ⁴ Department of Pediatrics, Dongguk University Ilsan Hospital, Dongguk University College ⁶ of Medicine, Goyang, Republic of Korea ⁶ of Medicine, Goyang, Republic of Korea ⁶ of Medicine, Goyang, Republic of Korea 	
 ¹³ 5 Yun Jeong Lim,¹ Eun-Cheol Park³ ¹⁵ 6 ¹⁷ ¹ Department of Internal Medicine, Dongguk University Ilsan Hospital, Dongguk University ⁸ College of Medicine, Goyang, Republic of Korea ⁹ ² Department of Medicine, Graduate School, Yonsei University, Seoul, Republic of Korea ¹⁰ ³ Department of Preventive Medicine & Institute of Health Services Research, Yon ¹¹ University College of Medicine, Seoul, Republic of Korea ¹² ⁴ Department of Pediatrics, Dongguk University Ilsan Hospital, Dongguk University College ¹³ of Medicine, Goyang, Republic of Korea 	Lee,1
 ¹⁶ ¹⁷ ¹ Department of Internal Medicine, Dongguk University Ilsan Hospital, Dongguk University ¹⁸ ¹⁹ ¹⁰ College of Medicine, Goyang, Republic of Korea ²¹ ²¹ ² Department of Medicine, Graduate School, Yonsei University, Seoul, Republic of Korea ²⁴ ²⁵ ¹⁰ ³ Department of Preventive Medicine & Institute of Health Services Research, Yon ²⁶ ²⁷ ¹¹ University College of Medicine, Seoul, Republic of Korea ²⁸ ²⁹ ¹² ⁴ Department of Pediatrics, Dongguk University Ilsan Hospital, Dongguk University College ³¹ ³ of Medicine, Goyang, Republic of Korea 	
 ¹⁸ 7 ¹ Department of Internal Medicine, Dongguk University Ilsan Hospital, Dongguk University ¹⁹ 8 College of Medicine, Goyang, Republic of Korea ²⁰ 9 ² Department of Medicine, Graduate School, Yonsei University, Seoul, Republic of Korea ²⁴ 10 ³ Department of Preventive Medicine & Institute of Health Services Research, Yon ²⁶ 11 University College of Medicine, Seoul, Republic of Korea ²⁷ 11 University College of Medicine, Seoul, Republic of Korea ²⁸ 12 ⁴ Department of Pediatrics, Dongguk University Ilsan Hospital, Dongguk University College ³¹ 13 of Medicine, Goyang, Republic of Korea 	
 ²⁰ 8 College of Medicine, Goyang, Republic of Korea ²¹ 9 ² Department of Medicine, Graduate School, Yonsei University, Seoul, Republic of Korea ²⁴ 10 ³ Department of Preventive Medicine & Institute of Health Services Research, Yon ²⁶ 11 University College of Medicine, Seoul, Republic of Korea ²⁹ 12 ⁴ Department of Pediatrics, Dongguk University Ilsan Hospital, Dongguk University College ³¹ 13 of Medicine, Goyang, Republic of Korea 	rsity
 ²³ ² Department of Medicine, Graduate School, Yonsel University, Seoul, Republic of Korea ³ Department of Preventive Medicine & Institute of Health Services Research, Yon ¹⁰ ¹ University College of Medicine, Seoul, Republic of Korea ¹¹ University College of Medicine, Seoul, Republic of Korea ¹² ⁴ Department of Pediatrics, Dongguk University Ilsan Hospital, Dongguk University College ¹³ of Medicine, Goyang, Republic of Korea 	
 ³ Department of Preventive Medicine & Institute of Health Services Research, Yon ¹⁰ University College of Medicine, Seoul, Republic of Korea ¹¹ University College of Medicine, Seoul, Republic of Korea ¹² ⁴ Department of Pediatrics, Dongguk University Ilsan Hospital, Dongguk University College ¹³ of Medicine, Goyang, Republic of Korea 	a
 In University College of Medicine, Seoul, Republic of Korea 4 Department of Pediatrics, Dongguk University Ilsan Hospital, Dongguk University Colleging of Medicine, Goyang, Republic of Korea 	onsei
 ³⁰ ¹² ¹² ¹³ ¹³ ¹³ ¹³ ¹³ ¹³ ¹³ ¹³	
32 13 of Medicine, Goyang, Republic of Korea	llege
55	
 ⁵ Research and Analysis Team, National Health Insurance Service Ilsan Hospital, Goya 	vang,
 36 15 Republic of Korea 	
38 39 16	
40 41 17 Correspondence to 42	
 43 18 Eun-Cheol Park, MD, PhD 44 	
 45 46 47 48 49 49 49 40 40 41 42 43 44 45 45 45 45 45 45 46 47 48 48 49 49 40 40 41 42 45 45 45 45 45 45 46 47 47 48 49 49 40 41 42 44 45 45 46 47 46 47 48 47 48 49 4	
 47 48 20 Yonsei University College of Medicine 49 	
50 21 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea	
⁵² 22 Phone number: 82-2-2228-1862 / Fax number: 82-2-392-8133	
54 55 23 E-mail: <u>ecpark@yuhs.ac</u> 56	
57 24 58	
59 25 60 1	

26 ABSTRACT

Objectives Dyslipidemia is a metabolic disease influenced by environmental and genetic factors. Especially family history related to the genetic backgrounds is a strong risk factor of lipid abnormality. The aim of this study is to evaluate the association between the lipid profiles of adolescents and their mothers.

Design A cross-sectional study.

Setting The data were derived from the Korea National Health and Nutrition Examination
Survey (KNHANES IV-VI) between 2009 and 2015.

Participants 2,884 adolescents aged 12-18 years and their mothers were included.

Primary outcome measures Outcome variables were adolescents' lipid levels. Mothers' lipid levels were interesting variables. The lipid profiles included total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C). We identified partial correlation coefficients (*r*) between the lipids. Multiple linear regressions were performed to identify an amount change in adolescents' lipid levels by each unit increase of their mothers' lipids. The regression models included various clinical characteristics and health behavioral factors of both adolescents and mothers.

Results The mean levels of adolescents' lipids were 156.6, 83.6, 50.4, and 89.4 mg/dL, respectively for TC, TG, HDL-C, and LDL-C. Positive correlations between lipid levels of adolescents and mothers were observed for TC, TG, HDL-C, and LDL-C (r, 95% confidence interval = 0.271, 0.236-0.304; 0.204, 0.169-0.239; 0.289, 0.255-0.322; and 0.286, 0.252-0.322; 0.289, 0.252-0.322; 0.289, 0.280, 00.319). Adolescent TC level was increased by 0.23 mg/dL for each unit increase of their mother's TC (standard error (SE), 0.02; $P \le .001$). The β coefficients were 0.16 (SE, 0.01), 0.24 (SE, 0.02), and 0.24 (SE, 0.02), respectively, in each model of TG, HDL-C, and LDL-C (all P < .001). The linear relationships were significant regardless of sex and mother characteristics.

1 2		
3 4	51	Conclusions Mothers' lipid levels are associated with adolescents' lipids, therefore, it can
5 6	52	serve as a reference for the screening of adolescent's dyslipidemia.
7 8 9	53	Keywords: Dyslipidemia, Cholesterol, Lipids, Adolescent, Mother.
9 10 11	54	
12 13	55	
14 15 16	56	
16 17 18	57	
19 20	58	
21 22	59	
23 24 25	60	
26 27	61	
28 29	62	
30 31 32	63	
33 34	64	
35 36	65	
37 38 39	66	
40 41	67	
42 43	68	
44 45	69	
46 47 48	70	
49 50	71	
51 52	72	
53 54 55	73	
56 57	74	
58 59	75	
60		3

2 3	76	Strengths and limitations of this study
4 5 6	77	► This study analyzed linear relationships of lipid profiles between adolescents and their
7 8	78	mothers using a large national database.
9 10 11	79	►We used survey based statistical analyses based on the design effect related to survey
12 13	80	sampling.
14 15	81	► Various health behavioral factors of adolescents and mothers were adjusted.
16 17 18	82	► There is no causal relationship as this was a cross-sectional study.
19 20	83	► The study did not provide any information on nutritional factors which could be significant
21 22 23	84	confounders.
24 25	85	
26 27 28	86	
28 29 30	87	
31 32	88	
33 34 35	89	
36 37	90	
38 39 40	91	
40 41 42	92	
43 44	93 94	
45 46 47	94 95	
48 49	96	
50 51 52	97	
53 54	98	
55 56 57	99	
57 58 59	100	
60		4

INTRODUCTION

Dyslipidemia is a well-known risk factor for cardiovascular disease (CVD) in individuals of all ages.¹ In Korea, CVD is the second-leading cause of death after cancer.² Triglyceride (TG) and high-density lipoprotein cholesterol (HDL-C) are major components of metabolic syndrome (MetS). Likewise, the TG to HDL-C ratio, a predictor for small dense low-density lipoprotein cholesterol (LDL-C), is an independent determinant of arterial stiffness in adolescents and young adult,³ which can subsequently accelerate atherosclerosis and increase cardiovascular events in the second decade of life.⁴ Meanwhile, lipid level is strongly linked to the body mass index (BMI), which is one of the reliable indicators for obesity in adolescents.⁵ Pediatric obesity is affected by various family settings such as eating habits, lifestyle, and education.⁶ The prevalence of pediatric obesity in South Korea has been increased rapidly from 5.8% in 1997 to 11.5% in 201,⁷ which is close to the 13.3% in the United States.⁸ This has increased interest in obesity-related disorders in adolescence, such as metabolic, cardiovascular, or psychosocial complication.⁹ Obesity and dyslipidemia is no longer the problem of adults alone, therefore, adequate screening and control of dyslipidemia in adolescence has become important in South Korea.

In addition to obesity, various factors such as physical activity, economic status, education level, nutritional and dietary factors, sleep duration, and psychiatric problems, among others, have been associated with lipid concentration.¹⁰⁻¹² Meanwhile, family histories usually provide important information regarding pediatric diseases.¹³ Regarding the highly heritable traits of dyslipidemia, several studies showed that there was a close relationship in the lipid concentration between parents and their offspring.¹⁴⁻¹⁶ This familial clustering implies that there may be common denominators including health behavioral factors within a family as well as genetic backgrounds. In the present study, we investigated clinical and health

behavioral factors affecting adolescents' lipid levels, and evaluated the association betweenthe lipid profiles of adolescents and their mothers.

129 METHODS

130 Data source

This is a cross-sectional study using a secondary data of the Korea National Health and Nutrition Examination Survey (KNHANES). KNHANES is an ongoing surveillance system conducted by Korea Centers for Disease Control and Prevention (KCDC) since 1998 that assesses health and nutrition status, and monitors health risk factors and the prevalence of chronic diseases.¹⁷ A special survey team visits four regions every week (192 regions per year) and conducts a health examination, health interview, and nutrition survey. This survey used stratified and clustered sampling methods. Among 59,015 individuals who were surveyed in KNHANES between 2009 and 2015, we selected 4,148 adolescents aged 12-18 vears with available lipid profile data. Next, we obtained data for the mothers of these adolescents during the same survey period by matching household identification numbers. After the exclusion of 1,264 individuals with missing information about adolescent's or mother's baseline characteristics or clinical findings, 2,884 adolescents were eligible for the study (Figure 1). Use of the data from KNHANES was approved by the Institutional Review Board of the KCDC (2009-01CON-03-2C, 2010-02CON-21-C, 2011-02CON-06-C, 2012-01EXP-01-2C, 2013-07CON-03-4C, and 2013-12EXP-03-5C). This survey has been available for use without approval since 2015.

- 52 147
 - 148Outcome variables and health behavioral factors

149 Both adolescent's and mother's lipid profiles consisted of total cholesterol (TC), TG, HDL-C,

and LDL-C. Outcome variables in the study were adolescents' lipid levels. Mothers' lipid

Page 7 of 33

BMJ Open

levels, which represent genetic linkage, were interesting variables. In order to examine their relationship, we adjusted various clinical and health behavioral factors of both adolescents and mothers. The level of LDL-C was calculated using the Friedewald equation. If the TG level was 400 mg/dL or more, measurement of LDL-C was performed by using the immunochemical method. Adolescents were divided into two age groups based on whether they were high school students. In terms of obesity, we divided the study subjects into two groups using an 85% cut-off of the body mass index (BMI) based on the age groups and sex for adolescents, and divided into three groups (<23, 23–24.9, ≥ 25 kg/m²) for mothers.^{18 19} The values of fasting glucose were also divided into two groups based on the level of impaired fasting glucose ($\geq 100 \text{ mg/dL}$). Degree of stress was divided into three groups based on individuals' perception. In addition, frequency of eating out, walking, and exercise per week were investigated for adolescent health behaviors.

For mothers' variables, we used data regarding smoking and alcohol habits, degree of education and family income, economic activity, and frequency of eating out per week. Mother's dyslipidemia was defined based on TC level of 240 mg/dL or more, and included cases of individuals diagnosed or treated with dyslipidemia even if the TC level was normal.

Statistical methods

Lipid profiles were analyzed as continuous variables with mean and standard deviation (SD) in both adolescents and their mothers. We checked whether the continuous variables were normally distributed, and used a log scale depending on the results. Independent sample ttests or one-way analysis of variances (ANOVA) was used for categorical independent variables to analyze the relationship with adolescents' lipid levels. The correlation of lipid levels between adolescents and their mothers was analyzed using partial correlations (r) with

95% confidence interval (CI). The r values were interpreted as slight (>0–0.2), fair (>0.2– (0.4), moderate (>0.4-0.6), substantial (>0.6-0.8), and almost perfect (>0.8). Next, multiple linear regressions with parameter estimates (beta coefficients) and standard error (SE) were performed to identify an amount change in adolescents' lipid levels by each unit increase of their mothers' lipids. We used survey based statistical regression analyses, and the design effect relating survey sampling was calculated. The regression models included clinical characteristics and health behavioral factors of both adolescents and mothers. In order to find the most adequate model fits among 16 possible combinations between four adolescents' and their mothers' lipid profiles, we calculated adjusted R squared values, which represent the explanatory power of the model. In addition, the beta coefficients were also determined in the subgroups by sex and mother's characteristics (age group, BMI, degree of education, economic activity, and presence or absence of dyslipidemia) using multiple linear regression. Lastly, sensitivity test was done on 4,148 adolescents including 1,264 subjects who had inadequate baseline information or missing mothers' data to identify the baseline characteristics. All 2-sided P values < 0.05 were considered significant. Statistical analyses were performed using SAS version 9.4 (SAS Institute, Cary, NC, USA).

- 0 191
 - **Patient and public involvement**

193 This study is a population-based survey study. Patients and public were not involved.

7 194

RESULTS

Table 1 shows baseline characteristics and their associations with adolescent lipid levels, and all *P* values were shown on a log scale. The mean age of the study population was 14.7 ± 1.9 years (range, 12–18 years), and 52.8% of the adolescents were male. A total of 9.3% of the individuals were overweight. The mean levels (ranges) of adolescents' lipids were 156.6 ±

27.0 (82–350), 83.6 \pm 46.4 (15–602), 50.4 \pm 9.8 (22–96), and 89.4 \pm 23.3 mg/dL (9–296), respectively, for TC, TG, HDL-C, and LDL-C. HDL-C level was decreased in the older age group (P=0.021). While TC, HDL-C, and LDL-C levels were significantly higher in female adolescents than in their male counterparts, TG was not different by sex. Individuals with increased BMI showed higher TC, TG, and LDL-C levels, and lower HDL-C levels compared with those within the normal percentile range for BMI. The frequency of eating out was inversely associated with TC level (P=0.032), while increased frequency of walking was associated with decreased TC and LDL-C levels (P=0.006 and P=0.005, respectively). TG level tends to increased in the adolescents whose mothers were obese (BMI ≥ 25 kg/m²), while the level of HDL-C was inversely associated with the mother's BMI and increasing age. Other health behaviors of the mothers' did not show any significant associations with

211 their adolescents' lipid levels.

Adolescent TC level demonstrated a fair positive correlation with mother's TC level (r, 0.271; 95% confidence interval (CI), 0.236–0.304) (Supplementary Figure S1). TG, HDL-C, and LDL-C levels also had fair positive correlations between adolescents and their mothers, yielding r (95% CI) = 0.204 (0.169–0.239), 0.289 (0.255–0.322), and 0.286 (0.252–0.319), respectively. For reference, the correlations among the four adolescent lipid profiles demonstrated an almost perfect correlation between the TC and LDL-C levels (r, 0.915; 95% CI, 0.909–0.921; P<.001), and showed a significant negative correlation between HDL-C and TG (r, -0.329; 95% CI, -0.361–-0.296; $P \le .001$). Meanwhile, the partial correlation coefficient (95% CI) for TC, TG, HLD-C, and LDL-C was 0.254 (0.206-0.301), 0.235 (0.186-0.282), 0.271 (0.224-0.317), and 0.267 (0.220-0.313) in males (n=1522), and it was 0.291 (0.241-0.339), 0.168 (0.116-0.220), 0.317 (0.268-0.364), and 0.309 (0.260-0.357) in females

(n=1362). All *P* values were less than 0.001.

Based on the adjusted R squared values, the four most adequate regression models were selected (Supplementary Table S1). Table 2 displays the multiple linear regressions of the four adequate models. The design effect from survey sampling was 1.01, 1.43, 1.07, and 1.07 in TC, TG, HDL-C, and LDL-C respectively. Adolescent TC increased by 0.23 mg/dL on average as their mothers' TC increased by 1 mg/dL (SE, 0.02, P<.001). The beta coefficients were 0.16 (SE, 0.01), 0.24 (SE, 0.02), and 0.24 (SE, 0.02), respectively, in each model of TG, HDL-C, and LDL-C (all P<.001). TC increased by 13.32 mg/dL in the female adolescents compared with their male counterparts; other lipid parameters except for TG were also higher in female adolescents compared with their male counterparts. BMI had a positive association with the levels of TC, TG, and LDL-C, while HDL-C was negatively associated with BMI. The frequency of eating out and walking tended to be inversely associated with TC and LDL-C. Exercise more than 3 days per week was associated with increased TC and LDL-C levels compared with no exercise. With regard to mother's variables, overall adolescents' lipid levels tended to decrease as their mothers' age increased, and other lipids apart from HDL-C tended to decrease when the mother's BMI increased. Increased mothers' alcohol consumption was also significantly associated with decreased adolescents' HDL-C. Mothers' education, working hours, frequency of eating out, and family income did not affect adolescent lipid levels.

Figure 2 represents the amount change in adolescents' lipid levels with each unit increase of mothers' lipids in the subgroups. In most subgroups, there were significant positive relationships between lipids in adolescents and mothers, with the exception of subgroups with relatively small sample sizes (Table 3). The beta coefficients of TC, HDL-C, and LDL-C

Page 11 of 33

BMJ Open

were high in female adolescents compared with their male counterparts, whereas that of TG was higher in the male adolescents. When the lipid profiles were considered as binary outcomes, multivariate logistic regressions showed that adolescents' dyslipidemia was significantly associated with mothers' dyslipidemia (Supplementary Table S2). Finally, the sensitivity test on 4,148 adolescents showed comparable baseline characteristics with our study data (Supplementary Table S3).

DISCUSSIONS

There is significance in that our study analyzed linear relationships of TC, TG, HDL-C, and LDL-C, respectively, with an amount change of adolescents' lipid levels for each unit increase of their mothers' lipids. We adjusted for various health behavioral factors of adolescents and their mothers, as well as using a large national database. Moreover, we found that relationships between lipids of adolescents and their mothers were significant regardless of sex and mother characteristics.

Atherosclerosis is triggered by childhood obesity associated with lipid abnormalities, rather than obesity itself.²⁰ The prevalence of dyslipidemia was 6.5% in Korea by the cut-off of National Cholesterol Education Program (NECP) and American Heart Association (AHA) guidelines.²¹ Meanwhile, the most frequent components among five MetS criteria in adolescence were high TG (21.2%) and low HDL-C (13.6%).²² When cut-off values of a recent guideline were applied to our data,²³ the percentages of abnormal TC (\geq 200 mg/dL),

270 TG (\geq 130 mg/dL), HDL-C (<40 mg/dL), and LDL-C (\geq 130 mg/dL) were 6.6%, 11.9%,

271 13.3%, and 5.0%, respectively. Atherogenic dyslipidemia, characterized by the combination

of high TG and small dense LDL-C, and low HDL-C, was a common form of dyslipidemia in

young individuals (aged, 2–18 years) and had a strong familial aggregation.²⁴ Even taking into consideration the argument that a higher cut-off level of TG (\geq 150 mg/dL) is appropriate for Korean adolescents,²⁵ the rate of high TG observed in the present study was 7.7%. That is, our data showed a more considerable proportion of abnormal TG and HDL-C in adolescents compared to other lipid parameters. Thus, the present study provides further evidence that dyslipidemia especially atherogenic dyslipidemia is a big problem in Korean adolescents, with the concern that it leads to CVD during the remainder of the lifespan.

It has been reported that dyslipidemia was associated with increased odds of dyslipidemia in first-degree relatives (OR = 2.2).²⁶ This familial clustering is in turn caused by both genetic backgrounds and shared environmental factors within a family. A previous study found that genes contribute more than environment to familial correlation of lipids and obesity.¹⁵ In this regard, numerous genetic determinants regulating lipid concentrations has been investigated.²⁷ In addition, an animal study demonstrated that maternal dyslipidemia affected offspring's lipid levels by activation of endogenous cholesterol synthesis.²⁸ Whatever the cause or, a family history must be a major risk factor for adolescent's dyslipidemia. Meanwhile, even in the subgroup of mothers who had normal TC levels and had never been diagnosed with dyslipidemia, the positive relationships in lipids between the adolescents and their mothers were significant for all lipid parameters. These findings may reflect environmental impacts such as healthy diet, exercise habits, and efforts to improve lifestyles within families, rather than just a hereditary influence. Of course, there may also be an impact from other genetic factors such as diabetes or hypertension in first-degree relatives.²⁶ Interestingly, the beta coefficient was higher in adolescents with non-obese mothers compared to those with obese mothers. It is possible that the genetic background of non-

BMJ Open

obese dyslipidemic mothers affected the lipid levels of their offspring. However, the mean BMI of dyslipidemic mothers was higher than that of non-dyslipidemic mothers (24.7 kg/m²) vs. 23.2 kg/m²). Moreover, the beta coefficient was also higher in adolescents with non-dyslipidemic mothers than in those with dyslipidemic mothers. Thus, it is more likely that the mothers' perception regarding dyslipidemia influences the adolescents' lipid levels. Of course, this interpretation requires consideration of relationship between lipids and characteristics in mothers. Awareness of dyslipidemia was relatively low despite its higher prevalence worldwide.²⁹ A mother's perception of lipid levels could affect her children's lipids through efforts related to lifestyle and diet changes.³⁰ A recent Korean study highlighted education and counseling in order to change health behavior in addition to awareness of dyslipidemia.³¹ Our results from subgroup analyses support these previous studies and highlight the influence of the mother's perception of dyslipidemia and resultant lifestyle changes.

There is no doubt that lifestyle modification plays a central role in lipid control. Moreover, considering the high rates of abnormal TG and HDL-C and the restricted indications of lipid-lowering agents in youth, lifestyle changes should play a larger role in adolescent patients. Our results showed that frequent walking was negatively associated with TC and LDL-C levels, which is predictable. Meanwhile, frequent eating out was associated with decreased TC and LDL-C, a finding that conflicts with a general notion that eating out induces a high calorie intake or overeating. Eating out was defined as all foods except home-cooked dishes in this survey, then including school meals as well as dining out and delivery foods. Actually, the frequency of eating out showed a great discrepancy between adolescents and mothers in this study. Thus, school foods may compensate for negative effects of eating out by providing regular and well-balanced meals. The positive correlation between exercise and lipid levels,

which is also an unexpected result, seems to be influenced by exercise intensity. Exercise frequency alone was not sufficient to explain the effect of exercise adequately; thus, the strength and duration of exercise should be considered. Our data regarding health behavioral factors should be more detailed and concrete. However, it is certain that health behavioral habits influence the lipid levels of adolescents, and therefore adolescents with dyslipidemia and their families should be encouraged to improve their lifestyles.

Cholesterol levels in children and adolescents are highly dependent on age and sex.³² Our data showed that the levels of TC, LDL-C, and HDL-C were higher in female adolescents that in males. In addition, the beta coefficients per unit increase of mother's TC, LDL-C, and HDL-C were also prominent in females. It is possible that mothers with female offspring are either more obese and dyslipidemic or otherwise. However, mother's mean BMI was similar between male and female adolescents $(23.3 \pm 3.2 \text{ and } 23.5 \pm 3.3 \text{ kg/m}^2, \text{ respectively}, P=0.161)$; furthermore, the rate of mother's dyslipidemia showed no statistical difference between male and female adolescents (10.8% vs. 9.8%, respectively, P=0.373). Thus, the difference of beta coefficient by sex may be due to a distinct difference in lipid levels by sex. This is supported by our result that the TG level was higher in male than in female adolescents and the beta coefficient of TG was also higher in male adolescents.

This study has several limitations. First, because it is a survey-based study, our data are vulnerable to recall bias. Second, as it is a cross-sectional design, there was no causal relationship. This factor will be particularly important in consideration of the impacts due to environmental factors. Further well-designed cohort studies are warranted. Third, individuals who responded to the national survey could have greater health concerns. They may have Page 15 of 33

BMJ Open

better health behavioral habits, or family members with chronic diseases. However, this survey was uniformly performed in all regions of Korea and targeted all age groups; thus, our data can be considered nationally representative samples. Fourth, the nutritional factors, which were not considered in the analyses because of insufficient information and large missing values, can be significant confounding factors. Further studies based on detailed surveys for health behavioral factors and nutritional elements are needed. Fifth, we did not evaluate the father's lipid levels. If the father's lipid levels had also been considered, the genetic backgrounds of lipids might be emphasized more. Sixth, various comorbidities such as hypothyroidism, Cushing's disease, liver disease, and nephrotic syndrome, among others, as well as long-term use of steroid can affect lipid level,³³ and these could be also confounding factors. However, these chronic diseases are extremely rare during the adolescent period, and thus could be negligible. Finally, our study might be vulnerable to bias originating from multiple testing. Especially, four dependent variables rise level of significance leading to the problem of high type-I error. However, even considering this, the *P* values for the associations are sufficiently significant. Additionally, R-squared indicates just how well the model explains variability of the response data. Although we chose four models, which showed high R-squared, it does not mean accurate representation of goodness of fit for the models.

In conclusion, a mother's lipid levels were positively associated with her adolescents' lipid levels because of both genetic and environmental factors within the family. Adolescent dyslipidemia creates a large risk factor burden for cardiovascular diseases; therefore, timely screening for dyslipidemia is important, especially for indicated adolescents. Our positive correlation between lipids of adolescents and their mothers supports that the mother's lipid level is an appropriate reference for the screening of the adolescent's dyslipidemia.

2 3 4	371		
5 6	372	Ackno	wledgements The authors thank the participants for their cooperation and the staffs of
7 8 9	373	KNHA	NES (<u>https://knhanes.cdc.go.kr/knhanes/index.do</u>) for their hard work.
9 10 11	374	Contr	ibutors E.C.P and S.I.J designed the study. J.H.N. and J.S. analyzed and interpreted
12 13	375	the da	ta. J.H.N., J.K.L., and Y.J.L. drafted the manuscript. J.H.K. and K.T.H critically
14 15 16	376	revised	the manuscript. All authors read and approved the final version.
16 17 18	377	Fundi	ng This work was not supported by any funding.
19 20	378	Comp	eting interests The authors declare no competing interest.
21 22	379	Partic	ipant consent This nationwide survey is fully anonymized and does not require
23 24 25	380	inform	ed consent.
26 27	381	Ethics	approval This study was analyzed using KNHANES secondary data. Use of the data
28 29	382	was ap	proved by the Institutional Review Board of the KCDC.
30 31 32	383	Availa	bility of data and material All data analyzed during this study are available in the
32 33 34	384	KCDC	and KNHANES repository, [https://knhanes.cdc.go.kr/knhanes/sub03/sub03_01.do]
35 36	385		
37 38 20	386	REFI	ERENCES
39 40 41	387	1.	Berenson GS, Srinivasan SR, Bao W, et al. Association between multiple
42 43	388		cardiovascular risk factors and atherosclerosis in children and young adults. The
44 45 46	389		Bogalusa Heart Study. N Engl J Med 1998;338:1650-6.
47 48	390	2.	Cause-of-death statistics in the Republic of Korea, 2014. J Korean Med Assoc
49 50	391		2016;59:221-32.
51 52 53	392	3.	Urbina EM, Khoury PR, McCoy CE, et al. Triglyceride to HDL-C ratio and increased
55 54 55	393		arterial stiffness in children, adolescents, and young adults. Pediatrics
56 57	394		2013;131:e1082-90.
58 59 60	395	4.	McGill HC, Jr., McMahan CA, Zieske AW, et al. Associations of coronary heart 16

Page 17 of 33

BMJ Open

1 2			
2 3 4	396		disease risk factors with the intermediate lesion of atherosclerosis in youth. The
5 6	397		Pathobiological Determinants of Atherosclerosis in Youth (PDAY) Research Group.
7 8 9	398		Arterioscler Thromb Vasc Biol 2000;20:1998-2004.
10 11	399	5.	Margolis KL, Greenspan LC, Trower NK, et al. Lipid screening in children and
12 13	400		adolescents in community practice: 2007 to 2010. Circ Cardiovasc Qual Outcomes
14 15 16	401		2014;7:718-26.
17 18	402	6.	Smetanina N, Albaviciute E, Babinska V, et al. Prevalence of overweight/obesity in
19 20	403		relation to dietary habits and lifestyle among 7-17 years old children and adolescents
21 22 23	404		in Lithuania. BMC Public Health 2015;15:1001.
23 24 25	405	7.	Korea Centers for Disease Control and Prevention. Korea Health Statistics 2014:
26 27	406		Korea National Health and Nutrition Examination Survey (KNHANES VI-2);
28 29	407		Ministry of Health and Welfare: Seoul, Korea. 2014.
30 31 32	408	8.	Ogden CL, Carroll MD, Curtin LR, et al. Prevalence of high body mass index in US
33 34	409		children and adolescents, 2007-2008. JAMA 2010;303:242-9.
35 36	410	9.	Ha KH, Kim DJ. Epidemiology of Childhood Obesity in Korea. Endocrinol Metab
37 38 39	411		(Seoul) 2016;31:510-8.
40 41	412	10.	Wang CJ, Li YQ, Wang L, et al. Development and evaluation of a simple and
42 43	413		effective prediction approach for identifying those at high risk of dyslipidemia in rural
44 45	414		adult residents. PLoS One 2012;7:e43834.
46 47 48	415	11.	Danese A, Moffitt TE, Harrington H, et al. Adverse childhood experiences and adult
49 50	416		risk factors for age-related disease: depression, inflammation, and clustering of
51 52	417		metabolic risk markers. Arch Pediatr Adolesc Med 2009;163:1135-43.
53 54 55	418	12.	Buitrago-Lopez A, van den Hooven EH, Rueda-Clausen CF, et al. Socioeconomic
56 57	419		status is positively associated with measures of adiposity and insulin resistance, but
58 59	420		inversely associated with dyslipidaemia in Colombian children. J Epidemiol
60			

Community Health 2015;69:580-7. 13. Tarini BA, McInerney JD. Family history in primary care pediatrics. Pediatrics 2013;132:S203-10. 14. Kathiresan S, Manning AK, Demissie S, et al. A genome-wide association study for blood lipid phenotypes in the Framingham Heart Study. BMC Med Genet 2007;8 Suppl 1:S17. 15. Hunt SC, Hasstedt SJ, Kuida H, et al. Genetic heritability and common environmental components of resting and stressed blood pressures, lipids, and body mass index in Utah pedigrees and twins. Am J Epidemiol 1989;129:625-38. Predazzi IM, Sobota RS, Sanna S, et al. Sex-Specific Parental Effects on Offspring 16. Lipid Levels. J Am Heart Assoc 2015;4:e001951. 17. Kweon S, Kim Y, Jang MJ, et al. Data resource profile: the Korea National Health and Nutrition Examination Survey (KNHANES). Int J Epidemiol 2014;43:69-77. Park HW, Yoo HY, Kim CH, et al. Reference values of body composition indices: the 18. Korean National Health and Nutrition Examination Surveys. Yonsei Med J 2015;56:95-102. 19. Jee SH, Sull JW, Park J, et al. Body-mass index and mortality in Korean men and women. N Engl J Med 2006;355:779-87. D'Adamo E, Guardamagna O, Chiarelli F, et al. Atherogenic dyslipidemia and 20. cardiovascular risk factors in obese children. Int J Endocrinol 2015;2015:912047. 21. Lim JS. The current state of dyslipidemia in Korean children and adolescents and its management in clinical practice. Ann Pediatr Endocrinol Metab 2013;18:1-8. 22. Kim S, So WY. Prevalence of Metabolic Syndrome among Korean Adolescents According to the National Cholesterol Education Program, Adult Treatment Panel III and International Diabetes Federation. Nutrients 2016;8:558.

Page 19 of 33

1

BMJ Open

2			
- 3 4	446	23.	Expert Panel on Integrated Guidelines for Cardiovascular H, Risk Reduction in C,
5 6	447		Adolescents, National Heart L, Blood I. Expert panel on integrated guidelines for
7 8	448		cardiovascular health and risk reduction in children and adolescents: summary report.
9 10 11	449		Pediatrics 2011;128 Suppl 5:S213-56.
12 13	450	24.	Montali A, Truglio G, Martino F, et al. Atherogenic dyslipidemia in children:
14 15	451		evaluation of clinical, biochemical and genetic aspects. PLoS One 2015;10:e0120099.
16 17 18	452	25.	Yoon JM. Dyslipidemia in children and adolescents: when and how to diagnose and
19 20	453		treat? Pediatr Gastroenterol Hepatol Nutr 2014;17:85-92.
21 22	454	26.	Khoury M, Manlhiot C, Gibson D, et al. Universal screening for cardiovascular
23 24	455		disease risk factors in adolescents to identify high-risk families: a population-based
25 26 27	456		cross-sectional study. BMC Pediatr 2016;16:11.
28 29	457	27.	Calandra S, Tarugi P, Speedy HE, et al. Mechanisms and genetic determinants
30 31	458		regulating sterol absorption, circulating LDL levels, and sterol elimination:
32 33 34	459		implications for classification and disease risk. J Lipid Res 2011;52:1885-926.
35 36	460	28.	Goharkhay N, Tamayo EH, Yin H, et al. Maternal hypercholesterolemia leads to
37 38	461		activation of endogenous cholesterol synthesis in the offspring. Am J Obstet Gynecol
39 40	462		2008;199:273 e271-6.
41 42 43	463	29.	Zhang FL, Xing YQ, Wu YH, et al. The prevalence, awareness, treatment, and control
44 45	464		of dyslipidemia in northeast China: a population-based cross-sectional survey. Lipids
46 47	465		Health Dis 2017;16:61.
48 49 50	466	30.	Price JH, Casler SM. African-American mothers' perceptions of cholesterol and its
50 51 52	467		effects on their children. J Natl Med Assoc 1996;88:145-50.
53 54	468	31.	Cho IY, Park HY, Lee K, et al. Association Between the Awareness of Dyslipidemia
55 56	469		and Health Behavior for Control of Lipid Levels Among Korean Adults with
57 58 59	470		Dyslipidemia. Korean J Fam Med 2017;38:64-74.
59 60			

3 4	471
5 6	472
7 8 9	473
9 10 11	474
12 13	475
14 15	476
16 17 18	477
19 20	478
21 22	479
23 24 25	480
26 27	481
28 29	482
30 31 32	483
33	
34 35	
36	
37	
38 39	
40	
41	
42 43	
44	
45	
46 47	
47 48	
49	
50	
51 52	
53	
54	
55 56	
56 57	
58	
59	

1 2

32. Skinner AC, Steiner MJ, Chung AE, et al. Cholesterol curves to identify population norms by age and sex in healthy weight children. Clin Pediatr (Phila) 2012;51:233-7.
33. Vodnala D, Rubenfire M, Brook RD. Secondary causes of dyslipidemia. Am J Cardiol 2012;110:823-5.

FIFURE LEGENDS

478 Figure 1 Study flow showing sample selection. We selected 2,884 adolescents aged 12–18
479 whose mothers' data were also available.

Figure 2 Bar graphs showing standardized beta coefficients of adolescent's lipids for each unit increase of their mother's lipids in subgroups. HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TC, total cholesterol; TG, triglyceride.

BMJ Open

	No. (%)		ТС			TG			HDL-C		LDL-C			
		Mean	SD	P value [†]	Mean	SD	P value [†]	Mean	SD	P value [†]	Mean	SD	P value	
All (n=2884)		156.6	27.0		83.6	46.4		50.4	9.8		89.4	23.3		
Adolescent variables														
Age (years)				0.359			0.825			0.021			0.93	
12-14	1454 (50.4)	156.9	26.4		84.0	47.0		50.8	9.8		89.2	22.8		
15-18	1430 (49.6)	156.2	27.6		83.1	45.8		50.0	9.8		89.6	23.8		
Sex				<.001			0.729			<.001			<.00	
Male	1522 (52.8)	151.4	27.1		84.6	49.7		48.7	9.6		85.9	23.5		
Female	1362 (47.2)	162.3	25.9		82.4	42.3		52.4	9.7		93.4	22.5		
BMI*				0.016			<.001			<.001			<.00	
<85%	2617 (90.7)	156.1	26.6		81.0	44.6		51.1	9.7		88.9	22.9		
<u>≥85%</u>	267 (9.3)	160.7	30.7		109.1	55.5		44.2	8.0		94.6	26.3		
Glucose (mg/dl)				0.047			0.536			0.987			0.43	
≤100	2752 (95.4)	156.4	26.8		83.4	46.2		50.4	9.8		89.3	23.1		
>100	132 (4.6)	159.6	32.1		86.8	49.9		50.5	10.0		91.7	27.7		
Stress level	()			0.439			0.955			0.545			0.33	
Non	476 (16.5)	156.9	28.3		82.8	43.9		50.1	9.6		90.2	24.6		
Mild	1714 (59.4)	156.9	26.8		83.7	45.7		50.6	9.9		89.6	23.3		
Moderate	694 (24.1)	155.5	26.8		83.8	49.7		50.3	9.7		88.4	22.5		
Eating out/week	o) (-)	100.0	-0.0	0.032	02.0		0.368	00.0	2.7	0.471	00		0.11	
≥7	1121 (38.9)	154.8	26.3	0.052	81.0	40.4	0.500	50.1	9.7	0.171	88.4	22.9	0.110	
5-6	1676 (58.1)	157.5	27.4		85.1	50.0		50.6	9.8		89.9	23.6		
1-4	66 (2.3)	159.3	25.6		85.6	44.9		50.4	10.5		91.6	21.0		
<1	21 (0.7)	164.6	33.3		90.4	48.2		48.4	9.5		98.0	27.2		
Walking/week	21 (0.7)	101.0	55.5	0.006	20.1	10.2	0.955		2.5	0.542	20.0	27.2	0.00	
0-1 day	321 (11.1)	159.1	26.4	0.000	84.9	56.3	0.900	50.8	10.1	0.512	91.4	22.1	0.00.	
2-4 days	502 (17.4)	157.9	27.0		84.4	44.6		50.0	9.5		90.8	23.7		
5-6 days	760 (26.4)	157.9	28.6		83.8	47.6		50.8	9.9		90.4	24.3		
7 days	1301 (45.1)	154.6	26.2		82.8	43.6		50.2	9.8		87.8	22.7		
Exercise/week	1501 (15.1)	101.0	20.2	0.108	02.0	15.0	0.193	50.2	7.0	0.021	07.0	22.7	0.38	
Non	1846 (64.0)	157.3	26.8	0.100	84.4	47.0	0.175	50.8	10.0	0.021	89.5	22.8	0.50.	
1-2days	633 (22.0)	157.5	27.5		81.9	45.5		49.5	9.1		89.7	24.0		
≥3days	405 (14.0)	154.7	27.3		82.2	45.0		50.1	9.8		88.2	24.0		
Mother variables	403 (14.0)	1.54.7	27.4		02.2	45.0		50.1	9.0		00.2	24.3		
Age (years)				0.091			0.502			0.023			0.56	
30-39	505 (17.5)	157.7	25.8	0.071	85.5	46.7	0.302	51.2	9.7	0.025	89.3	21.9	0.50	
40-49	2154 (74.7)	157.7	23.8 27.4		83.3	46.7		50.4	9.7 9.9		89.5 89.6	21.9		
40-49 50-59		150.7			83.3 82.0	40.7		49.0	9.9 8.7			23.7		
	225 (7.8)	133.1	26.1	0.486	82.0	43.0	0.063	49.0	0./	<.001	87.6	22.1	0.47	
BMI (kg/m ²)				0.460			0.005			<.001			0.47	
					21									

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

<23	1430 (49.6)	156.6	26.4		82.2	42.9		51.1	9.7		89.0	22.3	
23-24.9	684 (23.7)	155.6	26.7		81.9	44.6		50.1	9.7		89.1	23.2	
≥25	770 (26.7)	157.4	28.5		87.6	53.4		49.5	10.0		90.5	25.1	
Smoking status				0.409			0.175			0.138			
Non	2648 (91.8)	156.4	27.1		83.4	46.8		50.5	9.8		89.2	23.3	
Ex-	89 (3.1)	159.2	26.1		82.1	41.1		49.8	9.5		92.8	22.7	
Current	147 (5.1)	158.3	27.3		87.8	40.7		48.9	9.6		91.7	23.9	
Drinking status				0.392			0.569			0.383			
Non	718 (24.9)	155.4	27.0		82.7	47.5		50.8	9.8		88.0	23.1	
$\leq 1/month$	1250 (43.3)	157.0	27.2		83.2	46.3		50.2	9.7		90.2	23.6	
$\geq 2/\text{month}$	916 (31.8)	156.8	26.9		84.8	45.6		50.4	9.9		89.4	23.0	
Education level	. ,			0.848			0.168			0.455			
Elementary	96 (3.3)	155.5	27.5		84.9	47.5		49.8	9.8		88.7	24.9	
Middle	177 (6.1)	157.1	28.5		84.5	46.0		49.9	8.8		90.3	24.6	
High	1624 (56.3)	157.0	27.6		85.2	48.6		50.3	9.9		89.6	23.9	
University	987 (34.2)	155.9	25.8		80.6	42.3		50.8	9.7		89.0	21.8	
Income (1,000\)				0.333			0.495			0.323			
<1,000	219 (7.6)	157.9	28.6		87.9	49.3		50.0	9.5		90.2	24.6	
1,000-1,999	696 (24.1)	154.7	24.7		84.2	50.9		49.9	9.5		88.0	21.3	
2,000-2,999	976 (33.8)	156.9	27.2		83.3	45.3		50.8	9.8		89.5	23.7	
≥3,000	993 (34.4)	157.3	28.1		82.4	43.4		50.6	10.1		90.2	23.9	
Working hours				0.936			0.873			0.643			
Non	1679 (58.2)	156.5	26.4		83.2	46.4		50.3	9.8		89.6	22.7	
Full-time	906 (31.4)	156.7	27.9		84.0	47.4		50.6	9.5		89.2	24.4	
Part time	299 (10.4)	156.3	27.9		84.3	42.9		50.3	10.5		89.0	23.2	
Eating out/week				0.443			0.630			0.369			
≥7	370 (12.8)	155.5	27.9		80.2	40.0		51.1	9.7		88.3	25.8	
5-6	615 (21.3)	157.1	28.5		83.5	43.4		50.0	9.7		90.4	24.1	
1-4	1278 (44.3)	156.0	26.5		83.5	46.8		50.4	10.0		88.9	22.5	
<1	621 (21.5)	157.7	26.1		85.7	51.6		50.5	9.5		90.1	22.6	

*Based on body mass index (kg/m²) for age percentiles in male and female [†]P values determined by log normal distributions

 BMI, body mass index; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; SD, standard deviation; TC, total cholesterol; TG, triglyceride.

Page 23 of 33

BMJ Open

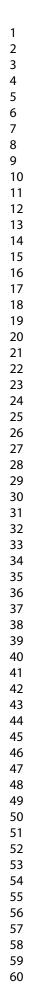
		TC & 7	TC			TG &	TG			HDL-C &	HDL-C			LDL-C &	LDL-C	
	β	S.B.	S.E.	P value	β	S.B.	S.E.	P value	β	S.B.	S.E.	P value	β	S.B.	S.E.	P valu
Mother lipids (beta coefficient) Adolescent variables	0.229	0.268	0.015	<.001	0.161	0.215	0.020	<.001	0.240	0.294	0.016	<.001	0.236	0.284	0.016	<.0
Age (years)																
12-14	Ref				Ref				Ref				Ref			
15-18	-0.168	-0.003	1.071	0.875	-0.788	-0.009	1.970	0.689	-0.476	-0.024	0.388	0.220	0.539	0.012	0.920	0.5
Sex																
Male	Ref				Ref				Ref				Ref			
Female	13.317	0.246	1.035	<.001	1.767	0.019	1.845	0.338	2.936	0.150	0.378	<.001	9.954	0.213	0.892	<.(
BMI (%)*																
<85	Ref				Ref				Ref				Ref			
≥85	10.931	0.117	1.950	<.001	29.963	0.187	3.575	<.001	-5.514	-0.163	0.563	<.001	10.299	0.128	1.642	<.(
Glucose (mg/dl)																
≤100	Ref				Ref				Ref				Ref			
>100	4.240	0.033	2.743	0.122	3.483	0.016	4.322	0.420	0.448	0.010	0.817	0.583	2.768	0.025	2.334	0.
Stress level																
Non	Ref		1 2 - 2		Ref	o o 1 -			Ref	0.00			Ref	0.001	1.000	0
Mild	-0.117	-0.002	1.370	0.932	1.583	0.017	2.229	0.477	0.521	0.026	0.459	0.256	-0.979	-0.021	1.206	0.4
Moderate	-2.199	-0.035	1.561	0.159	1.739	0.016	2.731	0.524	0.103	0.005	0.533	0.847	-2.552	-0.047	1.349	0.0
Eating out/week	D . C				Ref				Ref				Ref			
≥7 5-6	Ref	0.047	1.025	0.011		0.031	1 7(2	0.000		0.005	0.274	0 775		0.043	0.896	0
5-6 1-4	2.599 2.142	0.047	1.025 3.110	0.011	2.939 3.127	0.031	1.763 5.402	0.096 0.563	0.107 0.036	0.005	0.374	0.775 0.977	2.030 1.397	0.043	2.666	0. 0.
1-4 <1	2.142 8.908	0.012	6.882	0.491	6.660	0.010	9.111	0.363	-0.848	-0.007	1.223	0.638	8.283	0.009	5.553	0.0
Walking/week	0.900	0.028	0.002	0.190	0.000	0.012	9.111	0.405	-0.040	-0.007	1.600	0.038	0.203	0.030	5.555	0.
0-1 day	Ref				Ref				Ref				Ref			
2-4 days	-1.422	-0.020	1.799	0.429	-0.919	-0.008	3.566	0.797	-0.371	-0.014	0.658	0.573	-0.864	-0.014	1.547	0.:
5-6 days	-1.349	-0.020	1.693	0.425	-1.070	-0.010	3.453	0.757	-0.092	-0.004	0.626	0.883	-1.119	-0.021	1.430	0.4
7 days	-3.466	-0.064	1.554	0.026	-2.035	-0.022	2.291	0.536	-0.021	-0.001	0.594	0.971	-3.143	-0.067	1.316	0.0
Exercise/week	5.100	0.001	1.001	0.020	2.055	0.022	2.271	0.000	0.021	0.001	0.071	0.971	5.115	0.007	1.510	0.
Non	Ref				Ref				Ref				Ref			
1-2days	1.528	0.023	1.210	0.207	-2.743	-0.024	2.074	0.186	-0.374	-0.016	0.416	0.369	2.361	0.042	1.034	0.0
≥3days	2.992	0.038	1.476	0.043	-3.400	-0.025	2.544	0.182	0.939	0.033	0.527	0.075	3.018	0.045	1.305	0.
Mother variables																
Age (years)																
30-39	Ref				Ref				Ref				Ref			
							23	5								

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page	24	of	33

40-49	-1.270	-0.020	1.302	0.329	-1.716	-0.016	2.364	0.468	-0.972	-0.043	0.478	0.042	0.046	0.001	1.106	0
50-59	-6.554	-0.065	2.165	0.003	-6.270	-0.036	3.780	0.097	-2.071	-0.057	0.725	0.004	-3.230	-0.037	1.868	C
BMI (kg/m ²)																
<23	Ref				Ref				Ref				Ref			
23-24.9	-1.637	-0.026	1.159	0.158	-3.390	-0.031	2.034	0.096	0.175	0.008	0.425	0.680	-0.849	-0.016	0.994	0
>25	-2.467	-0.040	1.221	0.043	-4.209	-0.040	2.297	0.067	0.612	0.028	0.448	0.172	-1.513	-0.029	1.073	0
Smoking status																
Non	Ref				Ref				Ref				Ref			
Ex-	1.855	0.015	2.321	0.424	-2.802	-0.013	3.551	0.430	-1.544	-0.035	0.825	0.062	4.246	0.040	1.944	0
Current	1.614	0.010	2.537	0.525	-3.711	-0.014	4.464	0.406	-1.431	-0.025	1.024	0.162	3.601	0.027	2.174	(
Drinking status																
Non	Ref				Ref				Ref				Ref			
$\leq 1/month$	0.056	0.001	1.306	0.966	2.098	0.021	2.282	0.358	-1.724	-0.082	0.469	<.001	1.168	0.023	1.112	(
$\geq 2/\text{month}$	-0.014	0.000	1.205	0.991	0.417	0.004	2.146	0.846	-0.928	-0.047	0.427	0.030	0.757	0.016	1.037	(
Education level																
Elementary	Ref				Ref				Ref				Ref			
Middle	1.689	0.015	3.314	0.610	1.770	0.009	5.778	0.759	-0.154	-0.004	1.245	0.901	1.228	0.013	2.898	(
High	-0.329	-0.006	2.822	0.907	1.296	0.014	5.062	0.798	-0.414	-0.021	1.106	0.709	-0.355	-0.008	2.505	0
University	-1.680	-0.029	2.911	0.564	-1.693	-0.017	5.212	0.745	-0.299	-0.015	1.037	0.792	-1.301	-0.026	2.565	(
Income (1,000\)																
<1,000	Ref				Ref				Ref				Ref			
1,000-1,999	-1.700	-0.027	2.010	0.398	-1.408	-0.013	3.858	0.715	-0.460	-0.020	0.727	0.527	-0.964	-0.018	1.710	0
2,000-2,999	0.419	0.007	1.976	0.832	-1.328	-0.014	3.682	0.718	0.105	0.005	0.715	0.883	0.485	0.010	1.685	0
≥3,000	0.821	0.014	2.030	0.686	-1.818	-0.019	3.697	0.623	0.076	0.004	0.729	0.918	0.994	0.020	1.726	(
Working hours																
Non	Ref				Ref				Ref				Ref			
Full-time	0.834	0.014	1.159	0.472	3.312	0.033	2.202	0.133	0.206	0.010	0.421	0.625	-0.150	-0.003	0.999	(
Part time	0.279	0.003	1.592	0.861	0.496	0.003	2.649	0.852	0.008	0.000	0.598	0.990	0.068	0.001	1.330	(
Eating out/week																
≥7	Ref				Ref				Ref				Ref			
5-6	1.637	0.025	1.754	0.351	3.492	0.031	2.735	0.202	-0.868	-0.036	0.605	0.152	1.868	0.033	1.583	(
1-4	0.539	0.010	1.615	0.739	3.111	0.033	2.646	0.240	-0.372	-0.019	0.572	0.516	0.374	0.008	1.463	(
<1	1.652	0.025	1.763	0.349	4.206	0.037	3.188	0.187	-0.119	-0.005	0.630	0.850	1.088	0.019	1.600	0

*Based on body mass index (kg/m²) for age percentiles in male and female


 BMI, body mass index; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; SD, standard deviation; S.B., standardized beta; S.E., standard error; TC, total cholesterol; TG, triglyceride.

 BMJ Open

			TC & TC				TG a	& TG		ł	HDL-C &	k HDL-	l	LDL-C &	& LDL-0	2	
		β*	S.B.	S.E.	<i>P</i> value	β*	S.B.	S.E.	<i>P</i> value	β*	S.B.	S.E.	<i>P</i> value	β*	S.B.	S.E.	P valu
Sex																	-
Male	1522 (52.8)	0.221	0.258	0.021	<.001	0.199	0.245	0.021	<.001	0.215	0.273	0.020	<.001	0.228	0.274	0.021	<.00
Female	1362 (47.2)	0.244	0.299	1.510	<.001	0.122	0.181	0.020	<.001	0.271	0.331	0.022	<.001	0.250	0.312	0.021	<.00
Mother variables																	
Age (years)																	
30-39	505 (17.5)	0.228	0.274	0.036	<.001	0.150	0.186	0.040	<.001	0.224	0.278	0.038	<.001	0.247	0.315	0.035	<.00
40-49	2154 (74.7)	0.239	0.273	0.018	<.001	0.164	0.210	0.017	<.001	0.250	0.302	0.018	<.001	0.250	0.292	0.018	<.00
50-59	225 (7.8)	0.099	0.127	0.053	0.062	0.157	0.291	0.039	<.001	0.207	0.287	0.051	<.001	0.058	0.081	0.048	0.23
BMI (kg/m ²)																	
<25	2114 (73.3)	0.249	0.288	0.018	<.001	0.185	0.221	0.018	<.001	0.250	0.313	0.017	<.001	0.265	0.315	0.017	<.00
≥25	770 (26.7)	0.172	0.202	0.030	<.001	0.129	0.183	0.025	<.001	0.180	0.189	0.034	<.001	0.168	0.203	0.030	<.00
Education level																	
Elementary	96 (3.3)	0.154	0.185	0.111	0.171	0.212	0.287	0.105	0.047	0.056	0.064	0.110	0.616	0.136	0.185	0.098	0.17
Middle	177 (6.1)	0.222	0.240	0.073	0.003	0.241	0.055	0.379	<.001	0.133	0.187	0.060	0.028	0.279	0.316	0.065	<.00
High	1624 (56.3)	0.226	0.264	0.021	<.001	0.141	0.190	0.019	<.001	0.257	0.314	0.020	<.001	0.226	0.268	0.021	<.00
University	987 (34.2)	0.233	0.278	0.026	<.001	0.174	0.209	0.028	<.001	0.247	0.296	0.027	<.001	0.253	0.314	0.025	<.00
Dyslipidemia [†]																	
No	2587 (89.7)	0.259	0.257	0.019	<.001	0.190	0.232	0.017	<.001	0.255	0.305	0.016	<.001	0.263	0.273	0.018	<.00
Yes	297 (10.3)	0.121	0.182	0.040	0.003	0.096	0.189	0.032	0.003	0.151	0.222	0.045	0.001	0.137	0.224	0.035	<.00
Economic activity	× /																
No	1679 (58.2)	0.202	0.240	0.020	<.001	0.186	0.251	0.019	<.001	0.258	0.325	0.019	<.001	0.205	0.250	0.019	<.00
Yes	1205 (41.8)	0.267	0.308	0.024	<.001	0.121	0.159	0.024	<.001	0.214	0.251	0.025	<.001	0.280	0.332	0.023	<.0

[†]Included cases diagnosed and/or treated with dyslipidemia, and cases with cholesterol level above 240mg/dl.

BMI, body mass index; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; SD, standard deviation; S.B., standardized beta; S.E., standard error; TC, total cholesterol; TG, triglyceride.

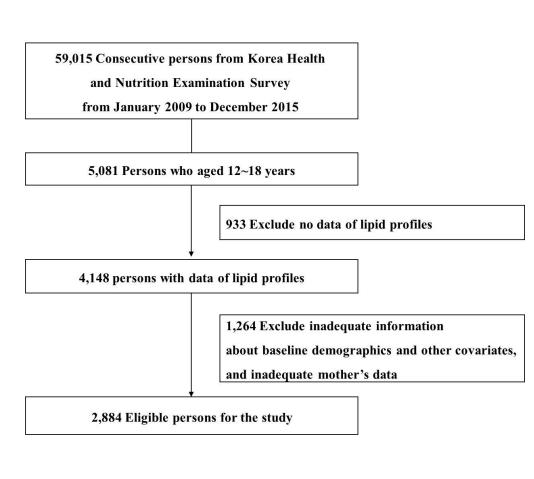


Figure 1 Study flow showing sample selection. We selected 2,884 adolescents aged 12–18 whose mothers' data were also available.

104x90mm (300 x 300 DPI)

0.4

0.3

0.2

0.1

0.0

0.4

0.3

0.2

0.1

0.0

lipoprotein cholesterol; TC, total cholesterol; TG, triglyceride.

124x90mm (300 x 300 DPI)

30-39

No

TC

∎ TG

■ TC

∎ TG

■HDL-C

LDL-C

■HDL-C

LDL-C

Sex

Mother BMI (kg/m²)

Female

≥25

Mother age

40-49

Mother dyslipidemia

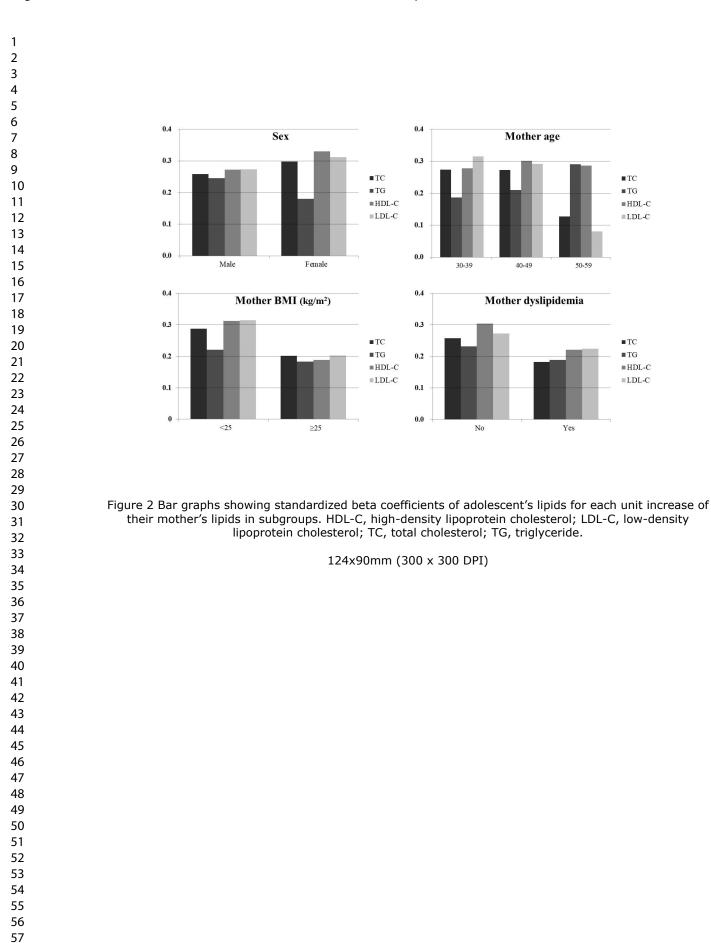
50-59

Yes

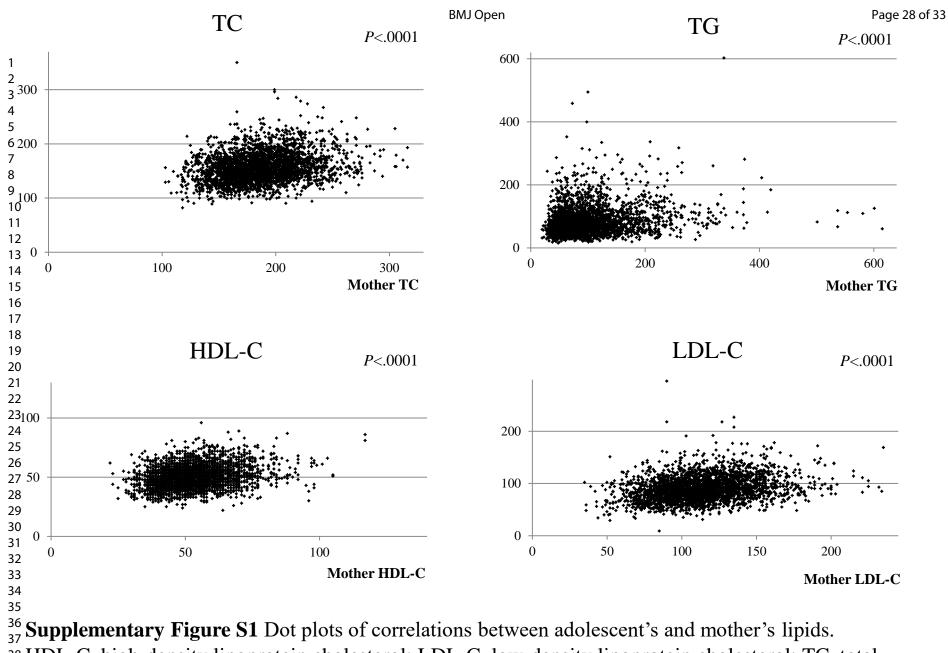
■ TC

∎ TG

■ TC


∎ TG

■HDL-C


■LDL-C

■HDL-C

LDL-C

58 59

³⁸ HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TC, total ³⁹ cholesterol; TG, triglyceride.

ر م	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39 40	
40	
41	
42	
43	
44	
45	
46	

47

Supplementary Table S1 Adjusted R squares for regression models of lipid profiles between adolescent and mother

TC TG HDL-C LDL- Mothers TG 0.1245 0.0296 0.0723 0.109 Mothers TG 0.0585 0.0692 0.0678 0.044 HDL-C 0.0592 0.0424 0.1400 0.044 LDL-C 0.1164 0.0288 0.0640 0.121 he other covariates were adjusted for these regressions. DL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TC, total cholesterol; C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TC, total cholesterol; C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TC, total cholesterol; C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol; TC, total cholesterol; C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TC, total cholesterol; LDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol; TC, total cholesterol; LDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol; TC, total cholesterol; LDL-C, high-density lipoprotein cholesterol; LDL-C, high-de
TC 0.1245 0.0296 0.0723 0.109 Mothers TG 0.0585 0.0692 0.0678 0.044 HDL-C 0.0592 0.0424 0.1400 0.044 LDL-C 0.1164 0.0288 0.0640 0.121 he other covariates were adjusted for these regressions. 0.0288 0.0640 0.121
Mothers TG 0.0585 0.0692 0.0678 0.044 HDL-C 0.0592 0.0424 0.1400 0.044 LDL-C 0.1164 0.0288 0.0640 0.121 he other covariates were adjusted for these regressions. 0.0440 0.121
HDL-C 0.0592 0.0424 0.1400 0.044 LDL-C 0.1164 0.0288 0.0640 0.121 he other covariates were adjusted for these regressions. 0.0640 0.121
LDL-C 0.1164 0.0288 0.0640 0.121 he other covariates were adjusted for these regressions.
he other covariates were adjusted for these regressions.
DL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TC, total choles

		Adolescents'	OR	95% CI	P value	
	TG (mg/dl)	≤150	>150			
	≤150	2266 (84.9)	157 (73.0)	ref		
Mo	>150	403 (15.1)	58 (27.0)	2.15	1.52, 3.03	<.001
Mothers'	LDL-C (mg/dl)	≤150	>150			
rs'	≤150	2581 (90.8)	31 (72.1)	ref		
lipids	>150	260 (9.2)	12 (27.9)	3.42	1.68, 7.00	<.001
	HDL-C (mg/dl)	<40	≥40			
	<40	84 (22.0)	215 (8.6)	ref		
	≥40	298 (78.0)	2287 (91.4)	0.33	0.24, 0.44	<.001

Supplementary Table S2 Adjusted odds ratios for risks of adolescents' dyslipidemia based on mothers' lipids

The other covariates (baseline and clinical characteristics, health behavioral factors) were adjusted for these regressions

Cİ, confidence interval; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; OR, odds ratio; TG, triglyceride.

BMJ Open

Supplementary Table S3 Sensitivity test: Demographics and lipid profiles in 4,148 adolescents* age	ged 12-18 years
--	-----------------

	No. (%)		TC			TG			HDL-C	ŧ		LDL-C	§
		Mean	SD	P value [†]	Mean	SD	P value [†]	Mean	SD	P value [†]	Mean	SD	P value [†]
All (n=4148)		156.5	26.9		83.9	47.0		50.3	9.8		89.5	23.1	
Age (years)				0.252			0.459			0.013			0.996
12-14	1959 (47.2)	156.9	26.4		84.9	48.0		50.7	9.7		89.4	22.8	
15-18	2189 (52.8)	156.2	27.3		83.0	46.1		49.9	9.8		89.6	23.4	
Sex				<.001			0.313			<.001			<.001
Male	2215 (53.4)	151.4	26.8		84.5	50.1		48.6	9.4		86.0	23.1	
Female	1933 (46.6)	162.4	25.8		83.3	43.2		52.3	9.8		93.4	22.4	
BMI*				0.024			<.001			<.001			<.001
<85%	3733 (90.0)	156.0	26.5		81.1	44.9		51.0	9.7		88.8	22.7	
≥85%	415 (10.0)	160.9	30.3		108.8	57.1		44.1	7.9		95.0	26.0	
Glucose (mg/dl)				0.166			0.134			0.765			0.142
≤100	3935 (94.9)	156.3	26.6		83.5	46.7		50.3	9.7		89.3	22.8	
>100	213 (5.1)	160.0	32.5		90.4	52.7		50.2	10.2		92.8	27.9	

*Included 1264 adolescents who have no mothers' data or inadequate baseline information

[†]P values determined by log normal distributions

[‡]Included 42 missing data (n=4106)

[§]Included 43 missing data (n=4105)

BMI, body mass index; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; SD, standard deviation; TC, total cholesterol; TG, triglyceride.

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	#1, #2
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	#2, #3, #4
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	#5
Objectives	3	State specific objectives, including any prespecified hypotheses	#5, #6
Methods			
Study design	4	Present key elements of study design early in the paper	#6
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	#6, #7
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants	#6
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	#6, #7
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	#7
Bias	9	Describe any efforts to address potential sources of bias	#7, #8
Study size	10	Explain how the study size was arrived at	#6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	#7, #8
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	#7, #8
		(b) Describe any methods used to examine subgroups and interactions	#8
		(c) Explain how missing data were addressed	#6
		(d) If applicable, describe analytical methods taking account of sampling strategy	#8
		(e) Describe any sensitivity analyses	#8

STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of *cross-sectional studies*

 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility,	#6
		confirmed eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	#6
		(c) Consider use of a flow diagram	#6
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	#8, #9
		(b) Indicate number of participants with missing data for each variable of interest	#6
Outcome data	15*	Report numbers of outcome events or summary measures	#8
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence	#8, #9, #10
		interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	#7
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	#9, #10
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	#10, #11
Discussion			
Key results	18	Summarise key results with reference to study objectives	#11
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	#14, #15
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	#11, #12, #13, #14
Generalisability	21	Discuss the generalisability (external validity) of the study results	#11
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on	#15
		which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Associations between lipid profiles of adolescents and their mothers based on a nationwide health and nutrition survey in South Korea

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-024731.R2
Article Type:	Research
Date Submitted by the Author:	30-Dec-2018
Complete List of Authors:	Nam, Ji Hyung; Department of Internal Medicine, Dongguk University Ilsan Hospital, Dongguk University College of Medicine; Department of Medicine, Graduate School, Yonsei University Shin, Jaeyong ; Department of Preventive Medicine & Institute of Health Services Research, Yonsei University College of Medicine Jang, Sung-In; College of Medicine Yonsei University, Department of Preventive Medicine Kim, Ji Hyun ; Department of Pediatrics, Dongguk University Ilsan Hospital, Dongguk University College of Medicine Han, Kyu-Tae ; Research and Analysis Team, National Health Insurance Service Ilsan Hospital Lee, Jun Kyu ; Department of Internal Medicine, Dongguk University Ilsan Hospital, Dongguk University College of Medicine Lim, Yun Jeong ; Department of Internal Medicine, Dongguk University Ilsan Hospital, Dongguk University College of Medicine Park, Eun-Cheol; Yonsei University College of Medicine, Department of Preventive Medicine and Institute of Health Services Research
Primary Subject Heading :	Public health
Secondary Subject Heading:	Paediatrics
Keywords:	Dyslipidemia, Cholesterol, Lipids, Adolescent, Mother

Page 1 of 33

1

BMJ Open

2 3 4	1	Associations between lipid profiles of adolescents and their mothers based
5 6 7	2	on a nationwide health and nutrition survey in South Korea
8 9 10	3	
10 11 12	4	Ji Hyung Nam, ^{1,2} Jaeyong Shin, ³ Sung-In Jang, ³ Ji Hyun Kim, ⁴ Kyu-Tae Han, ⁵ Jun Kyu Lee, ¹
13 14	5	Yun Jeong Lim, ¹ Eun-Cheol Park ³
15 16	6	
17 18 19	7	¹ Department of Internal Medicine, Dongguk University Ilsan Hospital, Dongguk University
20 21	8	College of Medicine, Goyang, Republic of Korea
22 23	9	² Department of Medicine, Graduate School, Yonsei University, Seoul, Republic of Korea
24 25 26	10	³ Department of Preventive Medicine & Institute of Health Services Research, Yonsei
27 28	11	University College of Medicine, Seoul, Republic of Korea
29 30	12	⁴ Department of Pediatrics, Dongguk University Ilsan Hospital, Dongguk University College
31 32 33	13	of Medicine, Goyang, Republic of Korea
34 35	14	⁵ Research and Analysis Team, National Health Insurance Service Ilsan Hospital, Goyang,
36 37	15	Republic of Korea
38 39	16	
40 41 42	17	Correspondence to
43 44	18	Eun-Cheol Park, MD, PhD
45 46	19	Department of Preventive Medicine & Institute of Health Services Research
47 48 49	20	Yonsei University College of Medicine
50 51	21	50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
52 53	22	Phone number: 82-2-2228-1862 / Fax number: 82-2-392-8133
54 55 56	23	E-mail: <u>ecpark@yuhs.ac</u>
56 57 58	24	
59 60	25	
		1

26 ABSTRACT

Objectives Dyslipidemia is a metabolic disease influenced by environmental and genetic factors. Especially family history related to the genetic backgrounds is a strong risk factor of lipid abnormality. The aim of this study is to evaluate the association between the lipid profiles of adolescents and their mothers.

Design A cross-sectional study.

Setting The data were derived from the Korea National Health and Nutrition Examination
Survey (KNHANES IV-VI) between 2009 and 2015.

Participants 2,884 adolescents aged 12-18 years and their mothers were included.

Primary outcome measures Outcome variables were adolescents' lipid levels. Mothers' lipid levels were interesting variables. The lipid profiles included total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C). We identified partial correlation coefficients (*r*) between the lipids. Multiple linear regressions were performed to identify an amount change in adolescents' lipid levels by each unit increase of their mothers' lipids. The regression models included various clinical characteristics and health behavioral factors of both adolescents and mothers.

Results The mean levels of adolescents' lipids were 156.6, 83.6, 50.4, and 89.4 mg/dL, respectively for TC, TG, HDL-C, and LDL-C. Positive correlations between lipid levels of adolescents and mothers were observed for TC, TG, HDL-C, and LDL-C (r, 95% confidence interval = 0.271, 0.236-0.304; 0.204, 0.169-0.239; 0.289, 0.255-0.322; and 0.286, 0.252-0.322; 0.289, 0.252-0.322; 0.289, 0.280, 00.319). Adolescent TC level was increased by 0.23 mg/dL for each unit increase of their mother's TC (standard error (SE), 0.02; $P \le .001$). The β coefficients were 0.16 (SE, 0.01), 0.24 (SE, 0.02), and 0.24 (SE, 0.02), respectively, in each model of TG, HDL-C, and LDL-C (all P < .001). The linear relationships were significant regardless of sex and mother characteristics.

1 2		
3 4	51	Conclusions Mothers' lipid levels are associated with adolescents' lipids, therefore, it can
5 6	52	serve as a reference for the screening of adolescent's dyslipidemia.
7 8 9	53	Keywords: Dyslipidemia, Cholesterol, Lipids, Adolescent, Mother.
9 10 11	54	
12 13	55	
14 15 16	56	
10 17 18	57	
19 20	58	
21 22 23	59	
23 24 25	60	
26 27	61	
28 29 30	62	
30 31 32	63	
33 34	64	
35 36 27	65	
37 38 39	66	
40 41	67	
42 43 44	68	
44 45 46	69	
47 48	70	
49 50	71	
51 52 53	72	
54 55	73	
56 57	74	
58 59 60	75	
00		3

2 3	76	Strengths and limitations of this study
4 5 6	77	► This study analyzed linear relationships of lipid profiles between adolescents and their
7 8	78	mothers using a large national database.
9 10 11	79	►We used survey based statistical analyses based on the design effect related to survey
12 13	80	sampling.
14 15	81	► Various health behavioral factors of adolescents and mothers were adjusted.
16 17 18	82	► There is no causal relationship as this was a cross-sectional study.
19 20	83	► The study did not provide any information on nutritional factors which could be significant
21 22 23	84	confounders.
24 25	85	
26 27 28	86	
28 29 30	87	
31 32	88	
33 34 35	89	
36 37	90	
38 39	91	
40 41 42	92	
43 44	93	
45 46 47	94 95	
48 49	95	
50 51 52	97	
53 54	98	
55 56 57	99	
57 58 59	100	
60		4

INTRODUCTION

Dyslipidemia is a well-known risk factor for cardiovascular disease (CVD) in individuals of all ages.¹ In Korea, CVD is the second-leading cause of death after cancer.² Triglyceride (TG) and high-density lipoprotein cholesterol (HDL-C) are major components of metabolic syndrome (MetS). Likewise, the TG to HDL-C ratio, a predictor for small dense low-density lipoprotein cholesterol (LDL-C), is an independent determinant of arterial stiffness in adolescents and young adult,³ which can subsequently accelerate atherosclerosis and increase cardiovascular events in the second decade of life.⁴ Meanwhile, lipid level is strongly linked to the body mass index (BMI), which is one of the reliable indicators for obesity in adolescents.⁵ Pediatric obesity is affected by various family settings such as eating habits, lifestyle, and education.⁶ The prevalence of pediatric obesity in South Korea has been increased rapidly from 5.8% in 1997 to 11.5% in 201,⁷ which is close to the 13.3% in the United States.⁸ This has increased interest in obesity-related disorders in adolescence, such as metabolic, cardiovascular, or psychosocial complication.⁹ Obesity and dyslipidemia is no longer the problem of adults alone, therefore, adequate screening and control of dyslipidemia in adolescence has become important in South Korea.

In addition to obesity, various factors such as physical activity, economic status, education level, nutritional and dietary factors, sleep duration, and psychiatric problems, among others, have been associated with lipid concentration.¹⁰⁻¹² Meanwhile, family histories usually provide important information regarding pediatric diseases.¹³ Regarding the highly heritable traits of dyslipidemia, several studies showed that there was a close relationship in the lipid concentration between parents and their offspring.¹⁴⁻¹⁶ This familial clustering implies that there may be common denominators including health behavioral factors within a family as well as genetic backgrounds. In the present study, we investigated clinical and health

behavioral factors affecting adolescents' lipid levels, and evaluated the association betweenthe lipid profiles of adolescents and their mothers.

129 METHODS

130 Data source

This is a cross-sectional study using a secondary data of the Korea National Health and Nutrition Examination Survey (KNHANES). KNHANES is an ongoing surveillance system conducted by Korea Centers for Disease Control and Prevention (KCDC) since 1998 that assesses health and nutrition status, and monitors health risk factors and the prevalence of chronic diseases.¹⁷ A special survey team visits four regions every week (192 regions per year) and conducts a health examination, health interview, and nutrition survey. This survey includes a representative sample of the population selected using a stratified, multi-stage, and clustered sampling method. Sampling units are district, survey area, and household. Stratification variables are city/province, district, and housing type. The sample is weighted to reflect sampling rate, response rate, and population demographics in order to estimate health consciousness, health behavior, and nutritional status on behalf of the population.

Among 59,015 individuals who were surveyed in KNHANES between 2009 and 2015, we selected 4,148 adolescents aged 12–18 years with available lipid profile data. Next, we obtained data for the mothers of these adolescents during the same survey period by matching household identification numbers. After the exclusion of 1,264 individuals with missing information about adolescent's or mother's baseline characteristics or clinical findings, 2,884 adolescents were eligible for the study (Figure 1). Use of the data from KNHANES was approved by the Institutional Review Board of the KCDC (2009-01CON-03-2C, 2010-02CON-21-C, 2011-02CON-06-C, 2012-01EXP-01-2C, 2013-07CON-03-4C, and 2013-

151 12EXP-03-5C). This survey has been available for use without approval since 2015.

Outcome variables and health behavioral factors

Both adolescent's and mother's lipid profiles consisted of total cholesterol (TC), TG, HDL-C, and LDL-C. Outcome variables in the study were adolescents' lipid levels. Mothers' lipid levels, which represent genetic linkage, were interesting variables. In order to examine their relationship, we adjusted various clinical and health behavioral factors of both adolescents and mothers. The level of LDL-C was calculated using the Friedewald equation. If the TG level was 400 mg/dL or more, measurement of LDL-C was performed by using the immunochemical method. Adolescents were divided into two age groups based on whether they were high school students. In terms of obesity, we divided the study subjects into two groups using an 85% cut-off of the body mass index (BMI) based on the age groups and sex for adolescents, and divided into three groups (<23, 23–24.9, ≥ 25 kg/m²) for mothers.^{18 19} The values of fasting glucose were also divided into two groups based on the level of impaired fasting glucose ($\geq 100 \text{ mg/dL}$). Degree of stress was divided into three groups based on individuals' perception. In addition, frequency of eating out, walking, and exercise per week were investigated for adolescent health behaviors.

 For mothers' variables, we used data regarding smoking and alcohol habits, degree of education and family income, economic activity, and frequency of eating out per week. Mother's dyslipidemia was defined based on TC level of 240 mg/dL or more, and included cases of individuals diagnosed or treated with dyslipidemia even if the TC level was normal.

174 Statistical methods

Lipid profiles were analyzed as continuous variables with mean and standard deviation (SD) in both adolescents and their mothers. We checked whether the continuous variables were normally distributed, and used a log scale depending on the results. Independent sample ttests or one-way analysis of variances (ANOVA) was used for categorical independent variables to analyze the relationship with adolescents' lipid levels. The correlation of lipid levels between adolescents and their mothers was analyzed using partial correlations (r) with 95% confidence interval (CI). The r values were interpreted as slight (>0–0.2), fair (>0.2– (0.4), moderate (>0.4–0.6), substantial (>0.6–0.8), and almost perfect (>0.8). Next, multiple linear regressions with parameter estimates (beta coefficients) and standard error (SE) were performed to identify an amount change in adolescents' lipid levels by each unit increase of their mothers' lipids. We used survey based statistical regression analyses, and the design effect relating survey sampling was calculated. The regression models included clinical characteristics and health behavioral factors of both adolescents and mothers. In order to find the most adequate model fits among 16 possible combinations between four adolescents' and their mothers' lipid profiles, we calculated adjusted R squared values, which represent the explanatory power of the model. In addition, the beta coefficients were also determined in the subgroups by sex and mother's characteristics (age group, BMI, degree of education, economic activity, and presence or absence of dyslipidemia) using multiple linear regression. Lastly, sensitivity test was done on 4,148 adolescents including 1,264 subjects who had inadequate baseline information or missing mothers' data to identify the baseline characteristics. All 2-sided P values < 0.05 were considered significant. Statistical analyses were performed using SAS version 9.4 (SAS Institute, Cary, NC, USA).

1 197

198 Patient and public involvement

199 This study is a population-based survey study. Patients and public were not involved.

2		
3 4	200	
5 6	201	RESULTS
7 8 9	202	Table 1 shows baseline characteristics and their associations with adolescent lipid levels, and
10 11	203	it appears that P values are in the log scale. The mean age of the study population was $14.7 \pm$
12 13	204	1.9 years (range, 12-18 years), and 52.8% of the adolescents were male. A total of 9.3% of
14 15 16	205	the individuals were overweight. The mean levels (ranges) of adolescents' lipids were 156.6
17 18	206	± 27.0 (82–350), 83.6 ± 46.4 (15–602), 50.4 ± 9.8 (22–96), and 89.4 ± 23.3 mg/dL (9–296),
19 20 21	207	respectively, for TC, TG, HDL-C, and LDL-C. HDL-C level was decreased in the older age
21 22 23	208	group (P=0.021). While TC, HDL-C, and LDL-C levels were significantly higher in female
24 25	209	adolescents than in their male counterparts, TG was not different by sex. Individuals with
26 27 28	210	increased BMI showed higher TC, TG, and LDL-C levels, and lower HDL-C levels
28 29 30	211	compared with those within the normal percentile range for BMI. The frequency of eating out
31 32	212	was inversely associated with TC level ($P=0.032$), while increased frequency of walking was
33 34 35	213	associated with decreased TC and LDL-C levels (P=0.006 and P=0.005, respectively). TG
36 37 38	214	level tends to increased in the adolescents whose mothers were obese (BMI ≥ 25 kg/m ²),
39 40	215	while the level of HDL-C was inversely associated with the mother's BMI and increasing
41 42	216	age. Other health behaviors of the mothers' did not show any significant associations with
43 44 45	217	their adolescents' lipid levels.
46 47	218	
48 49	219	Adolescent TC level demonstrated a fair positive correlation with mother's TC level (r,
50 51 52	220	0.271; 95% confidence interval (CI), 0.236–0.304) (Supplementary Figure S1). TG, HDL-C,
52 53 54	221	and LDL-C levels also had fair positive correlations between adolescents and their mothers,
55 56	222	yielding r (95% CI) = 0.204 (0.169–0.239), 0.289 (0.255–0.322), and 0.286 (0.252–0.319),
57		

demonstrated an almost perfect correlation between the TC and LDL-C levels (r, 0.915; 95% CI, 0.909–0.921; P<.001), and showed a significant negative correlation between HDL-C and TG (r, -0.329; 95% CI, -0.361–-0.296; P<.001). Meanwhile, the partial correlation coefficient (95% CI) for TC, TG, HLD-C, and LDL-C was 0.254 (0.206-0.301), 0.235 (0.186-0.282), 0.271 (0.224-0.317), and 0.267 (0.220-0.313) in males (n=1522), and it was 0.291 (0.241-0.339), 0.168 (0.116-0.220), 0.317 (0.268-0.364), and 0.309 (0.260-0.357) in females (n=1362). All P values were less than 0.001.

Based on the adjusted R squared values, the four most adequate regression models were selected (Supplementary Table S1). Table 2 displays the multiple linear regressions of the four adequate models. It appears that P values are in the log scale. The design effect from survey sampling was 1.01, 1.43, 1.07, and 1.07 in TC, TG, HDL-C, and LDL-C respectively. Adolescent TC increased by 0.23 mg/dL on average as their mothers' TC increased by 1 mg/dL (SE, 0.02, P<.001). The beta coefficients were 0.16 (SE, 0.01), 0.24 (SE, 0.02), and 0.24 (SE, 0.02), respectively, in each model of TG, HDL-C, and LDL-C (all P<.001). TC increased by 13.32 mg/dL in the female adolescents compared with their male counterparts; other lipid parameters were also higher in female adolescents compared with their male counterparts. BMI had a positive association with the levels of TC, TG, and LDL-C, while HDL-C was negatively associated with BMI. The frequency of eating out and walking tended to be inversely associated with TC and LDL-C. Exercise more than 3 days per week was associated with increased TC and LDL-C levels compared with no exercise. With regard to mother's variables, overall adolescents' lipid levels tended to decrease as their mothers' age increased, and other lipids apart from HDL-C tended to decrease when the mother's BMI increased. Increased mothers' alcohol consumption was also significantly associated with decreased adolescents' HDL-C. Mothers' education, working hours, frequency of eating out,

BMJ Open

249 and family income did not affect adolescent lipid levels.

Figure 2 represents the amount change in adolescents' lipid levels with each unit increase of mothers' lipids in the subgroups. In most subgroups, there were significant positive relationships between lipids in adolescents and mothers, with the exception of subgroups with relatively small sample sizes (Table 3). The beta coefficients of TC, HDL-C, and LDL-C were high in female adolescents compared with their male counterparts, whereas that of TG was higher in the male adolescents. When the lipid profiles were considered as binary outcomes, multivariate logistic regressions showed that adolescents' dyslipidemia was significantly associated with mothers' dyslipidemia (Supplementary Table S2). Finally, the sensitivity test on 4,148 adolescents showed comparable baseline characteristics with our study data (Supplementary Table S3).

DISCUSSIONS

There is significance in that our study analyzed linear relationships of TC, TG, HDL-C, and LDL-C, respectively, with an amount change of adolescents' lipid levels for each unit increase of their mothers' lipids. We adjusted for various health behavioral factors of adolescents and their mothers, as well as using a large national database. Moreover, we found that relationships between lipids of adolescents and their mothers were significant regardless of sex and mother characteristics.

 Atherosclerosis is triggered by childhood obesity associated with lipid abnormalities, rather than obesity itself.²⁰ The prevalence of dyslipidemia was 6.5% in Korea by the cut-off of National Cholesterol Education Program (NECP) and American Heart Association (AHA) guidelines.²¹ Meanwhile, the most frequent components among five MetS criteria in

274	adolescence were high TG (21.2%) and low HDL-C (13.6%). ²² When cut-off values of a
275	recent guideline were applied to our data, ²³ the percentages of abnormal TC (\geq 200 mg/dL),
276	TG (\geq 130 mg/dL), HDL-C (<40 mg/dL), and LDL-C (\geq 130 mg/dL) were 6.6%, 11.9%,
277	13.3%, and 5.0%, respectively. Atherogenic dyslipidemia, characterized by the combination
278	of high TG and small dense LDL-C, and low HDL-C, was a common form of dyslipidemia in
279	young individuals (aged, 2–18 years) and had a strong familial aggregation. ²⁴ Even taking
280	into consideration the argument that a higher cut-off level of TG ($\geq 150 \text{ mg/dL}$) is appropriate
281	for Korean adolescents, ²⁵ the rate of high TG observed in the present study was 7.7%. That is,
282	our data showed a more considerable proportion of abnormal TG and HDL-C in adolescents
283	compared to other lipid parameters. Thus, the present study provides further evidence that
284	dyslipidemia especially atherogenic dyslipidemia is a big problem in Korean adolescents,
285	with the concern that it leads to CVD during the remainder of the lifespan.
286	
287	It has been reported that dyslipidemia was associated with increased odds of dyslipidemia in
288	first-degree relatives (OR = 2.2). ²⁶ This familial clustering is in turn caused by both genetic
289	backgrounds and shared environmental factors within a family. A previous study found that
290	genes contribute more than environment to familial correlation of lipids and obesity. ¹⁵ In this

290 genes contribute more than environment to familial correlation of lipids and obesity.¹⁵ In this 291 regard, numerous genetic determinants regulating lipid concentrations has been 292 investigated.²⁷ In addition, an animal study demonstrated that maternal dyslipidemia affected 293 offspring's lipid levels by activation of endogenous cholesterol synthesis.²⁸ Whatever the 294 cause or, a family history must be a major risk factor for adolescent's dyslipidemia. 295 Meanwhile, even in the subgroup of mothers who had normal TC levels and had never been 296 diagnosed with dyslipidemia, the positive relationships in lipids between the adolescents and

Page 13 of 33

BMJ Open

their mothers were significant for all lipid parameters. These findings may reflect environmental impacts such as healthy diet, exercise habits, and efforts to improve lifestyles within families, rather than just a hereditary influence. Of course, there may also be an impact from other genetic factors such as diabetes or hypertension in first-degree relatives.²⁶ Interestingly, the beta coefficient was higher in adolescents with non-obese mothers compared to those with obese mothers. It is possible that the genetic background of non-obese dyslipidemic mothers affected the lipid levels of their offspring. However, the mean BMI of dyslipidemic mothers was higher than that of non-dyslipidemic mothers (24.7 kg/m² vs. 23.2 kg/m²). Moreover, the beta coefficient was also higher in adolescents with nondyslipidemic mothers than in those with dyslipidemic mothers. Thus, it is more likely that the mothers' perception regarding dyslipidemia influences the adolescents' lipid levels. Of course, this interpretation requires consideration of relationship between lipids and characteristics in mothers. Awareness of dyslipidemia was relatively low despite its higher prevalence worldwide.²⁹ A mother's perception of lipid levels could affect her children's lipids through efforts related to lifestyle and diet changes.³⁰ A recent Korean study highlighted education and counseling in order to change health behavior in addition to awareness of dyslipidemia.³¹ Our results from subgroup analyses support these previous studies and highlight the influence of the mother's perception of dyslipidemia and resultant lifestyle changes.

7 316

There is no doubt that lifestyle modification plays a central role in lipid control. Moreover, considering the high rates of abnormal TG and HDL-C and the restricted indications of lipidlowering agents in youth, lifestyle changes should play a larger role in adolescent patients. Our results showed that frequent walking was negatively associated with TC and LDL-C levels, which is predictable. Meanwhile, frequent eating out was associated with decreased

TC and LDL-C, a finding that conflicts with a general notion that eating out induces a high calorie intake or overeating. Eating out was defined as all foods except home-cooked dishes in this survey, then including school meals as well as dining out and delivery foods. Actually, the frequency of eating out showed a great discrepancy between adolescents and mothers in this study. Thus, school foods may compensate for negative effects of eating out by providing regular and well-balanced meals. The positive correlation between exercise and lipid levels, which is also an unexpected result, seems to be influenced by exercise intensity. Exercise frequency alone was not sufficient to explain the effect of exercise adequately; thus, the strength and duration of exercise should be considered. Our data regarding health behavioral factors should be more detailed and concrete. However, it is certain that health behavioral habits influence the lipid levels of adolescents, and therefore adolescents with dyslipidemia and their families should be encouraged to improve their lifestyles.

Cholesterol levels in children and adolescents are highly dependent on age and sex.³² Our data showed that the levels of TC, LDL-C, and HDL-C were higher in female adolescents that in males. In addition, the beta coefficients per unit increase of mother's TC, LDL-C, and HDL-C were also prominent in females. It is possible that mothers with female offspring are either more obese and dyslipidemic or otherwise. However, mother's mean BMI was similar between male and female adolescents (23.3 ± 3.2 and 23.5 ± 3.3 kg/m², respectively, *P*=0.161);

furthermore, the rate of mother's dyslipidemia showed no statistical difference between male
and female adolescents (10.8% vs. 9.8%, respectively, *P*=0.373). Thus, the difference of beta
coefficient by sex may be due to a distinct difference in lipid levels by sex. This is supported
by our result that the TG level was higher in male than in female adolescents and the beta
coefficient of TG was also higher in male adolescents.

BMJ Open

This study has several limitations. First, because it is a survey-based study, our data are vulnerable to recall bias. Second, as it is a cross-sectional design, there was no causal relationship. This factor will be particularly important in consideration of the impacts due to environmental factors. Further well-designed cohort studies are warranted. Third, individuals who responded to the national survey could have greater health concerns. They may have better health behavioral habits, or family members with chronic diseases. However, this survey was uniformly performed in all regions of Korea and targeted all age groups; thus, our data can be considered nationally representative samples. Fourth, the nutritional factors, which were not considered in the analyses because of insufficient information and large missing values, can be significant confounding factors. Further studies based on detailed surveys for health behavioral factors and nutritional elements are needed. Fifth, we did not evaluate the father's lipid levels. If the father's lipid levels had also been considered, the genetic backgrounds of lipids might be emphasized more. Sixth, various comorbidities such as hypothyroidism, Cushing's disease, liver disease, and nephrotic syndrome, among others, as well as long-term use of steroid can affect lipid level,³³ and these could be also confounding factors. However, these chronic diseases are extremely rare during the adolescent period, and thus could be negligible. Finally, the results of our study need to be evaluate with caution as they might be vulnerable to family-wise type I error due to the multiple test involved in our analysis. However, even considering this, the P values for the associations are sufficiently significant. Additionally, R-squared indicates just how well the model explains variability of the response data. Although we chose four models, which showed high R-squared, it does not mean accurate representation of goodness of fit for the models.

In conclusion, a mother's lipid levels were positively associated with her adolescents' lipid levels because of both genetic and environmental factors within the family. Adolescent dyslipidemia creates a large risk factor burden for cardiovascular diseases; therefore, timely screening for dyslipidemia is important, especially for indicated adolescents. Our positive correlation between lipids of adolescents and their mothers supports that the mother's lipid level is an appropriate reference for the screening of the adolescent's dyslipidemia. Acknowledgements The authors thank the participants for their cooperation and the staffs of KNHANES (https://knhanes.cdc.go.kr/knhanes/index.do) for their hard work. Contributors E.C.P and S.I.J designed the study. J.H.N. and J.S. analyzed and interpreted the data. J.H.N., J.K.L., and Y.J.L. drafted the manuscript. J.H.K. and K.T.H critically revised the manuscript. All authors read and approved the final version. **Funding** This work was not supported by any funding. **Competing interests** The authors declare no competing interest. Participant consent This nationwide survey is fully anonymized and does not require informed consent. **Ethics approval** This study was analyzed using KNHANES secondary data. Use of the data was approved by the Institutional Review Board of the KCDC. Availability of data and material All data analyzed during this study are available in the KCDC and KNHANES repository, [https://knhanes.cdc.go.kr/knhanes/sub03/sub03 01.do] REFERENCES 1. Berenson GS, Srinivasan SR, Bao W, et al. Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. The Bogalusa Heart Study. N Engl J Med 1998;338:1650-6.

Page 17 of 33

1 2 BMJ Open

3 4	396	2.	Cause-of-death statistics in the Republic of Korea, 2014. J Korean Med Assoc
5 6	397		2016;59:221-32.
7 8 9	398	3.	Urbina EM, Khoury PR, McCoy CE, et al. Triglyceride to HDL-C ratio and increased
10 11	399		arterial stiffness in children, adolescents, and young adults. Pediatrics
12 13	400		2013;131:e1082-90.
14 15 16	401	4.	McGill HC, Jr., McMahan CA, Zieske AW, et al. Associations of coronary heart
17 18	402		disease risk factors with the intermediate lesion of atherosclerosis in youth. The
19 20	403		Pathobiological Determinants of Atherosclerosis in Youth (PDAY) Research Group.
21 22	404		Arterioscler Thromb Vasc Biol 2000;20:1998-2004.
23 24 25	405	5.	Margolis KL, Greenspan LC, Trower NK, et al. Lipid screening in children and
26 27	406		adolescents in community practice: 2007 to 2010. Circ Cardiovasc Qual Outcomes
28 29	407		2014;7:718-26.
30 31 32	408	6.	Smetanina N, Albaviciute E, Babinska V, et al. Prevalence of overweight/obesity in
33 34	409		relation to dietary habits and lifestyle among 7-17 years old children and adolescents
35 36	410		in Lithuania. BMC Public Health 2015;15:1001.
37 38	411	7.	Korea Centers for Disease Control and Prevention. Korea Health Statistics 2014:
39 40 41	412		Korea National Health and Nutrition Examination Survey (KNHANES VI-2);
42 43	413		Ministry of Health and Welfare: Seoul, Korea. 2014.
44 45	414	8.	Ogden CL, Carroll MD, Curtin LR, et al. Prevalence of high body mass index in US
46 47 48	415		children and adolescents, 2007-2008. JAMA 2010;303:242-9.
49 50	416	9.	Ha KH, Kim DJ. Epidemiology of Childhood Obesity in Korea. Endocrinol Metab
51 52	417		(Seoul) 2016;31:510-8.
53 54 55	418	10.	Wang CJ, Li YQ, Wang L, et al. Development and evaluation of a simple and
55 56 57	419		effective prediction approach for identifying those at high risk of dyslipidemia in rural
58 59	420		adult residents. PLoS One 2012;7:e43834.
60			17

11. Danese A, Moffitt TE, Harrington H, et al. Adverse childhood experiences and adult risk factors for age-related disease: depression, inflammation, and clustering of metabolic risk markers. Arch Pediatr Adolesc Med 2009;163:1135-43. 12. Buitrago-Lopez A, van den Hooven EH, Rueda-Clausen CF, et al. Socioeconomic status is positively associated with measures of adiposity and insulin resistance, but inversely associated with dyslipidaemia in Colombian children. J Epidemiol Community Health 2015;69:580-7. Tarini BA, McInerney JD. Family history in primary care pediatrics. Pediatrics 13. 2013;132:S203-10. Kathiresan S, Manning AK, Demissie S, et al. A genome-wide association study for 14. blood lipid phenotypes in the Framingham Heart Study. BMC Med Genet 2007;8 Suppl 1:S17. Hunt SC, Hasstedt SJ, Kuida H, et al. Genetic heritability and common environmental 15. components of resting and stressed blood pressures, lipids, and body mass index in Utah pedigrees and twins. Am J Epidemiol 1989;129:625-38. Predazzi IM, Sobota RS, Sanna S, et al. Sex-Specific Parental Effects on Offspring 16. Lipid Levels. J Am Heart Assoc 2015;4:e001951. Kweon S, Kim Y, Jang MJ, et al. Data resource profile: the Korea National Health 17. and Nutrition Examination Survey (KNHANES). Int J Epidemiol 2014;43:69-77. 18. Park HW, Yoo HY, Kim CH, et al. Reference values of body composition indices: the Korean National Health and Nutrition Examination Surveys. Yonsei Med J 2015;56:95-102. 19. Jee SH, Sull JW, Park J, et al. Body-mass index and mortality in Korean men and women. N Engl J Med 2006;355:779-87. 20. D'Adamo E, Guardamagna O, Chiarelli F, et al. Atherogenic dyslipidemia and

Page 19 of 33

1

BMJ Open

2			
3 4	446		cardiovascular risk factors in obese children. Int J Endocrinol 2015;2015:912047.
5 6	447	21.	Lim JS. The current state of dyslipidemia in Korean children and adolescents and its
7 8	448		management in clinical practice. Ann Pediatr Endocrinol Metab 2013;18:1-8.
9 10 11	449	22.	Kim S, So WY. Prevalence of Metabolic Syndrome among Korean Adolescents
12 13	450		According to the National Cholesterol Education Program, Adult Treatment Panel III
14 15	451		and International Diabetes Federation. Nutrients 2016;8:558.
16 17 18	452	23.	Expert Panel on Integrated Guidelines for Cardiovascular H, Risk Reduction in C,
19 20	453		Adolescents, National Heart L, Blood I. Expert panel on integrated guidelines for
21 22	454		cardiovascular health and risk reduction in children and adolescents: summary report.
23 24 25	455		Pediatrics 2011;128 Suppl 5:S213-56.
25 26 27	456	24.	Montali A, Truglio G, Martino F, et al. Atherogenic dyslipidemia in children:
28 29	457		evaluation of clinical, biochemical and genetic aspects. PLoS One 2015;10:e0120099.
30 31	458	25.	Yoon JM. Dyslipidemia in children and adolescents: when and how to diagnose and
32 33 34	459		treat? Pediatr Gastroenterol Hepatol Nutr 2014;17:85-92.
35 36	460	26.	Khoury M, Manlhiot C, Gibson D, et al. Universal screening for cardiovascular
37 38	461		disease risk factors in adolescents to identify high-risk families: a population-based
39 40 41	462		cross-sectional study. BMC Pediatr 2016;16:11.
42 43	463	27.	Calandra S, Tarugi P, Speedy HE, et al. Mechanisms and genetic determinants
44 45	464		regulating sterol absorption, circulating LDL levels, and sterol elimination:
46 47	465		implications for classification and disease risk. J Lipid Res 2011;52:1885-926.
48 49 50	466	28.	Goharkhay N, Tamayo EH, Yin H, et al. Maternal hypercholesterolemia leads to
51 52	467		activation of endogenous cholesterol synthesis in the offspring. Am J Obstet Gynecol
53 54	468		2008;199:273 e271-6.
55 56 57	469	29.	Zhang FL, Xing YQ, Wu YH, et al. The prevalence, awareness, treatment, and control
58 59	470		of dyslipidemia in northeast China: a population-based cross-sectional survey. Lipids
60			19

2			
2 3 4	471		Health Dis 2017;16:61.
5 6	472	30.	Price JH, Casler SM. African-American mothers' perceptions of cholesterol and its
7 8 9	473		effects on their children. J Natl Med Assoc 1996;88:145-50.
10 11	474	31.	Cho IY, Park HY, Lee K, et al. Association Between the Awareness of Dyslipidemia
12 13	475		and Health Behavior for Control of Lipid Levels Among Korean Adults with
14 15	476		Dyslipidemia. Korean J Fam Med 2017;38:64-74.
16 17 18	477	32.	Skinner AC, Steiner MJ, Chung AE, et al. Cholesterol curves to identify population
19 20	478		norms by age and sex in healthy weight children. Clin Pediatr (Phila) 2012;51:233-7.
21 22	479	33.	Vodnala D, Rubenfire M, Brook RD. Secondary causes of dyslipidemia. Am J Cardiol
23 24 25	480		2012;110:823-5.
25 26 27	481		
28 29	482	FIFU	URE LEGENDS
30 31 32	483	Figur	e 1 Study flow showing sample selection. We selected 2,884 adolescents aged 12–18
33 34	484	whose	mothers' data were also available.
35 36	485	Figur	e 2 Bar graphs showing standardized beta coefficients of adolescent's lipids for each
37 38 39	486	unit i	ncrease of their mother's lipids in subgroups. HDL-C, high-density lipoprotein
40 41	487	choles	terol; LDL-C, low-density lipoprotein cholesterol; TC, total cholesterol; TG,
42 43	488	triglyc	eride.
44 45			
46			
47 48			
40 49			
50			
51 52			
52 53			
54 55			

BMJ Open

	No. (%)		TC TG						HDL-C		LDL-C				
		Mean	SD	P value [†]	Mean	SD	P value [†]	Mean	SD	P value [†]	Mean	SD	P value		
All (n=2884)		156.6	27.0		83.6	46.4		50.4	9.8		89.4	23.3			
Adolescent variables															
Age (years)				0.359			0.825			0.021			0.93		
12-14	1454 (50.4)	156.9	26.4		84.0	47.0		50.8	9.8		89.2	22.8			
15-18	1430 (49.6)	156.2	27.6		83.1	45.8		50.0	9.8		89.6	23.8			
Sex				<.001			0.729			<.001			<.00		
Male	1522 (52.8)	151.4	27.1		84.6	49.7		48.7	9.6		85.9	23.5			
Female	1362 (47.2)	162.3	25.9		82.4	42.3		52.4	9.7		93.4	22.5			
BMI*				0.016			<.001			<.001			<.00		
<85%	2617 (90.7)	156.1	26.6		81.0	44.6		51.1	9.7		88.9	22.9			
<u>≥85%</u>	267 (9.3)	160.7	30.7		109.1	55.5		44.2	8.0		94.6	26.3			
Glucose (mg/dl)				0.047			0.536			0.987			0.43		
≤100	2752 (95.4)	156.4	26.8		83.4	46.2		50.4	9.8		89.3	23.1			
>100	132 (4.6)	159.6	32.1		86.8	49.9		50.5	10.0		91.7	27.7			
Stress level	()			0.439			0.955			0.545			0.33		
Non	476 (16.5)	156.9	28.3		82.8	43.9		50.1	9.6		90.2	24.6			
Mild	1714 (59.4)	156.9	26.8		83.7	45.7		50.6	9.9		89.6	23.3			
Moderate	694 (24.1)	155.5	26.8		83.8	49.7		50.3	9.7		88.4	22.5			
Eating out/week	o) (-)	100.0	-0.0	0.032	02.0		0.368	00.0	2.7	0.471	00		0.11		
≥7	1121 (38.9)	154.8	26.3	0.052	81.0	40.4	0.500	50.1	9.7	0.171	88.4	22.9	0.110		
5-6	1676 (58.1)	157.5	27.4		85.1	50.0		50.6	9.8		89.9	23.6			
1-4	66 (2.3)	159.3	25.6		85.6	44.9		50.4	10.5		91.6	21.0			
<1	21 (0.7)	164.6	33.3		90.4	48.2		48.4	9.5		98.0	27.2			
Walking/week	21 (0.7)	101.0	55.5	0.006	20.1	10.2	0.955		2.5	0.542	20.0	27.2	0.00		
0-1 day	321 (11.1)	159.1	26.4	0.000	84.9	56.3	0.900	50.8	10.1	0.512	91.4	22.1	0.00.		
2-4 days	502 (17.4)	157.9	27.0		84.4	44.6		50.0	9.5		90.8	23.7			
5-6 days	760 (26.4)	157.9	28.6		83.8	47.6		50.8	9.9		90.4	24.3			
7 days	1301 (45.1)	154.6	26.2		82.8	43.6		50.2	9.8		87.8	22.7			
Exercise/week	1501 (15.1)	101.0	20.2	0.108	02.0	15.0	0.193	50.2	7.0	0.021	07.0	22.7	0.38		
Non	1846 (64.0)	157.3	26.8	0.100	84.4	47.0	0.175	50.8	10.0	0.021	89.5	22.8	0.50.		
1-2days	633 (22.0)	157.5	27.5		81.9	45.5		49.5	9.1		89.7	24.0			
≥3days	405 (14.0)	154.7	27.3		82.2	45.0		50.1	9.8		88.2	24.0			
Mother variables	403 (14.0)	1.54.7	27.4		02.2	45.0		50.1	9.0		00.2	24.3			
Age (years)				0.091			0.502			0.023			0.56		
30-39	505 (17.5)	157.7	25.8	0.071	85.5	46.7	0.302	51.2	9.7	0.025	89.3	21.9	0.50		
40-49	2154 (74.7)	157.7	23.8 27.4		83.3	46.7		50.4	9.7 9.9		89.5 89.6	21.9			
40-49 50-59		150.7			83.3 82.0	40.7		49.0	9.9 8.7			23.7			
	225 (7.8)	133.1	26.1	0.486	82.0	43.0	0.063	49.0	0./	<.001	87.6	22.1	0.47		
BMI (kg/m ²)				0.460			0.005			<.001			0.47		
					21										

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

<23	1430 (49.6)	156.6	26.4		82.2	42.9		51.1	9.7		89.0	22.3	
23-24.9	684 (23.7)	155.6	26.7		81.9	44.6		50.1	9.7		89.1	23.2	
≥25	770 (26.7)	157.4	28.5		87.6	53.4		49.5	10.0		90.5	25.1	
Smoking status				0.409			0.175			0.138			
Non	2648 (91.8)	156.4	27.1		83.4	46.8		50.5	9.8		89.2	23.3	
Ex-	89 (3.1)	159.2	26.1		82.1	41.1		49.8	9.5		92.8	22.7	
Current	147 (5.1)	158.3	27.3		87.8	40.7		48.9	9.6		91.7	23.9	
Drinking status				0.392			0.569			0.383			
Non	718 (24.9)	155.4	27.0		82.7	47.5		50.8	9.8		88.0	23.1	
$\leq 1/month$	1250 (43.3)	157.0	27.2		83.2	46.3		50.2	9.7		90.2	23.6	
$\geq 2/\text{month}$	916 (31.8)	156.8	26.9		84.8	45.6		50.4	9.9		89.4	23.0	
Education level	. ,			0.848			0.168			0.455			
Elementary	96 (3.3)	155.5	27.5		84.9	47.5		49.8	9.8		88.7	24.9	
Middle	177 (6.1)	157.1	28.5		84.5	46.0		49.9	8.8		90.3	24.6	
High	1624 (56.3)	157.0	27.6		85.2	48.6		50.3	9.9		89.6	23.9	
University	987 (34.2)	155.9	25.8		80.6	42.3		50.8	9.7		89.0	21.8	
Income (1,000\)				0.333			0.495			0.323			
<1,000	219 (7.6)	157.9	28.6		87.9	49.3		50.0	9.5		90.2	24.6	
1,000-1,999	696 (24.1)	154.7	24.7		84.2	50.9		49.9	9.5		88.0	21.3	
2,000-2,999	976 (33.8)	156.9	27.2		83.3	45.3		50.8	9.8		89.5	23.7	
≥3,000	993 (34.4)	157.3	28.1		82.4	43.4		50.6	10.1		90.2	23.9	
Working hours				0.936			0.873			0.643			
Non	1679 (58.2)	156.5	26.4		83.2	46.4		50.3	9.8		89.6	22.7	
Full-time	906 (31.4)	156.7	27.9		84.0	47.4		50.6	9.5		89.2	24.4	
Part time	299 (10.4)	156.3	27.9		84.3	42.9		50.3	10.5		89.0	23.2	
Eating out/week				0.443			0.630			0.369			
≥7	370 (12.8)	155.5	27.9		80.2	40.0		51.1	9.7		88.3	25.8	
5-6	615 (21.3)	157.1	28.5		83.5	43.4		50.0	9.7		90.4	24.1	
1-4	1278 (44.3)	156.0	26.5		83.5	46.8		50.4	10.0		88.9	22.5	
<1	621 (21.5)	157.7	26.1		85.7	51.6		50.5	9.5		90.1	22.6	

*Based on body mass index (kg/m²) for age percentiles in male and female [†]P values determined by log normal distributions

 BMI, body mass index; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; SD, standard deviation; TC, total cholesterol; TG, triglyceride.

Page 23 of 33

BMJ Open

		TC & 7	ТС			TG &	TG			HDL-C &	HDL-C		LDL-C &	LDL-C		
	β	S.B.	S.E.	P value [†]	β	S.B.	S.E.	P value [†]	β	S.B.	S.E.	P value [†]	β	S.B.	S.E.	va
Mother lipids (beta coefficient) Adolescent variables	0.229	0.268	0.015	<.001	0.161	0.215	0.020	<.001	0.240	0.294	0.016	<.001	0.236	0.284	0.016	<
Age (years)																
12-14	Ref				Ref				Ref				Ref			
15-18	-0.168	-0.003	1.071	0.671	-0.788	-0.009	1.970	0.515	-0.476	-0.024	0.388	0.213	0.539	0.012	0.920	(
Sex	0.100	0.000	1.071	0.071	0.700	0.009	1.770	0.010	0,0	0.02.	0.200	0.210	0.000	0.012	0.720	
Male	Ref				Ref				Ref				Ref			
Female	13.317	0.246	1.035	<.001	1.767	0.019	1.845	0.004	2.936	0.150	0.378	<.001	9.954	0.213	0.892	<
BMI (%)*																
<85	Ref				Ref				Ref				Ref			
≥ 85	10.931	0.117	1.950	<.001	29.963	0.187	3.575	<.001	-5.514	-0.163	0.563	<.001	10.299	0.128	1.642	<
Glucose (mg/dl)																
≤100	Ref				Ref				Ref				Ref			
>100	4.240	0.033	2.743	0.157	3.483	0.016	4.322	0.404	0.448	0.010	0.817	0.734	2.768	0.025	2.334	(
Stress level																
Non	Ref				Ref				Ref				Ref			
Mild	-0.117	-0.002	1.370	0.943	1.583	0.017	2.229	0.531	0.521	0.026	0.459	0.348	-0.979	-0.021	1.206	(
Moderate	-2.199	-0.035	1.561	0.162	1.739	0.016	2.731	0.730	0.103	0.005	0.533	0.893	-2.552	-0.047	1.349	(
Eating out/week																
≥ 7	Ref				Ref				Ref				Ref			
5-6	2.599	0.047	1.025	0.017	2.939	0.031	1.763	0.329	0.107	0.005	0.374	0.782	2.030	0.043	0.896	(
1-4	2.142	0.012	3.110	0.480	3.127	0.010	5.402	0.687	0.036	0.001	1.225	0.975	1.397	0.009	2.666	C
<1	8.908	0.028	6.882	0.255	6.660	0.012	9.111	0.360	-0.848	-0.007	1.800	0.673	8.283	0.030	5.553	C
Walking/week																
0-1 day	Ref	0.000	1 700	0.410	Ref	0.000	2 5 4 4	0.000	Ref	0.01.4	0.000	0.774	Ref	0.014	1 5 4 5	,
2-4 days	-1.422	-0.020	1.799	0.410	-0.919	-0.008	3.566	0.820	-0.371	-0.014	0.658	0.774	-0.864	-0.014	1.547	0
5-6 days	-1.349	-0.022	1.693	0.292	-1.070	-0.010	3.453	0.817	-0.092	-0.004	0.626	0.966	-1.119	-0.021	1.430	(
7 days	-3.466	-0.064	1.554	0.024	-2.035	-0.022	2.291	0.921	-0.021	-0.001	0.594	0.932	-3.143	-0.067	1.316	(
Exercise/week Non	Ref				Ref				Ref				Ref			
1-2days	1.528	0.023	1.210	0.208	-2.743	-0.024	2.074	0.132	-0.374	-0.016	0.416	0.501	2.361	0.042	1.034	(
\geq 3 days	2.992	0.023	1.210	0.208	-2.743	-0.024	2.544	0.132	0.939	0.033	0.410	0.061	3.018	0.042	1.305	(
∠ odays Mother variables	2.992	0.030	1.4/0	0.032	-5.400	-0.023	2.344	0.194	0.939	0.033	0.327	0.001	5.010	0.045	1.303	(
Age (years)																
30-39	Ref				Ref				Ref				Ref			
50-57	itel				Kel				Kel				Kel			
							23									

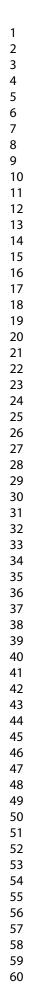
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page	24	of	33

40-49	-1.270	-0.020	1.302	0.272	-1.716	-0.016	2.364	0.364	-0.972	-0.043	0.478	0.031	0.046	0.001	1.106	0.9
50-59	-6.554	-0.065	2.165	0.003	-6.270	-0.036	3.780	0.149	-2.071	-0.057	0.725	0.009	-3.230	-0.037	1.868	0.
BMI (kg/m ²)																
<23	Ref				Ref				Ref				Ref			
23-24.9	-1.637	-0.026	1.159	0.141	-3.390	-0.031	2.034	0.015	0.175	0.008	0.425	0.749	-0.849	-0.016	0.994	0
≥25	-2.467	-0.040	1.221	0.024	-4.209	-0.040	2.297	0.002	0.612	0.028	0.448	0.261	-1.513	-0.029	1.073	0
Smoking status																
Non	Ref				Ref				Ref				Ref			
Ex-	1.855	0.015	2.321	0.372	-2.802	-0.013	3.551	0.996	-1.544	-0.035	0.825	0.080	4.246	0.040	1.944	0
Current	1.614	0.010	2.537	0.510	-3.711	-0.014	4.464	0.901	-1.431	-0.025	1.024	0.191	3.601	0.027	2.174	0
Drinking status																
Non	Ref				Ref				Ref				Ref			
$\leq 1/month$	0.056	0.001	1.306	0.934	2.098	0.021	2.282	0.438	-1.724	-0.082	0.469	<.001	1.168	0.023	1.112	0
$\geq 2/\text{month}$	-0.014	0.000	1.205	0.996	0.417	0.004	2.146	0.939	-0.928	-0.047	0.427	0.035	0.757	0.016	1.037	0
Education level																
Elementary	Ref				Ref				Ref				Ref			
Middle	1.689	0.015	3.314	0.652	1.770	0.009	5.778	0.588	-0.154	-0.004	1.245	0.925	1.228	0.013	2.898	0
High	-0.329	-0.006	2.822	0.936	1.296	0.014	5.062	0.629	-0.414	-0.021	1.106	0.778	-0.355	-0.008	2.505	0
University	-1.680	-0.029	2.911	0.638	-1.693	-0.017	5.212	0.860	-0.299	-0.015	1.037	0.895	-1.301	-0.026	2.565	0
Income (1,000\)																
<1,000	Ref				Ref				Ref				Ref			
1,000-1,999	-1.700	-0.027	2.010	0.521	-1.408	-0.013	3.858	0.592	-0.460	-0.020	0.727	0.561	-0.964	-0.018	1.710	0
2,000-2,999	0.419	0.007	1.976	0.748	-1.328	-0.014	3.682	0.775	0.105	0.005	0.715	0.934	0.485	0.010	1.685	0
≥3,000	0.821	0.014	2.030	0.658	-1.818	-0.019	3.697	0.793	0.076	0.004	0.729	0.996	0.994	0.020	1.726	0
Working hours																
Non	Ref				Ref				Ref				Ref			
Full-time	0.834	0.014	1.159	0.484	3.312	0.033	2.202	0.162	0.206	0.010	0.421	0.572	-0.150	-0.003	0.999	0
Part time	0.279	0.003	1.592	0.986	0.496	0.003	2.649	0.658	0.008	0.000	0.598	0.797	0.068	0.001	1.330	0
Eating out/week																
≥7	Ref				Ref				Ref				Ref			
5-6	1.637	0.025	1.754	0.381	3.492	0.031	2.735	0.309	-0.868	-0.036	0.605	0.122	1.868	0.033	1.583	0
1-4	0.539	0.010	1.615	0.686	3.111	0.033	2.646	0.555	-0.372	-0.019	0.572	0.472	0.374	0.008	1.463	0
	1.652	0.025	1.763	0.263	4.206	0.037	3.188	0.534	-0.119	-0.005	0.630	0.889	1.088	0.019	1.600	0

*Based on body mass index (kg/m²) for age percentiles in male and female

[†]P values determined by log normal distributions


 BMI, body mass index; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; SD, standard deviation; S.B., standardized beta; S.E., standard error; TC, total cholesterol; TG, triglyceride.

 BMJ Open

			TC & TC				TG a	& TG		ł	HDL-C &	k HDL-	l	LDL-C &	& LDL-0	2	
		β*	S.B.	S.E.	<i>P</i> value	β*	S.B.	S.E.	<i>P</i> value	β*	S.B.	S.E.	<i>P</i> value	β*	S.B.	S.E.	P valu
Sex																	-
Male	1522 (52.8)	0.221	0.258	0.021	<.001	0.199	0.245	0.021	<.001	0.215	0.273	0.020	<.001	0.228	0.274	0.021	<.00
Female	1362 (47.2)	0.244	0.299	1.510	<.001	0.122	0.181	0.020	<.001	0.271	0.331	0.022	<.001	0.250	0.312	0.021	<.00
Mother variables																	
Age (years)																	
30-39	505 (17.5)	0.228	0.274	0.036	<.001	0.150	0.186	0.040	<.001	0.224	0.278	0.038	<.001	0.247	0.315	0.035	<.00
40-49	2154 (74.7)	0.239	0.273	0.018	<.001	0.164	0.210	0.017	<.001	0.250	0.302	0.018	<.001	0.250	0.292	0.018	<.00
50-59	225 (7.8)	0.099	0.127	0.053	0.062	0.157	0.291	0.039	<.001	0.207	0.287	0.051	<.001	0.058	0.081	0.048	0.23
BMI (kg/m ²)																	
<25	2114 (73.3)	0.249	0.288	0.018	<.001	0.185	0.221	0.018	<.001	0.250	0.313	0.017	<.001	0.265	0.315	0.017	<.00
≥25	770 (26.7)	0.172	0.202	0.030	<.001	0.129	0.183	0.025	<.001	0.180	0.189	0.034	<.001	0.168	0.203	0.030	<.00
Education level																	
Elementary	96 (3.3)	0.154	0.185	0.111	0.171	0.212	0.287	0.105	0.047	0.056	0.064	0.110	0.616	0.136	0.185	0.098	0.17
Middle	177 (6.1)	0.222	0.240	0.073	0.003	0.241	0.055	0.379	<.001	0.133	0.187	0.060	0.028	0.279	0.316	0.065	<.00
High	1624 (56.3)	0.226	0.264	0.021	<.001	0.141	0.190	0.019	<.001	0.257	0.314	0.020	<.001	0.226	0.268	0.021	<.00
University	987 (34.2)	0.233	0.278	0.026	<.001	0.174	0.209	0.028	<.001	0.247	0.296	0.027	<.001	0.253	0.314	0.025	<.00
Dyslipidemia [†]																	
No	2587 (89.7)	0.259	0.257	0.019	<.001	0.190	0.232	0.017	<.001	0.255	0.305	0.016	<.001	0.263	0.273	0.018	<.00
Yes	297 (10.3)	0.121	0.182	0.040	0.003	0.096	0.189	0.032	0.003	0.151	0.222	0.045	0.001	0.137	0.224	0.035	<.00
Economic activity	× /																
No	1679 (58.2)	0.202	0.240	0.020	<.001	0.186	0.251	0.019	<.001	0.258	0.325	0.019	<.001	0.205	0.250	0.019	<.00
Yes	1205 (41.8)	0.267	0.308	0.024	<.001	0.121	0.159	0.024	<.001	0.214	0.251	0.025	<.001	0.280	0.332	0.023	<.0

[†]Included cases diagnosed and/or treated with dyslipidemia, and cases with cholesterol level above 240mg/dl.

BMI, body mass index; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; SD, standard deviation; S.B., standardized beta; S.E., standard error; TC, total cholesterol; TG, triglyceride.

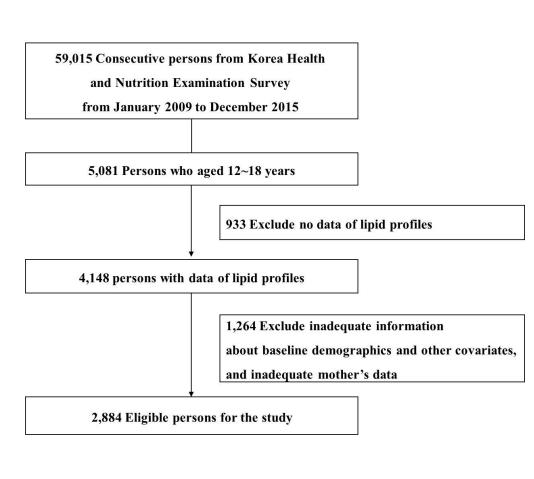


Figure 1 Study flow showing sample selection. We selected 2,884 adolescents aged 12–18 whose mothers' data were also available.

104x90mm (300 x 300 DPI)

0.4

0.3

0.2

0.1

0.0

0.4

0.3

0.2

0.1

0.0

lipoprotein cholesterol; TC, total cholesterol; TG, triglyceride.

124x90mm (300 x 300 DPI)

30-39

No

TC

∎ TG

■ TC

∎ TG

■HDL-C

LDL-C

■HDL-C

LDL-C

Sex

Mother BMI (kg/m²)

Female

≥25

Mother age

40-49

Mother dyslipidemia

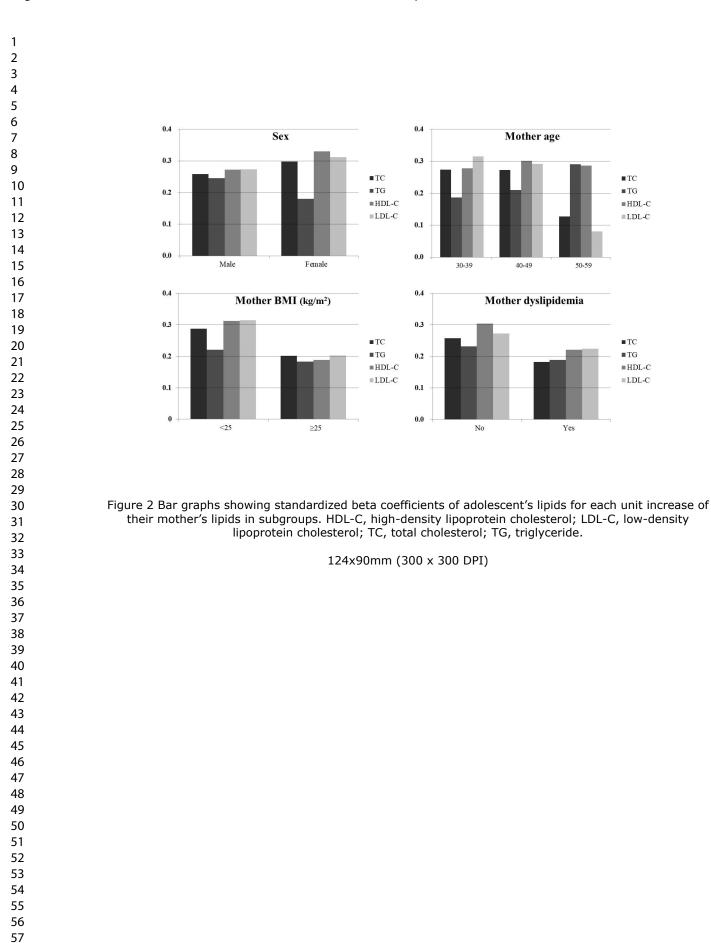
50-59

Yes

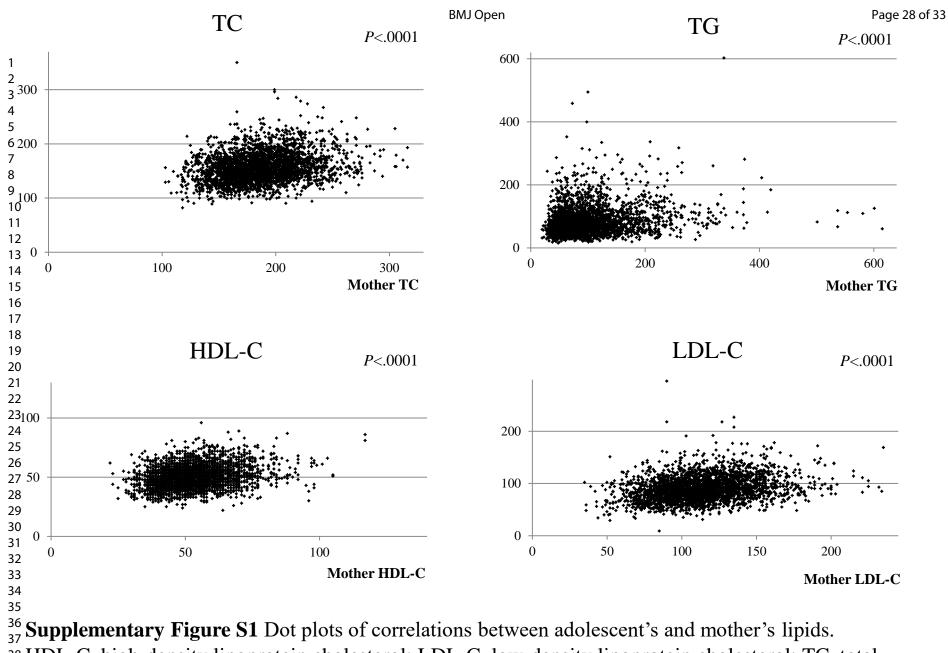
■ TC

∎ TG

■ TC


∎ TG

■HDL-C


■LDL-C

■HDL-C

LDL-C

58 59

³⁸ HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TC, total ³⁹ cholesterol; TG, triglyceride.

ر م	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39 40	
40	
41	
42	
43	
44	
45	
46	

47

Supplementary Table S1 Adjusted R squares for regression models of lipid profiles between adolescent and mother

TC TG HDL-C LDL- Mothers TG 0.1245 0.0296 0.0723 0.109 Mothers TG 0.0585 0.0692 0.0678 0.044 HDL-C 0.0592 0.0424 0.1400 0.044 LDL-C 0.1164 0.0288 0.0640 0.121 he other covariates were adjusted for these regressions. DL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TC, total cholesterol; C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TC, total cholesterol; C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TC, total cholesterol; C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol; TC, total cholesterol; C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TC, total cholesterol; LDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol; TC, total cholesterol; LDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol; TC, total cholesterol; LDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol; LDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; LDL-C, high-density lipoprotein cholest
TC 0.1245 0.0296 0.0723 0.109 Mothers TG 0.0585 0.0692 0.0678 0.044 HDL-C 0.0592 0.0424 0.1400 0.044 LDL-C 0.1164 0.0288 0.0640 0.121 he other covariates were adjusted for these regressions. 0.0288 0.0640 0.121
Mothers TG 0.0585 0.0692 0.0678 0.044 HDL-C 0.0592 0.0424 0.1400 0.044 LDL-C 0.1164 0.0288 0.0640 0.121 he other covariates were adjusted for these regressions. 0.0440 0.121
HDL-C 0.0592 0.0424 0.1400 0.044 LDL-C 0.1164 0.0288 0.0640 0.121 he other covariates were adjusted for these regressions. 0.0640 0.121
LDL-C 0.1164 0.0288 0.0640 0.121 he other covariates were adjusted for these regressions.
he other covariates were adjusted for these regressions.
DL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TC, total choles

		Adolescents'	OR	95% CI	P value	
	TG (mg/dl)	≤150	>150			
	≤150	2266 (84.9)	157 (73.0)	ref		
Mo	>150	403 (15.1)	58 (27.0)	2.15	1.52, 3.03	<.001
Mothers'	LDL-C (mg/dl)	≤150	>150			
rs'	≤150	2581 (90.8)	31 (72.1)	ref		
lipids	>150	260 (9.2)	12 (27.9)	3.42	1.68, 7.00	<.001
	HDL-C (mg/dl)	<40	≥40			
	<40	84 (22.0)	215 (8.6)	ref		
	≥40	298 (78.0)	2287 (91.4)	0.33	0.24, 0.44	<.001

Supplementary Table S2 Adjusted odds ratios for risks of adolescents' dyslipidemia based on mothers' lipids

The other covariates (baseline and clinical characteristics, health behavioral factors) were adjusted for these regressions

Cİ, confidence interval; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; OR, odds ratio; TG, triglyceride.

BMJ Open

Supplementary Table S3 Sensitivity test: Demographics and lipid profiles in 4,148 adolescents* age	ged 12-18 years
--	-----------------

	No. (%)		TC			TG			HDL-C	ŧ		LDL-C	§
		Mean	SD	P value [†]	Mean	SD	P value [†]	Mean	SD	P value [†]	Mean	SD	P value [†]
All (n=4148)		156.5	26.9		83.9	47.0		50.3	9.8		89.5	23.1	
Age (years)				0.252			0.459			0.013			0.996
12-14	1959 (47.2)	156.9	26.4		84.9	48.0		50.7	9.7		89.4	22.8	
15-18	2189 (52.8)	156.2	27.3		83.0	46.1		49.9	9.8		89.6	23.4	
Sex				<.001			0.313			<.001			<.001
Male	2215 (53.4)	151.4	26.8		84.5	50.1		48.6	9.4		86.0	23.1	
Female	1933 (46.6)	162.4	25.8		83.3	43.2		52.3	9.8		93.4	22.4	
BMI*				0.024			<.001			<.001			<.001
<85%	3733 (90.0)	156.0	26.5		81.1	44.9		51.0	9.7		88.8	22.7	
≥85%	415 (10.0)	160.9	30.3		108.8	57.1		44.1	7.9		95.0	26.0	
Glucose (mg/dl)				0.166			0.134			0.765			0.142
≤100	3935 (94.9)	156.3	26.6		83.5	46.7		50.3	9.7		89.3	22.8	
>100	213 (5.1)	160.0	32.5		90.4	52.7		50.2	10.2		92.8	27.9	

*Included 1264 adolescents who have no mothers' data or inadequate baseline information

[†]P values determined by log normal distributions

[‡]Included 42 missing data (n=4106)

[§]Included 43 missing data (n=4105)

BMI, body mass index; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; SD, standard deviation; TC, total cholesterol; TG, triglyceride.

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	#1, #2
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	#2, #3, #4
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	#5
Objectives	3	State specific objectives, including any prespecified hypotheses	#5, #6
Methods			
Study design	4	Present key elements of study design early in the paper	#6
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	#6, #7
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants	#6
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	#6, #7
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	#7
Bias	9	Describe any efforts to address potential sources of bias	#7, #8
Study size	10	Explain how the study size was arrived at	#6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	#7, #8
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	#7, #8
		(b) Describe any methods used to examine subgroups and interactions	#8
		(c) Explain how missing data were addressed	#6
		(d) If applicable, describe analytical methods taking account of sampling strategy	#8
		(e) Describe any sensitivity analyses	#8

STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of *cross-sectional studies*

 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility,	#6
		confirmed eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	#6
		(c) Consider use of a flow diagram	#6
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	#8, #9
		(b) Indicate number of participants with missing data for each variable of interest	#6
Outcome data	15*	Report numbers of outcome events or summary measures	#8
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence	#8, #9, #10
		interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	#7
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	#9, #10
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	#10, #11
Discussion			
Key results	18	Summarise key results with reference to study objectives	#11
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	#14, #15
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	#11, #12, #13, #14
Generalisability	21	Discuss the generalisability (external validity) of the study results	#11
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on	#15
		which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Associations between lipid profiles of adolescents and their mothers based on a nationwide health and nutrition survey in South Korea

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-024731.R3
Article Type:	Research
Date Submitted by the Author:	23-Jan-2019
Complete List of Authors:	Nam, Ji Hyung; Department of Internal Medicine, Dongguk University Ilsan Hospital, Dongguk University College of Medicine; Department of Medicine, Graduate School, Yonsei University Shin, Jaeyong ; Department of Preventive Medicine & Institute of Health Services Research, Yonsei University College of Medicine Jang, Sung-In; College of Medicine Yonsei University, Department of Preventive Medicine Kim, Ji Hyun ; Department of Pediatrics, Dongguk University Ilsan Hospital, Dongguk University College of Medicine Han, Kyu-Tae ; Division of Cancer Management Policy, National Cancer Center Lee, Jun Kyu ; Department of Internal Medicine, Dongguk University Ilsan Hospital, Dongguk University College of Medicine Lim, Yun Jeong ; Department of Internal Medicine, Dongguk University Ilsan Hospital, Dongguk University College of Medicine Lim, Yun Jeong ; Department of Internal Medicine, Dongguk University Ilsan Hospital, Dongguk University College of Medicine
Primary Subject Heading :	Public health
Secondary Subject Heading:	Paediatrics
Keywords:	Dyslipidemia, Cholesterol, Lipids, Adolescent, Mother

Page 1 of 33

1

BMJ Open

2 3 4	1	Associations between lipid profiles of adolescents and their mothers based
5 6 7	2	on a nationwide health and nutrition survey in South Korea
8 9	3	
10 11 12	4	Ji Hyung Nam, ^{1,2} Jaeyong Shin, ³ Sung-In Jang, ³ Ji Hyun Kim, ⁴ Kyu-Tae Han, ⁵ Jun Kyu Lee, ¹
13 14	5	Yun Jeong Lim, ¹ Eun-Cheol Park ³
15 16	6	
17 18 19	7	¹ Department of Internal Medicine, Dongguk University Ilsan Hospital, Dongguk University
20 21	8	College of Medicine, Goyang, Republic of Korea
22 23	9	² Department of Medicine, Graduate School, Yonsei University, Seoul, Republic of Korea
24 25 26	10	³ Department of Preventive Medicine & Institute of Health Services Research, Yonsei
20 27 28	11	University College of Medicine, Seoul, Republic of Korea
29 30	12	⁴ Department of Pediatrics, Dongguk University Ilsan Hospital, Dongguk University College
31 32	13	of Medicine, Goyang, Republic of Korea
33 34 35	14	⁵ Division of Cancer Management Policy, National Cancer Center, Goyang, Republic of
36 37	15	Korea
38 39	16	
40 41 42	17	Correspondence to
43 44	18	Eun-Cheol Park, MD, PhD
45 46	19	Department of Preventive Medicine & Institute of Health Services Research
47 48 49	20	Yonsei University College of Medicine
50 51	21	50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
52 53	22	Phone number: 82-2-2228-1862 / Fax number: 82-2-392-8133
54 55	23	E-mail: <u>ecpark@yuhs.ac</u>
56 57 58	24	
58 59 60	25	
50		1

26 ABSTRACT

Objectives Dyslipidemia is a metabolic disease influenced by environmental and genetic factors. Especially family history related to the genetic backgrounds is a strong risk factor of lipid abnormality. The aim of this study is to evaluate the association between the lipid profiles of adolescents and their mothers.

Design A cross-sectional study.

Setting The data were derived from the Korea National Health and Nutrition Examination
Survey (KNHANES IV-VI) between 2009 and 2015.

Participants 2,884 adolescents aged 12-18 years and their mothers were included.

Primary outcome measures Outcome variables were adolescents' lipid levels. Mothers' lipid levels were interesting variables. The lipid profiles included total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C). We identified partial correlation coefficients (*r*) between the lipids. Multiple linear regressions were performed to identify an amount change in adolescents' lipid levels by each unit increase of their mothers' lipids. The regression models included various clinical characteristics and health behavioral factors of both adolescents and mothers.

Results The mean levels of adolescents' lipids were 156.6, 83.6, 50.4, and 89.4 mg/dL, respectively for TC, TG, HDL-C, and LDL-C. Positive correlations between lipid levels of adolescents and mothers were observed for TC, TG, HDL-C, and LDL-C (r, 95% confidence interval = 0.271, 0.236-0.304; 0.204, 0.169-0.239; 0.289, 0.255-0.322; and 0.286, 0.252-0.322; 0.289, 0.252-0.322; 0.289, 0.280, 00.319). Adolescent TC level was increased by 0.23 mg/dL for each unit increase of their mother's TC (standard error (SE), 0.02; $P \le .001$). The β coefficients were 0.16 (SE, 0.01), 0.24 (SE, 0.02), and 0.24 (SE, 0.02), respectively, in each model of TG, HDL-C, and LDL-C (all P < .001). The linear relationships were significant regardless of sex and mother characteristics.

1 2		
3 4	51	Conclusions Mothers' lipid levels are associated with adolescents' lipids, therefore, it can
5 6	52	serve as a reference for the screening of adolescent's dyslipidemia.
7 8 9	53	Keywords: Dyslipidemia, Cholesterol, Lipids, Adolescent, Mother.
9 10 11	54	
12 13	55	
14 15 16	56	
10 17 18	57	
19 20	58	
21 22 23	59	
23 24 25	60	
26 27	61	
28 29 30	62	
30 31 32	63	
33 34	64	
35 36 27	65	
37 38 39	66	
40 41	67	
42 43 44	68	
44 45 46	69	
47 48	70	
49 50	71	
51 52 53	72	
54 55	73	
56 57	74	
58 59 60	75	
00		3

2 3	76	Strengths and limitations of this study
4 5 6	77	► This study analyzed linear relationships of lipid profiles between adolescents and their
7 8	78	mothers using a large national database.
9 10 11	79	►We used survey based statistical analyses based on the design effect related to survey
12 13	80	sampling.
14 15	81	► Various health behavioral factors of adolescents and mothers were adjusted.
16 17 18	82	► There is no causal relationship as this was a cross-sectional study.
19 20	83	► The study did not provide any information on nutritional factors which could be significant
21 22 23	84	confounders.
24 25	85	
26 27 28	86	
28 29 30	87	
31 32	88	
33 34 35	89	
36 37	90	
38 39	91	
40 41 42	92	
43 44	93	
45 46 47	94 95	
48 49	95	
50 51 52	97	
53 54	98	
55 56 57	99	
57 58 59	100	
60		4

INTRODUCTION

Dyslipidemia is a well-known risk factor for cardiovascular disease (CVD) in individuals of all ages.¹ In Korea, CVD is the second-leading cause of death after cancer.² Triglyceride (TG) and high-density lipoprotein cholesterol (HDL-C) are major components of metabolic syndrome (MetS). Likewise, the TG to HDL-C ratio, a predictor for small dense low-density lipoprotein cholesterol (LDL-C), is an independent determinant of arterial stiffness in adolescents and young adult,³ which can subsequently accelerate atherosclerosis and increase cardiovascular events in the second decade of life.⁴ Meanwhile, lipid level is strongly linked to the body mass index (BMI), which is one of the reliable indicators for obesity in adolescents.⁵ Pediatric obesity is affected by various family settings such as eating habits, lifestyle, and education.⁶ The prevalence of pediatric obesity in South Korea has been increased rapidly from 5.8% in 1997 to 11.5% in 201,⁷ which is close to the 13.3% in the United States.⁸ This has increased interest in obesity-related disorders in adolescence, such as metabolic, cardiovascular, or psychosocial complication.⁹ Obesity and dyslipidemia is no longer the problem of adults alone, therefore, adequate screening and control of dyslipidemia in adolescence has become important in South Korea.

In addition to obesity, various factors such as physical activity, economic status, education level, nutritional and dietary factors, sleep duration, and psychiatric problems, among others, have been associated with lipid concentration.¹⁰⁻¹² Meanwhile, family histories usually provide important information regarding pediatric diseases.¹³ Regarding the highly heritable traits of dyslipidemia, several studies showed that there was a close relationship in the lipid concentration between parents and their offspring.¹⁴⁻¹⁶ This familial clustering implies that there may be common denominators including health behavioral factors within a family as well as genetic backgrounds. In the present study, we investigated clinical and health

behavioral factors affecting adolescents' lipid levels, and evaluated the association betweenthe lipid profiles of adolescents and their mothers.

129 METHODS

130 Data source

This is a cross-sectional study using a secondary data of the Korea National Health and Nutrition Examination Survey (KNHANES). KNHANES is an ongoing surveillance system conducted by Korea Centers for Disease Control and Prevention (KCDC) since 1998 that assesses health and nutrition status, and monitors health risk factors and the prevalence of chronic diseases.¹⁷ A special survey team visits four regions every week (192 regions per year) and conducts a health examination, health interview, and nutrition survey. This survey includes a representative sample of the population selected using a stratified, multi-stage, and clustered sampling method. Sampling units are district, survey area, and household. Stratification variables are city/province, district, and housing type. The sample is weighted to reflect sampling rate, response rate, and population demographics in order to estimate health consciousness, health behavior, and nutritional status on behalf of the population.

Among 59,015 individuals who were surveyed in KNHANES between 2009 and 2015, we selected 4,148 adolescents aged 12–18 years with available lipid profile data. Next, we obtained data for the mothers of these adolescents during the same survey period by matching household identification numbers. After the exclusion of 1,264 individuals with missing information about adolescent's or mother's baseline characteristics or clinical findings, 2,884 adolescents were eligible for the study (Figure 1). Use of the data from KNHANES was approved by the Institutional Review Board of the KCDC (2009-01CON-03-2C, 2010-02CON-21-C, 2011-02CON-06-C, 2012-01EXP-01-2C, 2013-07CON-03-4C, and 2013-

151 12EXP-03-5C). This survey has been available for use without approval since 2015.

Outcome variables and health behavioral factors

Both adolescent's and mother's lipid profiles consisted of total cholesterol (TC), TG, HDL-C, and LDL-C. Outcome variables in the study were adolescents' lipid levels. Mothers' lipid levels, which represent genetic linkage, were interesting variables. In order to examine their relationship, we adjusted various clinical and health behavioral factors of both adolescents and mothers. The level of LDL-C was calculated using the Friedewald equation. If the TG level was 400 mg/dL or more, measurement of LDL-C was performed by using the immunochemical method. Adolescents were divided into two age groups based on whether they were high school students. In terms of obesity, we divided the study subjects into two groups using an 85% cut-off of the body mass index (BMI) based on the age groups and sex for adolescents, and divided into three groups (<23, 23–24.9, ≥ 25 kg/m²) for mothers.^{18 19} The values of fasting glucose were also divided into two groups based on the level of impaired fasting glucose ($\geq 100 \text{ mg/dL}$). Degree of stress was divided into three groups based on individuals' perception. In addition, frequency of eating out, walking, and exercise per week were investigated for adolescent health behaviors.

 For mothers' variables, we used data regarding smoking and alcohol habits, degree of education and family income, economic activity, and frequency of eating out per week. Mother's dyslipidemia was defined based on TC level of 240 mg/dL or more, and included cases of individuals diagnosed or treated with dyslipidemia even if the TC level was normal.

174 Statistical methods

Lipid profiles were analyzed as continuous variables with mean and standard deviation (SD) in both adolescents and their mothers. We checked whether the continuous variables were normally distributed, and used a log scale depending on the results. Independent sample ttests or one-way analysis of variances (ANOVA) was used for categorical independent variables to analyze the relationship with adolescents' lipid levels. The correlation of lipid levels between adolescents and their mothers was analyzed using partial correlations (r) with 95% confidence interval (CI). The r values were interpreted as slight (>0–0.2), fair (>0.2– (0.4), moderate (>0.4–0.6), substantial (>0.6–0.8), and almost perfect (>0.8). Next, multiple linear regressions with parameter estimates (beta coefficients) and standard error (SE) were performed to identify an amount change in adolescents' lipid levels by each unit increase of their mothers' lipids. We used survey based statistical regression analyses, and the design effect relating survey sampling was calculated. The regression models included clinical characteristics and health behavioral factors of both adolescents and mothers. In order to find the most adequate model fits among 16 possible combinations between four adolescents' and their mothers' lipid profiles, we calculated adjusted R squared values, which represent the explanatory power of the model. In addition, the beta coefficients were also determined in the subgroups by sex and mother's characteristics (age group, BMI, degree of education, economic activity, and presence or absence of dyslipidemia) using multiple linear regression. Lastly, sensitivity test was done on 4,148 adolescents including 1,264 subjects who had inadequate baseline information or missing mothers' data to identify the baseline characteristics. All 2-sided P values < 0.05 were considered significant. Statistical analyses were performed using SAS version 9.4 (SAS Institute, Cary, NC, USA).

1 197

198 Patient and public involvement

199 This study is a population-based survey study. Patients and public were not involved.

2		
3 4	200	
5 6 7	201	RESULTS
7 8 9	202	Table 1 shows baseline characteristics and their associations with adolescent lipid levels, and
10 11	203	P values were calculated considering log transformed outcome values. The mean age of the
12 13 14	204	study population was 14.7 ± 1.9 years (range, 12–18 years), and 52.8% of the adolescents
15 16	205	were male. A total of 9.3% of the individuals were overweight. The mean levels (ranges) of
17 18	206	adolescents' lipids were 156.6 \pm 27.0 (82–350), 83.6 \pm 46.4 (15–602), 50.4 \pm 9.8 (22–96),
19 20 21	207	and 89.4 ± 23.3 mg/dL (9–296), respectively, for TC, TG, HDL-C, and LDL-C. HDL-C level
21 22 23	208	was decreased in the older age group (P=0.021). While TC, HDL-C, and LDL-C levels were
24 25	209	significantly higher in female adolescents than in their male counterparts, TG was not
26 27	210	different by sex. Individuals with increased BMI showed higher TC, TG, and LDL-C levels,
28 29 30	211	and lower HDL-C levels compared with those within the normal percentile range for BMI.
31 32	212	The frequency of eating out was inversely associated with TC level (P=0.032), while
33 34	213	increased frequency of walking was associated with decreased TC and LDL-C levels
35 36 37	214	(P =0.006 and P =0.005, respectively). TG level tends to increased in the adolescents whose
38 39 40	215	mothers were obese (BMI ≥ 25 kg/m ²), while the level of HDL-C was inversely associated
41 42	216	with the mother's BMI and increasing age. Other health behaviors of the mothers' did not
43 44 45	217	show any significant associations with their adolescents' lipid levels.
46 47	218	
48 49	219	Adolescent TC level demonstrated a fair positive correlation with mother's TC level (r,
50 51 52	220	0.271; 95% confidence interval (CI), 0.236-0.304) (Supplementary Figure S1). TG, HDL-C,
53 54	221	and LDL-C levels also had fair positive correlations between adolescents and their mothers,
55 56 57	222	yielding r (95% CI) = 0.204 (0.169–0.239), 0.289 (0.255–0.322), and 0.286 (0.252–0.319),

respectively. For reference, the correlations among the four adolescent lipid profiles

demonstrated an almost perfect correlation between the TC and LDL-C levels (r, 0.915; 95% CI, 0.909–0.921; P<.001), and showed a significant negative correlation between HDL-C and TG (r, -0.329; 95% CI, -0.361–-0.296; P<.001). Meanwhile, the partial correlation coefficient (95% CI) for TC, TG, HLD-C, and LDL-C was 0.254 (0.206-0.301), 0.235 (0.186-0.282), 0.271 (0.224-0.317), and 0.267 (0.220-0.313) in males (n=1522), and it was 0.291 (0.241-0.339), 0.168 (0.116-0.220), 0.317 (0.268-0.364), and 0.309 (0.260-0.357) in females (n=1362). All P values were less than 0.001.

Based on the adjusted R squared values, the four most adequate regression models were selected (Supplementary Table S1). Table 2 displays the multiple linear regressions of the four adequate models. It appears that P values are in the log scale. The design effect from survey sampling was 1.01, 1.43, 1.07, and 1.07 in TC, TG, HDL-C, and LDL-C respectively. Adolescent TC increased by 0.23 mg/dL on average as their mothers' TC increased by 1 mg/dL (SE, 0.02, P<.001). The beta coefficients were 0.16 (SE, 0.01), 0.24 (SE, 0.02), and 0.24 (SE, 0.02), respectively, in each model of TG, HDL-C, and LDL-C (all P<.001). TC increased by 13.32 mg/dL in the female adolescents compared with their male counterparts; other lipid parameters were also higher in female adolescents compared with their male counterparts. BMI had a positive association with the levels of TC, TG, and LDL-C, while HDL-C was negatively associated with BMI. The frequency of eating out and walking tended to be inversely associated with TC and LDL-C. Exercise more than 3 days per week was associated with increased TC and LDL-C levels compared with no exercise. With regard to mother's variables, overall adolescents' lipid levels tended to decrease as their mothers' age increased, and other lipids apart from HDL-C tended to decrease when the mother's BMI increased. Increased mothers' alcohol consumption was also significantly associated with decreased adolescents' HDL-C. Mothers' education, working hours, frequency of eating out,

BMJ Open

249 and family income did not affect adolescent lipid levels.

Figure 2 represents the amount change in adolescents' lipid levels with each unit increase of mothers' lipids in the subgroups. In most subgroups, there were significant positive relationships between lipids in adolescents and mothers, with the exception of subgroups with relatively small sample sizes (Table 3). The beta coefficients of TC, HDL-C, and LDL-C were high in female adolescents compared with their male counterparts, whereas that of TG was higher in the male adolescents. When the lipid profiles were considered as binary outcomes, multivariate logistic regressions showed that adolescents' dyslipidemia was significantly associated with mothers' dyslipidemia (Supplementary Table S2). Finally, the sensitivity test on 4,148 adolescents showed comparable baseline characteristics with our study data (Supplementary Table S3).

DISCUSSIONS

There is significance in that our study analyzed linear relationships of TC, TG, HDL-C, and LDL-C, respectively, with an amount change of adolescents' lipid levels for each unit increase of their mothers' lipids. We adjusted for various health behavioral factors of adolescents and their mothers, as well as using a large national database. Moreover, we found that relationships between lipids of adolescents and their mothers were significant regardless of sex and mother characteristics.

 Atherosclerosis is triggered by childhood obesity associated with lipid abnormalities, rather than obesity itself.²⁰ The prevalence of dyslipidemia was 6.5% in Korea by the cut-off of National Cholesterol Education Program (NECP) and American Heart Association (AHA) guidelines.²¹ Meanwhile, the most frequent components among five MetS criteria in

274	adolescence were high TG (21.2%) and low HDL-C (13.6%). ²² When cut-off values of a
275	recent guideline were applied to our data, ²³ the percentages of abnormal TC (\geq 200 mg/dL),
276	TG (\geq 130 mg/dL), HDL-C (<40 mg/dL), and LDL-C (\geq 130 mg/dL) were 6.6%, 11.9%,
277	13.3%, and 5.0%, respectively. Atherogenic dyslipidemia, characterized by the combination
278	of high TG and small dense LDL-C, and low HDL-C, was a common form of dyslipidemia in
279	young individuals (aged, 2–18 years) and had a strong familial aggregation. ²⁴ Even taking
280	into consideration the argument that a higher cut-off level of TG ($\geq 150 \text{ mg/dL}$) is appropriate
281	for Korean adolescents, ²⁵ the rate of high TG observed in the present study was 7.7%. That is,
282	our data showed a more considerable proportion of abnormal TG and HDL-C in adolescents
283	compared to other lipid parameters. Thus, the present study provides further evidence that
284	dyslipidemia especially atherogenic dyslipidemia is a big problem in Korean adolescents,
285	with the concern that it leads to CVD during the remainder of the lifespan.
286	
287	It has been reported that dyslipidemia was associated with increased odds of dyslipidemia in
288	first-degree relatives (OR = 2.2). ²⁶ This familial clustering is in turn caused by both genetic
289	backgrounds and shared environmental factors within a family. A previous study found that
290	genes contribute more than environment to familial correlation of lipids and obesity. ¹⁵ In this

290 genes contribute more than environment to familial correlation of lipids and obesity.¹⁵ In this 291 regard, numerous genetic determinants regulating lipid concentrations has been 292 investigated.²⁷ In addition, an animal study demonstrated that maternal dyslipidemia affected 293 offspring's lipid levels by activation of endogenous cholesterol synthesis.²⁸ Whatever the 294 cause or, a family history must be a major risk factor for adolescent's dyslipidemia. 295 Meanwhile, even in the subgroup of mothers who had normal TC levels and had never been 296 diagnosed with dyslipidemia, the positive relationships in lipids between the adolescents and

Page 13 of 33

BMJ Open

their mothers were significant for all lipid parameters. These findings may reflect environmental impacts such as healthy diet, exercise habits, and efforts to improve lifestyles within families, rather than just a hereditary influence. Of course, there may also be an impact from other genetic factors such as diabetes or hypertension in first-degree relatives.²⁶ Interestingly, the beta coefficient was higher in adolescents with non-obese mothers compared to those with obese mothers. It is possible that the genetic background of non-obese dyslipidemic mothers affected the lipid levels of their offspring. However, the mean BMI of dyslipidemic mothers was higher than that of non-dyslipidemic mothers (24.7 kg/m² vs. 23.2 kg/m²). Moreover, the beta coefficient was also higher in adolescents with nondyslipidemic mothers than in those with dyslipidemic mothers. Thus, it is more likely that the mothers' perception regarding dyslipidemia influences the adolescents' lipid levels. Of course, this interpretation requires consideration of relationship between lipids and characteristics in mothers. Awareness of dyslipidemia was relatively low despite its higher prevalence worldwide.²⁹ A mother's perception of lipid levels could affect her children's lipids through efforts related to lifestyle and diet changes.³⁰ A recent Korean study highlighted education and counseling in order to change health behavior in addition to awareness of dyslipidemia.³¹ Our results from subgroup analyses support these previous studies and highlight the influence of the mother's perception of dyslipidemia and resultant lifestyle changes.

7 316

There is no doubt that lifestyle modification plays a central role in lipid control. Moreover, considering the high rates of abnormal TG and HDL-C and the restricted indications of lipidlowering agents in youth, lifestyle changes should play a larger role in adolescent patients. Our results showed that frequent walking was negatively associated with TC and LDL-C levels, which is predictable. Meanwhile, frequent eating out was associated with decreased

TC and LDL-C, a finding that conflicts with a general notion that eating out induces a high calorie intake or overeating. Eating out was defined as all foods except home-cooked dishes in this survey, then including school meals as well as dining out and delivery foods. Actually, the frequency of eating out showed a great discrepancy between adolescents and mothers in this study. Thus, school foods may compensate for negative effects of eating out by providing regular and well-balanced meals. The positive correlation between exercise and lipid levels, which is also an unexpected result, seems to be influenced by exercise intensity. Exercise frequency alone was not sufficient to explain the effect of exercise adequately; thus, the strength and duration of exercise should be considered. Our data regarding health behavioral factors should be more detailed and concrete. However, it is certain that health behavioral habits influence the lipid levels of adolescents, and therefore adolescents with dyslipidemia and their families should be encouraged to improve their lifestyles.

Cholesterol levels in children and adolescents are highly dependent on age and sex.³² Our data showed that the levels of TC, LDL-C, and HDL-C were higher in female adolescents that in males. In addition, the beta coefficients per unit increase of mother's TC, LDL-C, and HDL-C were also prominent in females. It is possible that mothers with female offspring are either more obese and dyslipidemic or otherwise. However, mother's mean BMI was similar between male and female adolescents (23.3 ± 3.2 and 23.5 ± 3.3 kg/m², respectively, *P*=0.161);

furthermore, the rate of mother's dyslipidemia showed no statistical difference between male
and female adolescents (10.8% vs. 9.8%, respectively, *P*=0.373). Thus, the difference of beta
coefficient by sex may be due to a distinct difference in lipid levels by sex. This is supported
by our result that the TG level was higher in male than in female adolescents and the beta
coefficient of TG was also higher in male adolescents.

BMJ Open

This study has several limitations. First, because it is a survey-based study, our data are vulnerable to recall bias. Second, as it is a cross-sectional design, there was no causal relationship. This factor will be particularly important in consideration of the impacts due to environmental factors. Further well-designed cohort studies are warranted. Third, individuals who responded to the national survey could have greater health concerns. They may have better health behavioral habits, or family members with chronic diseases. However, this survey was uniformly performed in all regions of Korea and targeted all age groups; thus, our data can be considered nationally representative samples. Fourth, the nutritional factors, which were not considered in the analyses because of insufficient information and large missing values, can be significant confounding factors. Further studies based on detailed surveys for health behavioral factors and nutritional elements are needed. Fifth, we did not evaluate the father's lipid levels. If the father's lipid levels had also been considered, the genetic backgrounds of lipids might be emphasized more. Sixth, various comorbidities such as hypothyroidism, Cushing's disease, liver disease, and nephrotic syndrome, among others, as well as long-term use of steroid can affect lipid level,³³ and these could be also confounding factors. However, these chronic diseases are extremely rare during the adolescent period, and thus could be negligible. Finally, the results of our study need to be evaluate with caution as they might be vulnerable to family-wise type I error due to the multiple test involved in our analysis. However, even considering this, the P values for the associations are sufficiently significant. Additionally, R-squared indicates just how well the model explains variability of the response data. Although we chose four models, which showed high R-squared, it does not mean accurate representation of goodness of fit for the models.

In conclusion, a mother's lipid levels were positively associated with her adolescents' lipid levels because of both genetic and environmental factors within the family. Adolescent dyslipidemia creates a large risk factor burden for cardiovascular diseases; therefore, timely screening for dyslipidemia is important, especially for indicated adolescents. Our positive correlation between lipids of adolescents and their mothers supports that the mother's lipid level is an appropriate reference for the screening of the adolescent's dyslipidemia. Acknowledgements The authors thank the participants for their cooperation and the staffs of KNHANES (https://knhanes.cdc.go.kr/knhanes/index.do) for their hard work. Contributors E.C.P. and S.I.J. designed the study. J.H.N. and J.S. analyzed and interpreted the data. J.H.N., J.K.L., and Y.J.L. drafted the manuscript. J.H.K. and K.T.H. critically revised the manuscript. All authors read and approved the final version. **Funding** This work was not supported by any funding. **Competing interests** The authors declare no competing interest. Participant consent This nationwide survey is fully anonymized and does not require informed consent. **Ethics approval** This study was analyzed using KNHANES secondary data. Use of the data was approved by the Institutional Review Board of the KCDC. Availability of data and material All data analyzed during this study are available in the KCDC and KNHANES repository, [https://knhanes.cdc.go.kr/knhanes/sub03/sub03 01.do] REFERENCES 1. Berenson GS, Srinivasan SR, Bao W, et al. Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. The Bogalusa Heart Study. N Engl J Med 1998;338:1650-6.

Page 17 of 33

1 2 BMJ Open

3 4	396	2.	Cause-of-death statistics in the Republic of Korea, 2014. J Korean Med Assoc
5 6	397		2016;59:221-32.
7 8 9	398	3.	Urbina EM, Khoury PR, McCoy CE, et al. Triglyceride to HDL-C ratio and increased
10 11	399		arterial stiffness in children, adolescents, and young adults. Pediatrics
12 13	400		2013;131:e1082-90.
14 15 16	401	4.	McGill HC, Jr., McMahan CA, Zieske AW, et al. Associations of coronary heart
17 18	402		disease risk factors with the intermediate lesion of atherosclerosis in youth. The
19 20	403		Pathobiological Determinants of Atherosclerosis in Youth (PDAY) Research Group.
21 22	404		Arterioscler Thromb Vasc Biol 2000;20:1998-2004.
23 24 25	405	5.	Margolis KL, Greenspan LC, Trower NK, et al. Lipid screening in children and
26 27	406		adolescents in community practice: 2007 to 2010. Circ Cardiovasc Qual Outcomes
28 29	407		2014;7:718-26.
30 31 32	408	6.	Smetanina N, Albaviciute E, Babinska V, et al. Prevalence of overweight/obesity in
33 34	409		relation to dietary habits and lifestyle among 7-17 years old children and adolescents
35 36	410		in Lithuania. BMC Public Health 2015;15:1001.
37 38	411	7.	Korea Centers for Disease Control and Prevention. Korea Health Statistics 2014:
39 40 41	412		Korea National Health and Nutrition Examination Survey (KNHANES VI-2);
42 43	413		Ministry of Health and Welfare: Seoul, Korea. 2014.
44 45	414	8.	Ogden CL, Carroll MD, Curtin LR, et al. Prevalence of high body mass index in US
46 47 48	415		children and adolescents, 2007-2008. JAMA 2010;303:242-9.
49 50	416	9.	Ha KH, Kim DJ. Epidemiology of Childhood Obesity in Korea. Endocrinol Metab
51 52	417		(Seoul) 2016;31:510-8.
53 54 55	418	10.	Wang CJ, Li YQ, Wang L, et al. Development and evaluation of a simple and
55 56 57	419		effective prediction approach for identifying those at high risk of dyslipidemia in rural
58 59	420		adult residents. PLoS One 2012;7:e43834.
60			17

11. Danese A, Moffitt TE, Harrington H, et al. Adverse childhood experiences and adult risk factors for age-related disease: depression, inflammation, and clustering of metabolic risk markers. Arch Pediatr Adolesc Med 2009;163:1135-43. 12. Buitrago-Lopez A, van den Hooven EH, Rueda-Clausen CF, et al. Socioeconomic status is positively associated with measures of adiposity and insulin resistance, but inversely associated with dyslipidaemia in Colombian children. J Epidemiol Community Health 2015;69:580-7. Tarini BA, McInerney JD. Family history in primary care pediatrics. Pediatrics 13. 2013;132:S203-10. Kathiresan S, Manning AK, Demissie S, et al. A genome-wide association study for 14. blood lipid phenotypes in the Framingham Heart Study. BMC Med Genet 2007;8 Suppl 1:S17. Hunt SC, Hasstedt SJ, Kuida H, et al. Genetic heritability and common environmental 15. components of resting and stressed blood pressures, lipids, and body mass index in Utah pedigrees and twins. Am J Epidemiol 1989;129:625-38. Predazzi IM, Sobota RS, Sanna S, et al. Sex-Specific Parental Effects on Offspring 16. Lipid Levels. J Am Heart Assoc 2015;4:e001951. Kweon S, Kim Y, Jang MJ, et al. Data resource profile: the Korea National Health 17. and Nutrition Examination Survey (KNHANES). Int J Epidemiol 2014;43:69-77. 18. Park HW, Yoo HY, Kim CH, et al. Reference values of body composition indices: the Korean National Health and Nutrition Examination Surveys. Yonsei Med J 2015;56:95-102. 19. Jee SH, Sull JW, Park J, et al. Body-mass index and mortality in Korean men and women. N Engl J Med 2006;355:779-87. 20. D'Adamo E, Guardamagna O, Chiarelli F, et al. Atherogenic dyslipidemia and

Page 19 of 33

1

BMJ Open

2			
3 4	446		cardiovascular risk factors in obese children. Int J Endocrinol 2015;2015:912047.
5 6	447	21.	Lim JS. The current state of dyslipidemia in Korean children and adolescents and its
7 8	448		management in clinical practice. Ann Pediatr Endocrinol Metab 2013;18:1-8.
9 10 11	449	22.	Kim S, So WY. Prevalence of Metabolic Syndrome among Korean Adolescents
12 13	450		According to the National Cholesterol Education Program, Adult Treatment Panel III
14 15	451		and International Diabetes Federation. Nutrients 2016;8:558.
16 17 18	452	23.	Expert Panel on Integrated Guidelines for Cardiovascular H, Risk Reduction in C,
19 20	453		Adolescents, National Heart L, Blood I. Expert panel on integrated guidelines for
21 22	454		cardiovascular health and risk reduction in children and adolescents: summary report.
23 24 25	455		Pediatrics 2011;128 Suppl 5:S213-56.
25 26 27	456	24.	Montali A, Truglio G, Martino F, et al. Atherogenic dyslipidemia in children:
28 29	457		evaluation of clinical, biochemical and genetic aspects. PLoS One 2015;10:e0120099.
30 31	458	25.	Yoon JM. Dyslipidemia in children and adolescents: when and how to diagnose and
32 33 34	459		treat? Pediatr Gastroenterol Hepatol Nutr 2014;17:85-92.
35 36	460	26.	Khoury M, Manlhiot C, Gibson D, et al. Universal screening for cardiovascular
37 38	461		disease risk factors in adolescents to identify high-risk families: a population-based
39 40 41	462		cross-sectional study. BMC Pediatr 2016;16:11.
42 43	463	27.	Calandra S, Tarugi P, Speedy HE, et al. Mechanisms and genetic determinants
44 45	464		regulating sterol absorption, circulating LDL levels, and sterol elimination:
46 47	465		implications for classification and disease risk. J Lipid Res 2011;52:1885-926.
48 49 50	466	28.	Goharkhay N, Tamayo EH, Yin H, et al. Maternal hypercholesterolemia leads to
51 52	467		activation of endogenous cholesterol synthesis in the offspring. Am J Obstet Gynecol
53 54	468		2008;199:273 e271-6.
55 56 57	469	29.	Zhang FL, Xing YQ, Wu YH, et al. The prevalence, awareness, treatment, and control
58 59	470		of dyslipidemia in northeast China: a population-based cross-sectional survey. Lipids
60			19

2			
2 3 4	471		Health Dis 2017;16:61.
5 6	472	30.	Price JH, Casler SM. African-American mothers' perceptions of cholesterol and its
7 8 9	473		effects on their children. J Natl Med Assoc 1996;88:145-50.
10 11	474	31.	Cho IY, Park HY, Lee K, et al. Association Between the Awareness of Dyslipidemia
12 13	475		and Health Behavior for Control of Lipid Levels Among Korean Adults with
14 15	476		Dyslipidemia. Korean J Fam Med 2017;38:64-74.
16 17 18	477	32.	Skinner AC, Steiner MJ, Chung AE, et al. Cholesterol curves to identify population
19 20	478		norms by age and sex in healthy weight children. Clin Pediatr (Phila) 2012;51:233-7.
21 22	479	33.	Vodnala D, Rubenfire M, Brook RD. Secondary causes of dyslipidemia. Am J Cardiol
23 24 25	480		2012;110:823-5.
25 26 27	481		
28 29	482	FIFU	URE LEGENDS
30 31 32	483	Figur	e 1 Study flow showing sample selection. We selected 2,884 adolescents aged 12–18
33 34	484	whose	mothers' data were also available.
35 36	485	Figur	e 2 Bar graphs showing standardized beta coefficients of adolescent's lipids for each
37 38 39	486	unit i	ncrease of their mother's lipids in subgroups. HDL-C, high-density lipoprotein
40 41	487	choles	terol; LDL-C, low-density lipoprotein cholesterol; TC, total cholesterol; TG,
42 43	488	triglyc	eride.
44 45			
46			
47 48			
40 49			
50			
51 52			
52 53			
54 55			

BMJ Open

	No. (%)							HDL-C		LDL-C			
		Mean	SD	P value [†]	Mean	SD	P value [†]	Mean	SD	P value [†]	Mean	SD	P value
All (n=2884)		156.6	27.0		83.6	46.4		50.4	9.8		89.4	23.3	
Adolescent variables													
Age (years)				0.359			0.825			0.021			0.93
12-14	1454 (50.4)	156.9	26.4		84.0	47.0		50.8	9.8		89.2	22.8	
15-18	1430 (49.6)	156.2	27.6		83.1	45.8		50.0	9.8		89.6	23.8	
Sex				<.001			0.729			<.001			<.00
Male	1522 (52.8)	151.4	27.1		84.6	49.7		48.7	9.6		85.9	23.5	
Female	1362 (47.2)	162.3	25.9		82.4	42.3		52.4	9.7		93.4	22.5	
BMI*				0.016			<.001			<.001			<.00
<85%	2617 (90.7)	156.1	26.6		81.0	44.6		51.1	9.7		88.9	22.9	
<u>≥85%</u>	267 (9.3)	160.7	30.7		109.1	55.5		44.2	8.0		94.6	26.3	
Glucose (mg/dl)				0.047			0.536			0.987			0.43
≤100	2752 (95.4)	156.4	26.8		83.4	46.2		50.4	9.8		89.3	23.1	
>100	132 (4.6)	159.6	32.1		86.8	49.9		50.5	10.0		91.7	27.7	
Stress level	()			0.439			0.955			0.545			0.33
Non	476 (16.5)	156.9	28.3		82.8	43.9		50.1	9.6		90.2	24.6	
Mild	1714 (59.4)	156.9	26.8		83.7	45.7		50.6	9.9		89.6	23.3	
Moderate	694 (24.1)	155.5	26.8		83.8	49.7		50.3	9.7		88.4	22.5	
Eating out/week	o) (-)	100.0	-0.0	0.032	02.0		0.368	00.0	2.7	0.471	00		0.11
≥7	1121 (38.9)	154.8	26.3	0.052	81.0	40.4	0.500	50.1	9.7	0.171	88.4	22.9	0.110
5-6	1676 (58.1)	157.5	27.4		85.1	50.0		50.6	9.8		89.9	23.6	
1-4	66 (2.3)	159.3	25.6		85.6	44.9		50.4	10.5		91.6	21.0	
<1	21 (0.7)	164.6	33.3		90.4	48.2		48.4	9.5		98.0	27.2	
Walking/week	21 (0.7)	101.0	55.5	0.006	20.1	10.2	0.955		2.5	0.542	20.0	27.2	0.00
0-1 day	321 (11.1)	159.1	26.4	0.000	84.9	56.3	0.900	50.8	10.1	0.512	91.4	22.1	0.00.
2-4 days	502 (17.4)	157.9	27.0		84.4	44.6		50.0	9.5		90.8	23.7	
5-6 days	760 (26.4)	157.9	28.6		83.8	47.6		50.8	9.9		90.4	24.3	
7 days	1301 (45.1)	154.6	26.2		82.8	43.6		50.2	9.8		87.8	22.7	
Exercise/week	1501 (15.1)	101.0	20.2	0.108	02.0	15.0	0.193	50.2	7.0	0.021	07.0	22.7	0.38
Non	1846 (64.0)	157.3	26.8	0.100	84.4	47.0	0.175	50.8	10.0	0.021	89.5	22.8	0.50.
1-2days	633 (22.0)	157.5	27.5		81.9	45.5		49.5	9.1		89.7	24.0	
≥3days	405 (14.0)	154.7	27.3		82.2	45.0		50.1	9.8		88.2	24.0	
Mother variables	403 (14.0)	1.54.7	27.4		02.2	45.0		50.1	9.0		00.2	24.3	
Age (years)				0.091			0.502			0.023			0.56
30-39	505 (17.5)	157.7	25.8	0.071	85.5	46.7	0.302	51.2	9.7	0.025	89.3	21.9	0.50
40-49	2154 (74.7)	157.7	23.8 27.4		83.3	46.7		50.4	9.7 9.9		89.5 89.6	21.9	
40-49 50-59		150.7			83.3 82.0	40.7		49.0	9.9 8.7			23.7	
	225 (7.8)	133.1	26.1	0.486	82.0	43.0	0.063	49.0	0./	<.001	87.6	22.1	0.47
BMI (kg/m ²)				0.460			0.005			<.001			0.47
					21								

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

5-6 1-4	615 (21.3) 1278 (44.3)	157.1 156.0	28.5 26.5		83.5 83.5	43.4 46.8		50.0 50.4	9.7 10.0		90.4 88.9	24.1 22.5
≥7	370 (12.8)	155.5	27.9		80.2	40.0		51.1	9.7		88.3	25.8
Eating out/week				0.443			0.630			0.369		
Part time	299 (10.4)	156.3	27.9		84.3	42.9		50.3	10.5		89.0	23.2
Full-time	906 (31.4)	156.7	27.9		84.0	47.4		50.6	9.5		89.2	24.4
Non	1679 (58.2)	156.5	26.4		83.2	46.4		50.3	9.8		89.6	22.7
Working hours	····)			0.936			0.873	0		0.643		
≥3,000	993 (34.4)	157.3	28.1		82.4	43.4		50.6	10.1		90.2	23.9
2,000-2,999	976 (33.8)	156.9	27.2		83.3	45.3		50.8	9.8		89.5	23.7
1,000-1,999	696 (24.1)	154.7	24.7		84.2	50.9		49.9	9.5		88.0	21.3
<1,000	219 (7.6)	157.9	28.6	0.555	87.9	49.3	0.170	50.0	9.5	0.525	90.2	24.6
Income (1,000\)	<i>y</i> 07 (<i>3</i> 1.2)	155.9	23.0	0.333	00.0	12.5	0.495	50.0	2.1	0.323	07.0	21.0
University	987 (34.2)	155.9	25.8		80.6	42.3		50.8	9.7		89.0	21.8
High	1624 (56.3)	157.0	20.5		85.2	48.6		50.3	9.9		89.6	23.9
Middle	177 (6.1)	155.5	27.5		84.5	46.0		49.9	8.8		90.3	24.9
Elementary	96 (3.3)	155.5	27.5	0.040	84.9	47.5	0.108	49.8	9.8	0.455	88.7	24.9
Education level	916 (31.8)	156.8	20.9	0.848	04.0	45.6	0.168	50.4	9.9	0.455	09.4	25.0
$\leq 1/\text{month}$ $\geq 2/\text{month}$	1250 (43.3)	157.0	27.2 26.9		83.2 84.8			50.2 50.4	9.7 9.9		90.2 89.4	23.0 23.0
Non	718 (24.9)	155.4	27.0		82.7 83.2	47.5 46.3		50.8	9.8 9.7		88.0	23.1 23.6
Drinking status	719 (24.0)	155 4	27.0	0.392	02.7	175	0.569	50.9	0.0	0.383	00.0	22.1
Current	147 (5.1)	158.3	27.3	0.202	87.8	40.7	0.5(0	48.9	9.6	0.202	91.7	23.9
Ex-	89 (3.1)	159.2	26.1		82.1	41.1		49.8	9.5		92.8	22.7
Non	2648 (91.8)	156.4	27.1		83.4	46.8		50.5	9.8		89.2	23.3
Smoking status				0.409			0.175			0.138		
≥25	770 (26.7)	157.4	28.5		87.6	53.4		49.5	10.0		90.5	25.1
23-24.9	684 (23.7)	155.6	26.7		81.9	44.6		50.1	9.7		89.1	23.2
<23	1430 (49.6)	156.6	26.4		82.2	42.9		51.1	9.7		89.0	22.3

*Based on body mass index (kg/m²) for age percentiles in male and female. *P values were calculated considering log transformed outcome values.

 BMI, body mass index; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; SD, standard deviation; TC, total cholesterol; TG, triglyceride.

Page 23 of 33

BMJ Open

		TC & 7	TC			TG &	TG			HDL-C &	HDL-C			LDL-C &	LDL-C	
	β	S.B.	S.E.	P value [†]	β	S.B.	S.E.	P value [†]	β	S.B.	S.E.	P value [†]	β	S.B.	S.E.	va
Mother lipids (beta coefficient) Adolescent variables	0.229	0.268	0.015	<.001	0.161	0.215	0.020	<.001	0.240	0.294	0.016	<.001	0.236	0.284	0.016	<
Age (years)																
12-14	Ref				Ref				Ref				Ref			
15-18	-0.168	-0.003	1.071	0.671	-0.788	-0.009	1.970	0.515	-0.476	-0.024	0.388	0.213	0.539	0.012	0.920	(
Sex	0.100	0.000	1.071	0.071	0.700	0.009	1.770	0.010	0,0	0.02.	0.200	0.210	0.000	0.012	0.720	
Male	Ref				Ref				Ref				Ref			
Female	13.317	0.246	1.035	<.001	1.767	0.019	1.845	0.004	2.936	0.150	0.378	<.001	9.954	0.213	0.892	<
BMI (%)*																
<85	Ref				Ref				Ref				Ref			
≥ 85	10.931	0.117	1.950	<.001	29.963	0.187	3.575	<.001	-5.514	-0.163	0.563	<.001	10.299	0.128	1.642	<
Glucose (mg/dl)																
≤100	Ref				Ref				Ref				Ref			
>100	4.240	0.033	2.743	0.157	3.483	0.016	4.322	0.404	0.448	0.010	0.817	0.734	2.768	0.025	2.334	(
Stress level																
Non	Ref				Ref				Ref				Ref			
Mild	-0.117	-0.002	1.370	0.943	1.583	0.017	2.229	0.531	0.521	0.026	0.459	0.348	-0.979	-0.021	1.206	(
Moderate	-2.199	-0.035	1.561	0.162	1.739	0.016	2.731	0.730	0.103	0.005	0.533	0.893	-2.552	-0.047	1.349	(
Eating out/week																
≥ 7	Ref				Ref				Ref				Ref			
5-6	2.599	0.047	1.025	0.017	2.939	0.031	1.763	0.329	0.107	0.005	0.374	0.782	2.030	0.043	0.896	(
1-4	2.142	0.012	3.110	0.480	3.127	0.010	5.402	0.687	0.036	0.001	1.225	0.975	1.397	0.009	2.666	C
<1	8.908	0.028	6.882	0.255	6.660	0.012	9.111	0.360	-0.848	-0.007	1.800	0.673	8.283	0.030	5.553	C
Walking/week																
0-1 day	Ref	0.000	1 700	0.410	Ref	0.000	2 5 4 4	0.000	Ref	0.01.4	0.000	0.774	Ref	0.014	1 5 4 5	,
2-4 days	-1.422	-0.020	1.799	0.410	-0.919	-0.008	3.566	0.820	-0.371	-0.014	0.658	0.774	-0.864	-0.014	1.547	0
5-6 days	-1.349	-0.022	1.693	0.292	-1.070	-0.010	3.453	0.817	-0.092	-0.004	0.626	0.966	-1.119	-0.021	1.430	(
7 days	-3.466	-0.064	1.554	0.024	-2.035	-0.022	2.291	0.921	-0.021	-0.001	0.594	0.932	-3.143	-0.067	1.316	(
Exercise/week Non	Ref				Ref				Ref				Ref			
1-2days	1.528	0.023	1.210	0.208	-2.743	-0.024	2.074	0.132	-0.374	-0.016	0.416	0.501	2.361	0.042	1.034	(
\geq 3 days	2.992	0.023	1.210	0.208	-2.743	-0.024	2.544	0.132	0.939	0.033	0.410	0.061	3.018	0.042	1.305	(
<i>≥</i> sdays Mother variables	2.992	0.030	1.4/0	0.032	-5.400	-0.023	2.344	0.194	0.939	0.033	0.327	0.001	5.010	0.045	1.303	(
Age (years)																
30-39	Ref				Ref				Ref				Ref			
50-57	itel				Kel				Kel				Kel			
							23									

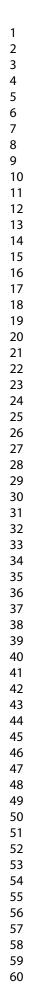
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page	24	of	33

40-49	-1.270	-0.020	1.302	0.272	-1.716	-0.016	2.364	0.364	-0.972	-0.043	0.478	0.031	0.046	0.001	1.106	0.
50-59	-6.554	-0.065	2.165	0.003	-6.270	-0.036	3.780	0.149	-2.071	-0.057	0.725	0.009	-3.230	-0.037	1.868	0.
BMI (kg/m ²)																
<23	Ref				Ref				Ref				Ref			
23-24.9	-1.637	-0.026	1.159	0.141	-3.390	-0.031	2.034	0.015	0.175	0.008	0.425	0.749	-0.849	-0.016	0.994	0
≥25	-2.467	-0.040	1.221	0.024	-4.209	-0.040	2.297	0.002	0.612	0.028	0.448	0.261	-1.513	-0.029	1.073	0
Smoking status																
Non	Ref				Ref				Ref				Ref			
Ex-	1.855	0.015	2.321	0.372	-2.802	-0.013	3.551	0.996	-1.544	-0.035	0.825	0.080	4.246	0.040	1.944	0
Current	1.614	0.010	2.537	0.510	-3.711	-0.014	4.464	0.901	-1.431	-0.025	1.024	0.191	3.601	0.027	2.174	0
Drinking status																
Non	Ref				Ref				Ref				Ref			
$\leq 1/month$	0.056	0.001	1.306	0.934	2.098	0.021	2.282	0.438	-1.724	-0.082	0.469	<.001	1.168	0.023	1.112	0
$\geq 2/\text{month}$	-0.014	0.000	1.205	0.996	0.417	0.004	2.146	0.939	-0.928	-0.047	0.427	0.035	0.757	0.016	1.037	0
Education level																
Elementary	Ref				Ref				Ref				Ref			
Middle	1.689	0.015	3.314	0.652	1.770	0.009	5.778	0.588	-0.154	-0.004	1.245	0.925	1.228	0.013	2.898	0
High	-0.329	-0.006	2.822	0.936	1.296	0.014	5.062	0.629	-0.414	-0.021	1.106	0.778	-0.355	-0.008	2.505	0
University	-1.680	-0.029	2.911	0.638	-1.693	-0.017	5.212	0.860	-0.299	-0.015	1.037	0.895	-1.301	-0.026	2.565	0
Income (1,000\)																
<1,000	Ref				Ref				Ref				Ref			
1,000-1,999	-1.700	-0.027	2.010	0.521	-1.408	-0.013	3.858	0.592	-0.460	-0.020	0.727	0.561	-0.964	-0.018	1.710	0
2,000-2,999	0.419	0.007	1.976	0.748	-1.328	-0.014	3.682	0.775	0.105	0.005	0.715	0.934	0.485	0.010	1.685	0
≥3,000	0.821	0.014	2.030	0.658	-1.818	-0.019	3.697	0.793	0.076	0.004	0.729	0.996	0.994	0.020	1.726	0
Working hours																
Non	Ref				Ref				Ref				Ref			
Full-time	0.834	0.014	1.159	0.484	3.312	0.033	2.202	0.162	0.206	0.010	0.421	0.572	-0.150	-0.003	0.999	0
Part time	0.279	0.003	1.592	0.986	0.496	0.003	2.649	0.658	0.008	0.000	0.598	0.797	0.068	0.001	1.330	0
Eating out/week																
≥7	Ref				Ref				Ref				Ref			
5-6	1.637	0.025	1.754	0.381	3.492	0.031	2.735	0.309	-0.868	-0.036	0.605	0.122	1.868	0.033	1.583	0
1-4	0.539	0.010	1.615	0.686	3.111	0.033	2.646	0.555	-0.372	-0.019	0.572	0.472	0.374	0.008	1.463	0
		0.025	1.763	0.263	4.206	0.037	3.188	0.534	-0.119	-0.005	0.630	0.889	1.088	0.019	1.600	0

*Based on body mass index (kg/m²) for age percentiles in male and female.

[†]P values were calculated considering log transformed outcome values.


 BMI, body mass index; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; SD, standard deviation; S.B., standardized beta; S.E., standard error; TC, total cholesterol; TG, triglyceride.

 BMJ Open

			TC & TC				TG &	& TG		ł	HDL-C &	ά HDL-	LDL-C & LDL-C				
		β*	S.B.	S.E.	<i>P</i> value	β*	S.B.	S.E.	<i>P</i> value	β*	S.B.	S.E.	<i>P</i> value	β*	S.B.	S.E.	P valu
Sex																	-
Male	1522 (52.8)	0.221	0.258	0.021	<.001	0.199	0.245	0.021	<.001	0.215	0.273	0.020	<.001	0.228	0.274	0.021	<.00
Female	1362 (47.2)	0.244	0.299	1.510	<.001	0.122	0.181	0.020	<.001	0.271	0.331	0.022	<.001	0.250	0.312	0.021	<.00
Mother variables																	
Age (years)																	
30-39	505 (17.5)	0.228	0.274	0.036	<.001	0.150	0.186	0.040	<.001	0.224	0.278	0.038	<.001	0.247	0.315	0.035	<.00
40-49	2154 (74.7)	0.239	0.273	0.018	<.001	0.164	0.210	0.017	<.001	0.250	0.302	0.018	<.001	0.250	0.292	0.018	<.00
50-59	225 (7.8)	0.099	0.127	0.053	0.062	0.157	0.291	0.039	<.001	0.207	0.287	0.051	<.001	0.058	0.081	0.048	0.23
BMI (kg/m ²)																	
<25	2114 (73.3)	0.249	0.288	0.018	<.001	0.185	0.221	0.018	<.001	0.250	0.313	0.017	<.001	0.265	0.315	0.017	<.00
≥25	770 (26.7)	0.172	0.202	0.030	<.001	0.129	0.183	0.025	<.001	0.180	0.189	0.034	<.001	0.168	0.203	0.030	<.00
Education level																	
Elementary	96 (3.3)	0.154	0.185	0.111	0.171	0.212	0.287	0.105	0.047	0.056	0.064	0.110	0.616	0.136	0.185	0.098	0.17
Middle	177 (6.1)	0.222	0.240	0.073	0.003	0.241	0.055	0.379	<.001	0.133	0.187	0.060	0.028	0.279	0.316	0.065	<.00
High	1624 (56.3)	0.226	0.264	0.021	<.001	0.141	0.190	0.019	<.001	0.257	0.314	0.020	<.001	0.226	0.268	0.021	<.00
University	987 (34.2)	0.233	0.278	0.026	<.001	0.174	0.209	0.028	<.001	0.247	0.296	0.027	<.001	0.253	0.314	0.025	<.00
Dyslipidemia [†]																	
No	2587 (89.7)	0.259	0.257	0.019	<.001	0.190	0.232	0.017	<.001	0.255	0.305	0.016	<.001	0.263	0.273	0.018	<.00
Yes	297 (10.3)	0.121	0.182	0.040	0.003	0.096	0.189	0.032	0.003	0.151	0.222	0.045	0.001	0.137	0.224	0.035	<.00
Economic activity	· · · ·																
No	1679 (58.2)	0.202	0.240	0.020	<.001	0.186	0.251	0.019	<.001	0.258	0.325	0.019	<.001	0.205	0.250	0.019	<.0
Yes	1205 (41.8)	0.267	0.308	0.024	<.001	0.121	0.159	0.024	<.001	0.214	0.251	0.025	<.001	0.280	0.332	0.023	<.0

[†]Included cases diagnosed and/or treated with dyslipidemia, and cases with cholesterol level above 240mg/dl.

BMI, body mass index; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; SD, standard deviation; S.B., standardized beta; S.E., standard error; TC, total cholesterol; TG, triglyceride.

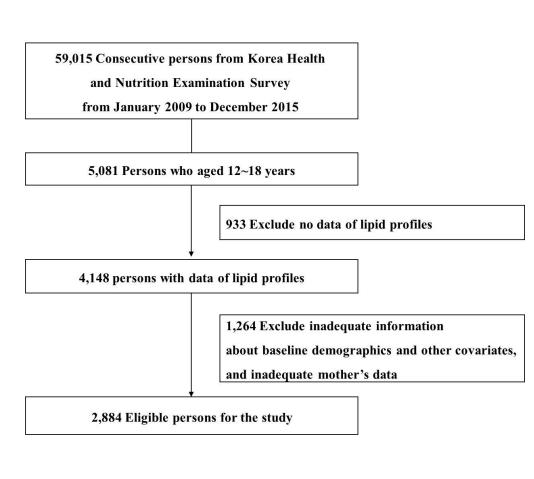


Figure 1 Study flow showing sample selection. We selected 2,884 adolescents aged 12–18 whose mothers' data were also available.

104x90mm (300 x 300 DPI)

0.4

0.3

0.2

0.1

0.0

0.4

0.3

0.2

0.1

0.0

lipoprotein cholesterol; TC, total cholesterol; TG, triglyceride.

124x90mm (300 x 300 DPI)

30-39

No

TC

∎ TG

■ TC

∎ TG

■HDL-C

LDL-C

■HDL-C

LDL-C

Sex

Mother BMI (kg/m²)

Female

≥25

Mother age

40-49

Mother dyslipidemia

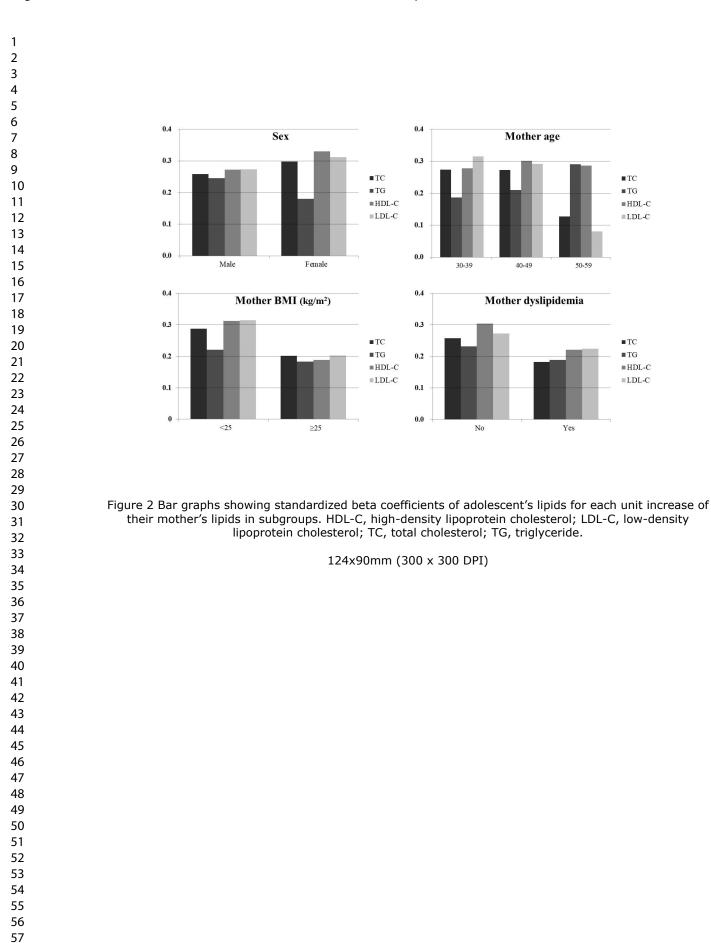
50-59

Yes

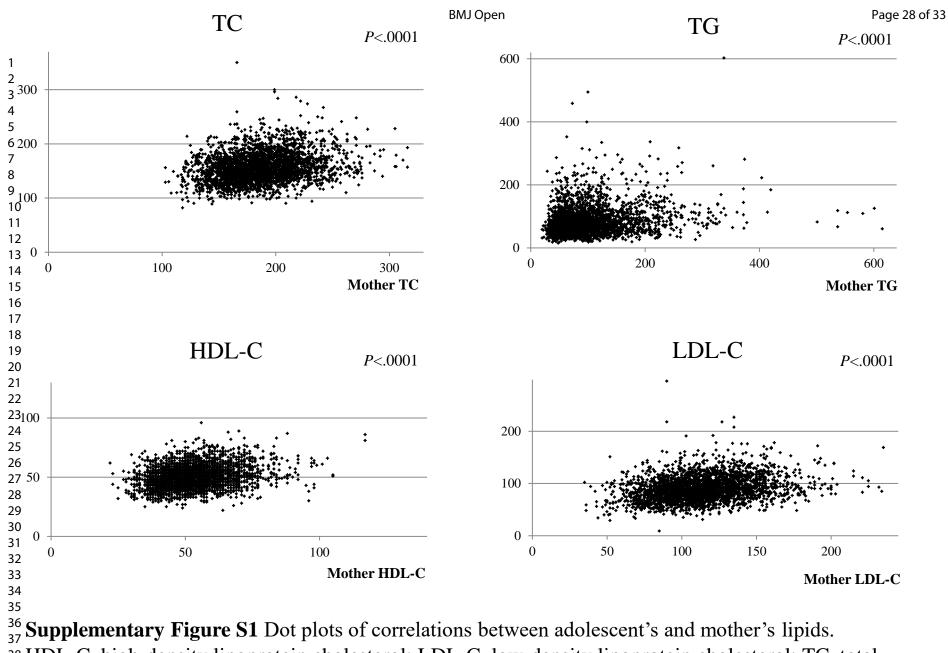
■ TC

∎ TG

■ TC


∎ TG

■HDL-C


■LDL-C

■HDL-C

LDL-C

58 59

³⁸ HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TC, total ³⁹ cholesterol; TG, triglyceride.

ر م	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39 40	
40	
41	
42	
43	
44	
45	
46	

47

Supplementary Table S1 Adjusted R squares for regression models of lipid profiles between adolescent and mother

TC TG HDL-C LDL- Mothers TG 0.1245 0.0296 0.0723 0.109 Mothers TG 0.0585 0.0692 0.0678 0.044 HDL-C 0.0592 0.0424 0.1400 0.044 LDL-C 0.1164 0.0288 0.0640 0.121 he other covariates were adjusted for these regressions. DL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TC, total cholesterol; C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TC, total cholesterol; C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TC, total cholesterol; C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol; TC, total cholesterol; C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TC, total cholesterol; LDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol; TC, total cholesterol; LDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol; TC, total cholesterol; LDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol; LDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; LDL-C, high-density lipoprotein cholest
TC 0.1245 0.0296 0.0723 0.109 Mothers TG 0.0585 0.0692 0.0678 0.044 HDL-C 0.0592 0.0424 0.1400 0.044 LDL-C 0.1164 0.0288 0.0640 0.121 he other covariates were adjusted for these regressions. 0.0288 0.0640 0.121
Mothers TG 0.0585 0.0692 0.0678 0.044 HDL-C 0.0592 0.0424 0.1400 0.044 LDL-C 0.1164 0.0288 0.0640 0.121 he other covariates were adjusted for these regressions. 0.0440 0.121
HDL-C 0.0592 0.0424 0.1400 0.044 LDL-C 0.1164 0.0288 0.0640 0.121 he other covariates were adjusted for these regressions. 0.0640 0.121
LDL-C 0.1164 0.0288 0.0640 0.121 he other covariates were adjusted for these regressions.
he other covariates were adjusted for these regressions.
he other covariates were adjusted for these regressions. DL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TC, total cholest
DL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TC, total choles

		Adolescents'	lipids	OR	95% CI	P value
	TG (mg/dl)	≤150	>150			
	≤150	2266 (84.9)	157 (73.0)	ref		
Mo	>150	403 (15.1)	58 (27.0)	2.15	1.52, 3.03	<.001
Mothers'	LDL-C (mg/dl)	≤150	>150			
rs'	≤150	2581 (90.8)	31 (72.1)	ref		
lip	>150	260 (9.2)	12 (27.9)	3.42	1.68, 7.00	<.001
lipids	HDL-C (mg/dl)	<40	≥40			
01	<40	84 (22.0)	215 (8.6)	ref		
	≥40	298 (78.0)	2287 (91.4)	0.33	0.24, 0.44	<.001

Supplementary Table S2 Adjusted odds ratios for risks of adolescents' dyslipidemia based on mothers' lipids

The other covariates (baseline and clinical characteristics, health behavioral factors) were adjusted for these regressions

Cİ, confidence interval; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; OR, odds ratio; TG, triglyceride.

BMJ Open

Supplementary Table S3 Sensitivity test: Demographics and lipid profiles in 4,148 adolescents* age	ged 12-18 years
--	-----------------

	No. (%)		TC			TG			HDL-C	ŧ		LDL-C	§
		Mean	SD	P value [†]	Mean	SD	P value [†]	Mean	SD	P value [†]	Mean	SD	P value [†]
All (n=4148)		156.5	26.9		83.9	47.0		50.3	9.8		89.5	23.1	
Age (years)				0.252			0.459			0.013			0.996
12-14	1959 (47.2)	156.9	26.4		84.9	48.0		50.7	9.7		89.4	22.8	
15-18	2189 (52.8)	156.2	27.3		83.0	46.1		49.9	9.8		89.6	23.4	
Sex				<.001			0.313			<.001			<.001
Male	2215 (53.4)	151.4	26.8		84.5	50.1		48.6	9.4		86.0	23.1	
Female	1933 (46.6)	162.4	25.8		83.3	43.2		52.3	9.8		93.4	22.4	
BMI*				0.024			<.001			<.001			<.001
<85%	3733 (90.0)	156.0	26.5		81.1	44.9		51.0	9.7		88.8	22.7	
≥85%	415 (10.0)	160.9	30.3		108.8	57.1		44.1	7.9		95.0	26.0	
Glucose (mg/dl)				0.166			0.134			0.765			0.142
≤100	3935 (94.9)	156.3	26.6		83.5	46.7		50.3	9.7		89.3	22.8	
>100	213 (5.1)	160.0	32.5		90.4	52.7		50.2	10.2		92.8	27.9	

*Included 1264 adolescents who have no mothers' data or inadequate baseline information

[†]P values determined by log normal distributions

[‡]Included 42 missing data (n=4106)

[§]Included 43 missing data (n=4105)

BMI, body mass index; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; SD, standard deviation; TC, total cholesterol; TG, triglyceride.

Section/Topic	tion/Topic Item # Recommendation					
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	#1, #2			
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	#2, #3, #4			
Introduction						
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	#5			
Objectives	3	State specific objectives, including any prespecified hypotheses	#5, #6			
Methods						
Study design	4	Present key elements of study design early in the paper	#6			
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	#6, #7			
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants	#6			
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	#6, #7			
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	#7			
Bias	9	Describe any efforts to address potential sources of bias	#7, #8			
Study size	10	Explain how the study size was arrived at	#6			
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	#7, #8			
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	#7, #8			
		(b) Describe any methods used to examine subgroups and interactions	#8			
		(c) Explain how missing data were addressed	#6			
		(d) If applicable, describe analytical methods taking account of sampling strategy	#8			
		(e) Describe any sensitivity analyses	#8			

STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of *cross-sectional studies*

 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility,	#6
		confirmed eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	#6
		(c) Consider use of a flow diagram	#6
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	#8, #9
		(b) Indicate number of participants with missing data for each variable of interest	#6
Outcome data	15*	Report numbers of outcome events or summary measures	#8
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence	#8, #9, #10
		interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	#7
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	#9, #10
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	#10, #11
Discussion			
Key results	18	Summarise key results with reference to study objectives	#11
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	#14, #15
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	#11, #12, #13, #14
Generalisability	21	Discuss the generalisability (external validity) of the study results	#11
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on	#15
		which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.