
 
 

 
 
 
Supplementary Figure 1. New test statistics for neutrality. Representative example of 
VAF distribution in a neutral tumour (a) and a tumour with 1 selected subclone (c). To 
optimise acceptance and rejection of the neutral ‘null’ model using the frequentist test we 
examined a number of test statistics where we compared the data (blue line) to the 
normalised distribution expected under neutrality (universal neutrality curve – UNC, red 
line), (b,d). We tested the area between the curves (AUC, shaded grey area), the 
Kolmogorov distance (orange line) and the Euclidean distance between all points (180 
data points) on the two curves. These measurements improved the discrimination of non-
neutral evolution over-and-above the R2 method we previously proposed for neutrality 
testing. 
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Supplementary Figure 2. Test statistics significantly differentiate neutral from non-
neutral simulated cancers. Taking 105 neutral and 105 non-neutral simulations (100X 
simulated ‘sequencing’ depth) with a subclone with cancer cell fraction greater than 20% 
(VAF=10% in a diploid case) and smaller than 70% we confirmed that all metrics had 
significantly different distributions between the neutral and non-neutral cases, thus 
correctly distinguishing neutral from non-neutral dynamics (5% False Positive Rate 
reported as dash line). 
  
  



 
Supplementary Figure 3. ROC analysis for neutrality test. Receiver Operator Curve 
(ROC) analysis of the ability to correctly detect deviations from the neutral model for 
different VAF intervals considered. Accuracy depends on the fraction of the subclone over 
the total cancer cell population. If the subclone is very small (<20%) or very large (>80%), 
a frequentist test like this struggles to identify the correct model. This is because small 
subclones are hard to detect (VAF dominated by neutral tail of background clone) whereas 
large subclones which have almost reached fixation, an event that reverts the dynamics 
back to neutral (VAF dominated by neutral tail of the new subclone). The area test 
statistics performs best amongst all measures tested (largest area under the curve; see 
Supplementary Table 3). A cohort of 5000 synthetically generated tumors were used for 
this analysis. In the main text we present a Bayesian model selection method to overcome 
the problem of selecting a range in the VAF distribution. 
  

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False positive rate (1 − specificity)

Tr
ue

 p
os

iti
ve

 ra
te

 (s
en

si
tiv

ity
)

Metric
area
Dk
meansqd
R^2

Subclone fraction = [0,1]

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False positive rate (1 − specificity)

Tr
ue

 p
os

iti
ve

 ra
te

 (s
en

si
tiv

ity
)

Metric
area
Dk
meansqd
R^2

Subclone fraction = [0.05,0.95]

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False positive rate (1 − specificity)

Tr
ue

 p
os

iti
ve

 ra
te

 (s
en

si
tiv

ity
)

Metric
area
Dk
meansqd
R^2

Subclone fraction = [0.1,0.9]

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False positive rate (1 − specificity)

Tr
ue

 p
os

iti
ve

 ra
te

 (s
en

si
tiv

ity
)

Metric
area
Dk
meansqd
R^2

Subclone fraction = [0.2,0.8]

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False positive rate (1 − specificity)

Tr
ue

 p
os

iti
ve

 ra
te

 (s
en

si
tiv

ity
)

Metric
area
Dk
meansqd
R^2

Subclone fraction = [0.2,0.7]

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False positive rate (1 − specificity)

Tr
ue

 p
os

iti
ve

 ra
te

 (s
en

si
tiv

ity
)

Metric
area
Dk
meansqd
R^2

Subclone fraction = [0.2,0.6]



 
Supplementary Figure 4. Approximate Bayesian Computation (ABC) framework. 
We used ABC to fit our model to the data. Parameters are drawn from a prior distribution 
and then a tumour is simulated using those parameters. We then measured the distance 
between the simulated data and the target data using the Euclidean distance between the 
cumulative distributions from the two datasets. When the discrepancy, d between the 
target data and simulated data is lower than a given ε, we accept these parameters. We 
used an extension of this basic ABC-rejection algorithm called ABC sequential Monte 
Carlo (ABC-SMC, ref51,52 in the main text) where rather than repeatedly sampling from the 
prior, we sample from the prior once and accept a set of N particles (parameter sets) 
which produce simulated datasets with rather large discrepancies. We then sample from 
this set of particles and perturb the parameter values until we achieve a lower discrepancy 
d, we continue through multiple rounds of this procedure lowering the ε value at each 
iteration, and thereby gradually evolving toward the posterior. 
  

Sample 
parameters θ

Simulate tumour 
growth with θ

Evaluate distance - δ 
between target and 

simulated data

Reject θ
if δ > ε

Accept θ
if δ < ε

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

150

0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

50



 
Supplementary Figure 5. Accurate estimation of the mutation rate in the presence of 
subclonal selection. Evaluation of the accuracy of mutation rate inference for differing 
levels of subclone selection. Differential subclonal selection was model by altering the 
probability 𝛽 that a new lineage survives, and expressed in terms of ∆𝛽, the difference in 
lineage survival between the subclone and rest of the tumour population. Mutation rate 
inference was performed by fitting the linear 1/f cumulative model to the left hand neutral 
tail. Because in the presence of selection, the 1/f tail is the combination of the neutral tail 
of the background clone and the new neutral tail of the selected clone, one expects an 
error in the estimation of the mutation rate. The % error on the inferred mutation rate 
increased as the strength of subclonal selection increased (larger ∆𝛽), but the mean error 
was less than 50% even when selection was very strong (∆𝛽 = 0.5). This is reasonable 
when the aim is to measure mutation rates in humans with a level of precision of an order 
of magnitude. 100 simulated tumours were used for each ∆𝛽. Boxplots show the median 
and inter quantile range (IQR), upper whisker is 3rd quantile + 1.5*IQR and lower whisker 
is 1st quantile - 1.5*IQR. 
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Supplementary Figure 6. Sensitivity of selective advantage estimates in relation to 
final population size. The estimates of the relative fitness advantage parameter s depend 
on the assumption of the final population size Nend, which is often not known with precision 
for any given tumour. Posterior distribution for the relative fitness as a function of Nend for 
AML, breast and lung cancer cases demonstrate that within the realistic range of Nend, s is 
not sensitive to the precise value of Nend (due to the properties of exponential growth). This 
confirms the robustness of our estimated values. 500 posterior samples were used for the 
inference. Solid lines indicate median values, shaded area is 95% intervals.  
  



 
Supplementary Figure 7. Stem cell model is equivalent to exponential growth model 
in terms of VAF distributions. Using a two compartment stem cell model (long lived stem 
cell lineages that generate non-stem cell progeny, which undergo a restricted number of 
divisions) we simulated neutral tumour growth and generated synthetic datasets where the 
stem cell fraction was 100% (372 mutations) (a), 1% (397 mutations)  (b) and 20% (405 
mutations) (c). Plotting the cumulative distributions shows that the VAF distributions 
generated from these models are indistinguishable (p=0.41, p=0.20, p=0.65 by 
Kolmogorov-Smirnoff test), (d). Using the ABC (500 posterior samples) inference a neutral 
exponential pattern of growth with 0 subclones captures the data well (e) and accurately 
measures the mutation rate (f). 
  



 
Supplementary Figure 8. Simulated VAF distributions containing one subclone with 
ABC fits. Random sample of 20 simulated VAF distributions with selected subclone (from 
cohort of 100 simulated tumours) and ABC fits, data used in Figure 2h. Grey histograms 
are empirical VAF distributions from simulations, line is mean value from 500 simulations 
that fitted the data and shaded area is 95% interval. Dashed line shows the inferred VAF 
of the subclonal cluster which overlaps with the centre of the subclonal cluster. 
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Supplementary Figure 9. Limited sequencing depth (<100X) obscures the correct 
clonal structure. Synthetic data were generated using different simulated sequencing 
depths for (a) exome sequencing (WXS) and (b) whole genome sequencing (WGS). Input 
parameters were chosen so that the WGS data had a mutation load of 10,000 mutations 
and WXS had a mutation load of 400 mutations at 100X depth, in line with results from 
genomic profiling studies. Applying our inference method to this data showed that a depth 
>100X was required to confidently identify more than 1 subclone for both WGS and WXS. 
WGS provides a denser VAF plot with respect to WXS, but the precision of the VAF 
mutational clusters is not improved (as it is dependent mainly on the sequencing depth). 
This indicates that for subclonal architecture deconvolution, the depth of sequencing is a 
critical factor. We note that the problem of low sequencing depth can be further 
exacerbated by low tumour purity in the sample. WGS may still be necessary for low 
mutational burden tumours in order to detect enough mutations to delineate subclone 
clusters. Each data point is the average probability from applying the method to 10 
different simulations with the same parameters. Error bars show the minimum and 
maximum values from the 10 simulations. 
  



 
Supplementary Figure 10. High sequencing depth can reveal clusters that are due to 
genetic drift and not selection. Sequencing to very high depth can reveal apparent 
clusters arising due to stochastic neutral drift rather than selection. This occurs when a 
lineage increases in frequency just due to stochastic birth/death effects generating a non-
selected subclonal cluster. The same neutral simulation sampled to different sequencing 
depths shows that a small cluster at VAF~0.25 becomes evident as the depth of 
sequencing increases. We note that, because genetic drift affects prevalently small 
populations, this is relevant only during the very early phase of tumour growth when the 
neoplasm is very small. This implies that too little time has passed for the accumulation of 
many mutations in a drifting subclonal cluster, and hence, contrary to selected clusters, 
drifting clusters are expected to be very small in terms of number of mutations. 
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Supplementary Figure 11. Ability to detect subclones depend on cellularity and 
subclone fraction. We simulated tumours with a single subclone at various cancer cell 
fraction and with a range of cellularity, then the ABC inference was applied and posterior 
probability of a single subclone recorded. As expected, the ability to resolve a subclone in 
the VAF distribution increases with increasing depth for low cellularity samples (a) and low 
frequency subclones (b). We note that, as shown in panel (b), if a subclone has cancer 
cell fraction >0.9, it becomes difficult to distinguish it from the clonal cluster. Each coloured 
square is the average posterior probability from 25 simulations with the same input 
parameters. Subsampling the number of mutations per sample showed that a minimum of 
25 subclonal mutations was needed to confidently identify a subclone (c). Boxplots show 
the median and inter quantile range (IQR), upper whisker is 3rd quantile + 1.5*IQR and 
lower whisker is 1st quantile - 1.5*IQR. 
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Supplementary Figure 12. Mutational processes are consistent throughout the 
subclonal frequency spectrum. All subclonal mutations in the breast cancer sample 
(64,677 mutations, ref13) (a) and AML sample (1302 mutations, ref20) (b) showed 
consistent mutational processes for both subclonal clusters and 1/f tail mutations. This 
supports our assumption of approximate constant mutation rate during the final growth of 
the tumour. Signatures for the clonal AML mutations appeared different but this has no 
impact on our inferences as we only consider subclonal mutations in our analysis. Error 
bars on the signature assignment were obtained via bootstrapping and show the 95% 
interval and coloured proportions show the mean value. 



 
Supplementary Figure 13. Lung cancer copy number profiles from Zhang et al. 2014. 
Copy number profiles for the 5 lung adenocarcinoma samples (ref21 in the main 
manuscript). Sample 4990-12, that was measured to contain a differentially selected 
subclone, has a CNA not present in the other samples (chromosome 3), suggesting that 
such alteration may confer a fitness advantage. 
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Supplementary Figure 14. TCGA colon cancer model fits. Grey histograms are 
empirical VAF distributions, line is mean value from 500 simulations that fitted the data and 
shaded area is 95% interval. Blue tumours are those identified as neutral and red are 
those with subclonal selection. For those with a subclone, dashed line shows the mean of 
subclonal fraction. Title of each panel shows sample name and probability of the assigned 
subclonal structure. Only samples suitable for our analysis (purity >40%, number of 
subclonal mutations ≥25) are considered. 
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Supplementary Figure 15. Gastric cancer model fits. Model fits to WGS gastric cancer 
data summarised in Figure 4 from Wang et al. 2014 (ref23 in the main manuscript). Grey 
histograms are empirical VAF distributions, line is mean value from 500 simulations that 
fitted the data and shaded area is 95% interval. Blue tumours are those identified as 
neutral and red are those with subclonal selection. For those with a subclone, dashed line 
shows the mean of subclonal fraction. Title of each panel shows sample name and 
probability of the assigned subclonal structure. Only gastric samples suitable for our 
analysis (see main text) are presented. Only samples suitable for our analysis (purity 
>40%, number of subclonal mutations ≥25) are considered. 
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Supplementary Figure 16. TRACERx cancer model fits. Model fits to lung cancer 
TRACERx data from Jamal-Hanjani et al. 2017 (ref24 in the main manuscript). Grey 
histograms are empirical VAF distributions, line is mean value from 500 simulations that 
fitted the data and shaded area is 95% interval. Blue tumours are those identified as 
neutral and red are those with subclonal selection. For those with a subclone, dashed line 
shows the mean of subclonal fraction. Title of each panel shows sample name and 
probability of the assigned subclonal structure. Only samples suitable for our analysis 
(purity >40%, number of subclonal mutations ≥25) are considered. 
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Supplementary Figure 17. MET500 metastatic deposits model fits. Model fits to 
MET500 data summarised in Figure 4 from Robinson et al. 2017 (ref25 in the main 
manuscript). Grey histograms are empirical VAF distributions, line is mean value from 500 
simulations that fitted the data and shaded area is 95% interval. Blue tumours are those 
identified as neutral and red are those with subclonal selection. For those with a subclone, 
dashed line shows the mean of subclonal fraction. Title of each panel shows sample name 
and probability of the assigned subclonal structure. Only samples suitable for our analysis 
(purity >40%, number of subclonal mutations ≥25) are considered. 
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Supplementary Figure 18. Subclone parameter estimation for the TRACERx cohort. 
Time of emergence and fitness of subclones estimated for subclones present in the 
TRACERx data. Posterior distributions were generated from 500 samples. Boxplots show 
the median and inter quantile range (IQR), upper whisker is 3rd quantile + 1.5*IQR and 
lower whisker is 1st quantile - 1.5*IQR. Only samples suitable for our analysis (purity 
>40%, number of subclonal mutations ≥25) are considered. 
 
 
 
 
 
 
  



 

 
Supplementary Figure 19. Frequentist vs Bayesian neutrality classification. 
Comparison of measurement of neutrality between our previously reported analytical 1/f 
model and the posterior distributions from fitting our computational Bayesian approach. 
We used samples that had cellularity >0.8 so that the integration limits (0.1, 0.3) for the 1/f 
test was not influenced by the clonal peak. (a) Inferred mutation rates were highly similar 
in both cases for neutral tumours (N=87). (b,c) The probability of 0 subclones (neutrality) 
were significantly correlated (linear regression, p-values and R2 values shown in figure 
insets) between methods using both the R2 and the area between curves metric 
respectively, outliers are due to the ABC method detecting high frequency clones which 
we are unable to resolve using frequentist neutrality test statistics. A total of 130 samples 
were used for this analysis.  
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Supplementary Figure 20. Mutations used in the breast cancer high-depth sample 
from Nik-Zainal et al. 2012 were from truly diploid regions. B-Allele frequency plot and 
depth ratio plot for chromosome 3 for breast cancer sample (ref13 in the main manuscript), 
demonstrating that this chromosome was consistent with a diploid genome. Only mutation 
from this chromosome were used in the analysis. 
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Supplementary Figure 21. Mutations used in the lung cancer samples from Zhang et 
al. 2014 were from true diploid regions. B-Allele Frequency (BAF) distributions stratified 
by copy number calls for lung cancer samples (ref21 in the main manuscript) showing BAF 
was consistent with segments called as diploid, regions called as copy number LOH 
(cnLOH) and other copy number aberrations had different BAF distributions. For each 
sample the sequenza algorithm (ref53 in methods) split the genome into the following 
number of segments 61,323 (4990-12) 58,289 (4990-14) 57,982 (4990-15) 58,828 (4990-
16) 60,764 (4990-17). 
  

0.0

0.1

0.2

0.3

0.4

0.5

CN Neutral cnLOH Other

BA
F

sample
4990−12

4990−14

4990−15

4990−16

4990−17



 
Supplementary Figure 22. A binomial model well describes mutational clusters. We 
used Monte Carlo Markov Chain to fit beta-binomial and binomial models to the clonal 
cluster of the AML whole-genome sample (to avoid potential confounding factors from 
near-clonal CNAs in the left-hand tail of the distribution). We found that the binomial model 
was sufficient to describe the VAF dispersion in mutational clusters. Overdispersion 
parameters ρ, for these fits are reported in Supplementary Table 6. 
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Supplementary Table 1. Power to detect non-neutral VAF distribution. Power to 
detect non-neutral VAF distribution for 4 different test statistics at a FPR rate of 0.05 and 
at variable read depths and clone size.  
 
Supplementary Table 2. False Positive Rate cutoff. Cut off values for the four different 
test statistics evaluated that give false positive rate (FPR) of 0.05 to discriminate a VAF 
distribution from the null neutral distribution. 
 
Supplementary Table 3. Receiver Operator Curve area under the curve analysis. 
Area under curves from receiver operator curves (ROC) analysis of the four different test 
statistics at variable read depths and clone size.  
 
Supplementary Table 4. Bayes Factors for Figure 3. Bayes factors and probabilities of 
0, 1 and 2 clones for data in Figure 3. 
 
Supplementary Table 5. Bayes Factors for Figure 4. Bayes factors and probabilities of 
0, 1 and 2 clones for data in Figure 4. 
 
Supplementary Table 6. Beta-Binomial model fits for clonal cluster. Number of clonal 
mutations and over-dispersion parameter ρ (MAP estimate) from fitting Beta-Binomial 
model to clonal cluster using MCMC. 
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1 Detecting and quantifying selection in subclones

Previously we showed that under a neutral evolutionary model, the variant
allele frequency (VAF) distribution of passenger mutations that accumulate
as the tumour grows collapses to a predictable form [1], where the cumulative
number of mutations, M(f) with a frequency greater than f is given by

M(f) =
µ

β

(
1

f
− 1

fmax

)
, (1)

where µ is the mutation rate per division, β is the probability at cell division
of generating 2 surviving offspring (to reflect cell death and differentiation),
and fmax is the maximum VAF possible in the spectrum given the tumour
ploidy (e.g. for a diploid genomic region, fmax = 0.5). With the knowledge
of what we would predict the frequency of mutations to be in a neutral
population, in this paper we wished to identify the presence and strength of
selection in non-neutral tumours, again using the VAF distribution.

We wish to quantify the strength of selection of one (or more) subclones
growing in a tumour, using information we can extract from a single sample
at a single time point. We also aim at measuring the mutation rate, the
number of mutations in a subclone and the fraction of the subclone in the
population at the same time. Our approach is summarised in Figure 1D
(main text), where the number of mutations in the subclone tells us about
the age of the subclone - i.e. the number of mutations accumulated between
the most recent common ancestor (MRCA) of all cells in the tumour and
the the single cell that gave rise to the subclone (MRCA of the cancer cells
in the subclone) is proportional to the number of generations between these
two MRCAs, and the fraction of the subclone in the population tells us how
much the subclone expanded from that single cell.

First we will introduce some of the assumptions and the notation. We
will assume exponential growth for all our populations, with the fitness
advantage of a population over the host population defined as the ratio of
net growth rates between the fitter population (λ1) and the host tumour
population (λH).

1 + s =
λ1
λH

(2)

Given birth and death rates b and d we can express this as:

1 + s =
b1 − d1
bH − dH

(3)
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The effective mutation rate µ̂ is given by the mutation rate per generation
(e.g. number of mutations per genome per division) divided by the prob-
ability of having 2 surviving offspring (β), µ̂ = µ/β, ie the prefactor in
equation (1). β in terms of the birth and death rates can be written as
β = b−d

b . The effective mutation rate µ̂ is important because it is the only
measurable value from the type of data we will consider, and represents the
mutation rate per tumour population doubling. The mutation rate per cell
division remains obscured in the data because µ and β cannot be estimated
independently (see below).

1.1 Number of mutations in a subclone

First of all, we wish to know how the number of mutations in a subclone
relates to the time the subclone arose. The subclonal cluster is primarily
composed by mutations present in the single cell that gave rise to the sub-
clone, i.e. the most recent common ancestor of the subclone. This number
depends on the number of generations that passed between the single cell
that founded the whole tumour population (MRCA of the whole tumour)
and the appearance of the single cell that will then give rise to the subclone
later. The number of mutations in a cell at some time t1 is given by the
product of the mutation rate and the number of divisions. Assuming the
tumour starts growing at time t = 0 the number of mutations, Mc in a cell
after Γ1 successful divisions (at time t1) is given by:

Mc = µ̂Γ1 (4)

Note that this Γ1 is in effect the number of divisions assuming no cell death,
as cell death is incorporated into µ̂, which is the effective mutation rate, or
the true mutation rate scaled by the death rate. What remains is to relate
the number of divisions Γ1 to the time t1 in terms of tumour doublings. We
will consider a birth death model with birth rate b and death rate d. If
Di(t) is the total number of cells that have completed i divisions at time
t, then we can write a set of differential equations where Di(t) increases or
decreases based on the rates b and d, similar to the approach taken in [2],
which is a classical birth-death process.

dD0(t)

dt
=− (b+ d)D0(t)

dDi(t)

dt
=− (b+ d)Di(t) + 2bDi−1(t) (5)
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Figure 1: Distribution of number of divisions for a tumour growing to size 220

from simulation. Red line is the theoretical distribution predicted by (7)

Intuitively, we can think of each Di being a compartment, and b and d
being the rates with which cells move from one compartment to another or
are lost from the system. Cells can be lost from a compartment via death
or via a birth event (hence the factor (b+ d)), where for each birth event in
compartment i− 1, 2 cells are gained in compartment i. Equations (5) have
the following solution, given the boundary condition N0(0) = 1.

D0(t) =e−(b+d)t

Di(t) =
(2bt)i

i!
D0(t) (6)

Given that the total population grows as e(b−d)t, the pdf can be derived by
dividing equation (6) by this expression.

Pi(t) =
(2bt)i

i!
e−2bt (7)
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Equation 7 is a poisson distribution with mean 2bt. Supplementary Note
Figure 1 shows the distribution of the number of divisions from a stochastic
simulation where a tumour is grown to size 220 along with the theoretical
predictions from equation (7).

If t is in units of tumour doublings then b = log(2), then the mean
number of divisions, Γ1 experienced by a cell after time t1 is:

Γ1 = 2 log(2)t1 (8)

Therefore in our framework where the number of divisions experienced by
the founder cell of a subclone is measured, we can estimate also the most
probable time (in tumour doublings) when the subclone emerged. We note
that as Supplementary Note Figure 1 shows the distribution of the num-
ber of divisions is wide and by chance the single cell that gives rise to the
subclonal population could be in the extremities of this distribution. In
these cases we would over or underestimate the time the subclone emerges
in terms of population doublings given we have a single measurement and
not a distribution (number of mutations carried by the subclone). However
given that this distribution is symmetric, on average the error should be 0.
Figure 2E shows that on average we do manage to capture the correct time,
however the large deviation from the true value in some cases will be partly
due to this effect.

1.2 Fitness advantage of a subclone

To calculate the fitness advantage of a subclone we utilize information on
the frequency of the subclone and assume the subclone starts from a single
cell. Given we observe the tumour at time tend the frequency of the subclone
will increase as a function of this time:

f(tend) =
N1(tend − t1)

N1(tend − t1) +NH(tend)
(9)

where N1 and NH are the population sizes of of the subclone and host
tumour population respectively. Assuming exponential growth and using
the definition of fitness provided by equation (1), we can write this as:

f(tend) =
eλ(1+s)(tend−t1)

eλ(1+s)(tend−t1) + eλtend − eλ(tend−t1)
(10)

Where the last term in the denominator is a correction that takes into ac-
count that a single cell from the host population mutates into the fitter type.
By extracting a factor eλtend from each term we arrive at the following.
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f(tend) =
eλs(tend−t1)e−λt1

eλs(tend−t1)e−λt1 + 1− e−λt1
(11)

For even moderate t1, e
−λt1 << 1 hence we can neglect this term (although

it is possible to solve for s with this term the correction is minimal). Solving
for s (which amounts to solving an equation of the form y = x

1+x) we get:

s =
log( f

1−f ) + λt1

λ(tend − t1)
(12)

Thus given an assumption on tend measuring f and t1 from the distribution
(via equation (2)) we can estimate the relative fitness advantage s. For
example, assuming a reasonable population size of the final tumour to be
1010 (100 billion cells is typical in, for example, colorectal cancers), would
amount to solving 2tend = (1− f)1010, given we’ve measured the fraction of
the clone f. As we are using the doubling time as our unit of time we can
simply set λ = log(2). Turning to a fully stochastic model, the mean time
taken for a population to reach a sizeNend has an additional correction factor
which has been calculated using a branching process [3]: tend = 1

λ log(Nend)+
γ/λ, where γ is Euler’s constant. Thus the deterministic approach is a slight
underestimate when compared to the stochastic case. See section 2.1.

1.3 Multiple subclones

When we have more than one subclone the picture is of course more com-
plicated. Each subclone can have their own relative fitness advantage and
time of emergence. Subclones can also be nested within one another, further
complicating the underlying dynamics.

First of all we consider the case where clones are not nested, i.e. two
clones arise independently within the host population. We then have 2
equations describing how the fraction (and hence the allele frequency) of
the 2 clones increases in time.

f1(tend) =
N1(tend − t1)

N1(tend − t1) +N2(tend − t2) +NH(tend)
(13)

f2(tend) =
N2(tend − t2)

N1(tend − t1) +N2(tend − t2) +NH(tend)
(14)

Again substituting in for a exponentially growing populations and removing
a factor eλtend from each term we arrive at the following:
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Figure 2: When we have more than one subclone, they may be nested (left) or
unnested (right).

f1(tend) =
eλs1(tend−t1)e−λt1

eλs1(tend−t1)e−λt1 + eλs2(tend−t2)e−λt2 + 1
(15)

f2(tend) =
eλs2(tend−t2)e−λt2

eλs1(tend−t1)e−λt1 + eλs2(tend−t2)e−λt2 + 1
(16)

We then arrive at the following for s1 and s2:

s1 =
log( f1

1−f1−f2 ) + λt1

λ(tend − t1)
(17)

s2 =
log( f2

1−f1−f2 ) + λt2

λ(tend − t2)
(18)

1.3.1 Nested subclones

In the case of nested subclones, one subclone will grow inside the other
thereby increasing the frequency of the major subclone. We define subclone
1 as the major subclone (t1 < t2) with subclone 2 growing inside, we also
require (s1 < s2) . The frequency of suclone 1 will therefore be given by:

f1(tend) =
N1(tend − t1) +N2(tend − t2)

N1(tend − t1) +N2(tend − t2) +NH(tend)
(19)

Proceeding as before we get:

s1 =
log(f1−f21−f1 ) + λt1

λ(tend − t1)
(20)
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s2 =
log( f2

1−f1 ) + λt2

λ(tend − t2)
(21)

We also have a modified equation for the time the subclones emerged.

M1 = µ̂Γ1 (22)

M2 = µ̂Γ2 (23)

Here Γ2 is the number of divisions between t1 (time subclone 1 appears) and
t2 (time subclone 2 appears). Meanwhile as subclone 1 is growing faster by
a factor 1 + s1, converting the number of divisions requires including this
factor for the second subclone.

Γ2 = t1 + (1 + s1)× 2 log(2)t2 (24)

While for t1, we have as before:

Γ1 = 2 log(2)t1 (25)

For our reported values of 1 + sn we assumed the non-nested case, for the
AML sample this was experimentally validated in the original study with
single cell sequencing [4].

2 Expected variation in parameter inference

The model discussed so far assumes deterministic growth of the tumour
and subclones. A more realistic model would consider the tumour to grow
stochastically according to some birth and death rates. This is what is
implemented in our computational model of tumour growth, and therefore
our posterior distributions will give some weight to all possible stochastic
trajectories for any given parameter set. The relatively wide posterior dis-
tributions we obtain in some cases is therefore not entirely unexpected given
the stochastic nature of the underlying processes of mutation and division.
To gain some intuition on the expected variability we can consider a stochas-
tic treatment of a birth-death process and derive the mean and variance of
the population size at some time t.

2.1 Stochastic birth death model

Given that the probability of any cell giving birth in the interval (t, t+ δt)
is bδt, and the probability of dying is given by dδt we can write down the
differential difference equation for the birth-death process as follows:

8



dp0(t)

dt
= dp1(t)

dpn(t)

dt
= b(n− 1)pn−1(t)− (b+ d)npn(t) + d(n+ 1)pn+1(t) , (n ≥ 1)

(26)
The solution to this equation can be found in Bailey (1964)[5]:

p0 = α

pn = (1− α)(1− β)βn−1 , (n ≥ 1)
(27)

where

α =
d(e(b−d)t − 1)

be(b−d)t − d

β =
b(e(b−d)t − 1)

be(b−d)t − d

(28)

The mean and variance of the population size at a time can then be easily
calculated from this probability distribution:

N̄ = e(b−d)t (29)

σ2N =
b+ d

b− d
e(b−d)t(e(b−d)t − 1) (30)

Therefore the standard deviation σN ∝ e(b−d)t. In our stochastic model of
tumour growth, a subclone emerges that will eventually reach a fraction fsub,
given the large expected variance in population size it is then not unexpected
to see our posterior estimates for the selection coefficients s to be relatively
wide as in Figures 2 and 3 (main text). Note that the variance increases
with increasing death rate.

2.2 Stochastic birth-death model conditioned on N

Another way to explore the expected variability due to stochastic effects is
to ask the reverse question: what is the distribution of times, T conditioned
on the population reaching a certain population size, N . This is particularly
relevant to our inferences on the time a subclone emerges. We can use this
reasoning to quantify how much of the variability in the posterior distribu-
tion is due to stochastic effects. Durrett has derived the probability density
function for this reverse problem and it is given by [3]

pTN (t) =
λ2N

b
exp(−λt)× exp(−λ

b
N × exp(−λt)) (31)
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where λ = b − d. The mean and standard deviation can then be found to
be:

E(TN ) =
γ + log(Nλb )

λ

SD(TN ) =
π2

6× λ2
(32)

where γ is Euler’s constant. Expressing time in units of population dou-
blings, λ = log(2), therefore the expected standard deviation due to stochas-
tic effects is 1.85. We observed an average standard deviation of 1.56 across
all data and simulations where we applied our ABC method, consistent with
the variability being primarily due to stochastic effects.

3 Driver mutations

We note that, for simplicity, we assume that mutations effecting fitness
occur at any given time t1 (a parameter of our model on which we perform
inference), but we do not model this as a stochastic variable dependent on
the mutation rate of driver alterations, as it is the case in other models of
cancer progression [6]. We can however, address this a posteriori and ask
the question of what would the driver mutation rate need to be to observe
the distribution of t1 times we measure? Bozic et al. [6] and Durrett [3]
both use branching process to calculate the expected waiting time for a cell
with k driver mutations, we are particularly interested in the case k = 1, i.e.
in a growing population what is the waiting time for the first subclone with
a fitness advantage. We follow the formulation in Durrett as this approach
uses a continuous time formulation more relevant to our model. Continuing
with our notation where b is the birth rate and d is the death rate the mean
time (in population doublings) until the first driver mutation t1 is given by

t1 =
1

b
log

(
1

µd

b− d
b

)
(33)

where µd is the driver mutation rate. This can be rearranged to express µd
as a function of time:

µd =
b− d
b

e−bt1 = βe−bt1 (34)

Following our previous notation we can then write the effective driver muta-
tion rate, µ̂d, i.e. the driver mutation rate per effective population doubling
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representing an upper limit on the per cell division mutation rate.

µ̂d =
µd
β

= e−bt1 (35)

We will use b = log(2) so that time is in units of population doublings as
before. The distribution of emergence times t1 we observe in our cohorts
peaks around t = 6− 9 depending on the cohort (see Figure 4C). This gives
µ̂d = {0.002−0.015} per cell division, corresponding to µ̂d = {10−11−10−10}
per bp per effective division in the exome. The average µ̂d across the cohort
of tumours may well be less than this given the abundance of neutrally
evolving tumours. Given that the mutation rates we measure are on the
order 10-100’s per effective cell division, this represents a driver mutation
rate that is at least 103 smaller than the overall mutation rate, consistent
with accumulating evidence of a limited number of cancer driver mutations
[7]. We also note that the fitness advantage of subclones in our model needs
not necessarily to be due to point mutations and could very well be due to
any mechanism that provides a selective advantage. Our estimate of the
driver mutation rate per effective cell division (µ̂d = {0.002 − 0.015}) in
reality combines all possible mechanisms such as copy number alterations
and epigenetic modifications. We also note that mutation rate per division
will in reality be < µ̂d depending on the value of β.

4 Statistical inference

Equations (12), (17), (18), (20) & (21) provide a means to estimate the
selective advantage of a subclone and can be summarised by the following
equation for subclone n:

sn =
log(F (f1..n)) + λtn

λ(tend − tn)
(36)

where F (f1..n) is some function of the subclone fractions. tn, the time the
subclone appears is a function of the effective mutation rate and possibly
the time the parent subclone arises if it is nested:

tn = F (µ̂, b, t1..n−1) (37)

Therefore if we can accurately measure the fraction of the subclone, the
number of mutations in the subclone and the effective mutation rate we
can estimate the selective advantage of a subclone sn. For the inference,
we used our cancer simulation scheme together with approximate Bayesian
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computation (ABC). The advantage of this approach over say a clustering
based approach is that as our simulation simulates the stochastic process
of tumour growth so any stochastic effects that may be important will be
captured in the inference scheme. It also naturally accounts for aspects that
would be difficult to accurately model in a clustering based approach such
as accounting for within (sub)clone neutral mutations that accumulate as
the tumour grows.

4.1 Bayesian inference

The quantity of interest in Bayesian methods is the posterior distribution,
which tells us the probability of a particular parameter in our model being
the correct parameter given the data. The posterior distribution is obtained
by combining any prior beliefs we may have of a particular parameter with
how well a particular parameter value explains our observed data. This is
formally expressed via Bayes rule:

p(θ|D) =
p(D|θ)p(θ)
p(D)

(38)

where θ is a vector of parameters for our model, p(θ) is the prior distribution,
ie our prior beliefs on θ, and p(θ|D) is the likelihood function. Classical
Bayesian inference would entail writing down the likelihood, choosing a prior
distribution on θ and then calculating the posterior distribution, in most
cases the posterior distribution is analytically intractable so it is necessary to
use computational approaches such as Markov chain Monte Carlo (MCMC).

The likelihood is typically defined by a known probability distribution,
where we would consider the probability of θ given the data D is fixed.
In our case, and in many applications it is impossible to write down the
likelihood but it is possible to simulate from a model. In such cases when
the likelihood is unknown we can turn to approximate approaches. In these
likelihood free or approximate Bayesian computation (ABC) approaches we
obtain samples from a distribution p(θ|d(D∗, D) ≤ ε), where D∗ is simulated
data from our model, D is the observed data, d(D∗, D) is some distance
measure between the real data and ε is a tolerance level. If ε is sufficiently
small then p(θ|d(D∗, D) ≤ ε) will be a good approximation of the posterior
distribution p(θ|D).

4.1.1 ABC rejection

The simplest ABC algorithm is the rejection algorithm [8, 9] which proceeds
as follows:
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S1 Sample θ∗ from p(θ)

S2 Simulate a dataset D∗ from model M(D|θ∗)

S3 If d(D∗, D) ≤ ε, accept θ∗, otherwise reject

S4 Return to S1

In many applications we may have a number of competing models (in-
cluding this one) and would like to infer the most probable model. For this
we can turn to Bayesian model selection. In our case models are specified by
the number of subclones under selection, where 0 subclones under selection
would be the neutral case. If m0 and m1 are two models, we would like to
choose which model provides the best support for the data, for this we can
turn to Bayes factors, which is the ratio of posterior odds to prior odds of
the two models. The Bayes factor in favour of m0 over m1 is defined as:

B01 =
P (m1|D)/P (m2|D)

P (m1)/P (m2)
(39)

Where P (mn) is the prior probability of model n and P (mn|D) is the pos-
terior probability.

Incorporating model selection into the ABC framework is relatively straight-
forward as we can effectively treat the model as an additional parameter in
our inference scheme, where each model mn will have a corresponding model
specific parameter vector θn. The ABC rejection with model selection then
becomes [10]:

S1 Sample m∗ from p(m)

S2 Sample θ∗ from p(θ|m∗)

S3 Simulate a dataset D∗ from model M(D|θ∗,m∗)

S4 If d(D∗, D) ≤ ε, accept (m∗, θ∗), otherwise reject

S5 Return to S1

The downside of the ABC rejection algorithm is that the acceptance
rate is generally low, requiring a large amount of datasets to be simulated,
we therefore turned to the approximate Bayesian computation sequential
monte carlo (ABC SMC) algorithm which increases the acceptance rate [11,
12] and thus the efficiency of the algorithm.
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4.1.2 ABC SMC algorithm

The ABC SMC algorithm uses sequential importance sampling to increase
the acceptance rate of simulated datasets. In ABC SMC, parameter vec-
tors, particles (mn, θn) are sampled from the prior distribution and then
propagated through a series of distributions with decreasing tolerances, εi,
until εi = εT the target tolerance. We therefore gradually evolve toward the
target posterior distribution p(θ|d(D∗, D) ≤ εT ) as εi decreases. The ABC
SMC model selection algorithm is as follows [12]:

S1 Set the population indiciator to t = 1

S2 Set the particle indiciator i = 1

S3 If t = 1, sample (m∗∗, θ∗∗) from the prior distribution P (m, θ)
if t > 1, sample m∗ from Pt−1(m

∗) and then perturb according to
m∗∗ ∼ KMt(m|m∗). Sample θ∗ from previous populations with weights
wt−1 and perturb parameter vector according to θ∗∗ ∼ KPt,m∗∗(θ|θ∗)

S4 If P (m∗∗, θ∗∗) = 0, return to S3

S5 Simulate data D∗ for model m∗∗ and parameters θ∗∗, then calculate
d(D∗, D), if d(D∗, D) > εt go to S3

S6 Set (mi
t, θ

i
t) = (m∗∗, θ∗∗) and calculate the weight of the particle wt. If

i < N set i = i+ 1 and go to S3

S7 Normalize the particle weights and calculate the marginal model prob-
abilities, Pt(mt = m) =

∑
i,mi

t=m
wit(m

i
t, θ

i
t)

S8 Calculate the perturbation kernels and next tolerance value εt, if εt > εT ,
set t = t+ 1 and go to S3.

The particle weights are calculated as follows:

wit(m
i
t, θ

i
t) =

{
1, if t = 1
P (mi

t,θ
i
t)

S , if t > 1
(40)

where S is:

S =

M∑
j=1

Pt−1(m
j
t−1)KMt(m

i
t,m

j
t−1)×

∑
k,mt−1−mi

t

wkt−1KP
i
t,mt

(θit|θkt−1)

Pt−1(mt−1 = mi
t)

(41)
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Here KM is the model perturbation kernel and KP is the parameter per-
turbation kernel. Particles that have been sampled from the previous distri-
bution are denoted by a single asterisk, the perturbed particles are denoted
with a double asterisk. For the model perturbation kernel we used the fol-
lowing:

KMt(m|m∗) =

{
0.6, if m = m∗

0.4, if m 6= m∗ (42)

For the particle perturbation kernel we used the uniform distribution with
limits determined from the range of parameter values from the previous
population [13], for parameter k, KPt(k|k∗) = U(ki − σ, ki + σ), where σ is
given by:

σ =
1

2
(max(k)t−1 −min(k)t−1) (43)

We updated the tolerance at each population step and used the 0.3 quantile
of the previous populations ε values. We set the number of particles N
to be 500. The ABC SMC algorithm continues until one of the following
conditions is met.

1. εt−εt−1

εt
< 0.05

2. Completed 5× 106 simulations

3. 200 hours of computation time

4.2 Prior distributions

We used uniform prior distributions for all the parameters, limits on these
parameters are given in Table 1. We also used a uniform distribution for
the model prior. Often, when we simulate a model with selection, the size of
the clones may be very small or very large. Given that we are constrained
by the data in observing only relatively large subclones we only consider
simulations that give clones greater than the detection limit of the data (the
point where the 1/f peak decreases) and less than 0.95 (above this we would
be measuring the neutral dynamics of the selected clone). Therefore when
performing the ABC after sampling a model we continue to simulate until
we return a simulation where clones are > detection limit and < 0.95.

4.3 Algorithm convergence

To asses the ability of the algorithm to converge to a stable posterior distri-
bution we looked at the posterior distributions evolution over the population
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1+s µ clonal mutations t1

[1, 26.0] [0.1, 500] [1, 5000] [3, 14]

Table 1: Limits on prior distributions for all parameters

and reassuringly find that as ε decreased the posterior distributions becomes
tighter and less variable. See Supplementary Note Figures 4-9.
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Figure 3: Posterior distribution of mutation rate as ε decreases, red dashed line
is true value.
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Figure 4: Posterior distribution of mutations in founder cell of subclone as ε
decreases, red dashed line is true value.
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Figure 5: Posterior distribution of the clone size of subclone as fraction of total
tumour size as ε decreases, red dashed line is true value.
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Figure 6: Posterior distribution of time subclone appears as ε decreases. This is
the inferred time calculated using equation (4). Red dashed line is true value.
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Figure 7: Model probabilities as ε decreases. True model is the 1 subclone model.
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Figure 8: Median histogram (red line) and 95% intervals (shaded red area) for
simulations that pass ABC SMC as ε decreases. Results are from 500 posterior
samples.
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5 Alternative growth models

5.1 Logistic growth

For our main analysis we have assumed an exponential growth model. Some
tumours however, especially benign lesions, may reach a plateau in their
growth, and consequently are better represented by sigmoidal-type growth
models [14, 15]. In a sigmoidal model of tumour growth, the tumour pop-
ulation at late times can be approximated as a population of constant size
with continual turnover of cells. Interestingly, in a fixed size population, it
has been shown that the fixation time of beneficial mutations is proportional
to the logarithm of the population size [16], which suggests that clonal ex-
pansions can be relatively rapid when the population is no longer growing.
To explore this further we implemented a logistic growth model as well as a
moran model for a fixed size population.

5.1.1 Modeling logistic growth

In the logistic growth model, growth is density-dependent and the envi-
ronment has a maximum number of individuals it can support, commonly
referred to as the carrying capacity, K of the population. The differential
equation for logistic population growth is

dN

dt
= λ

(
1− N

K

)
N (44)

In the logistic population growth model, the birth and death rates of indi-
viduals in the population are proportional to the population size

b(N) = b1 − b2N (45)

d(N) = d1 + d2N (46)

where b1 and d1 are the intrinsic birth and death rates, and b2 and d2
can be calculated given a carrying capacity K from:

K =
b1 − d1
b2 + d2

(47)

When b2 = d2 = 0 we recover exponential growth.
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5.1.2 Moran model

The Moran model is a classic model from population genetics and describes
a stochastic birth death process where at each time step one individual is
chosen to die and one is chosen to replicate [17] (see Supplementary Note
Figure 9). Individuals that have fitness advantages are more likely to be
chosen to replicate, the selection coefficient is often defined as relative in-
crease in the average number of offspring per generation: a fitter individual
will on average have 1+s more offspring. It has been shown that the average
fixation time (in generations) of a neutral mutation is ∝ N . In the case of
a beneficial mutation the time to fixation τfix is given by [18],

τfix =
2

s
log(N). (48)

Therefore for a fixed size neutral population, the timescales over which
mutations may rise to observable frequencies is likely longer than the age of
the tumour. Results consistent with our simulations demonstrated that if
a tumour follows a logistic growth model, the dominant signal in the VAF
distribution is that of the early exponential growth (Supplementary Note
Figure 9). Selection however can result in mutations reaching observable
frequencies rapidly.

To examine the effect of the population growth profile on subclone evo-
lution, we simulated a model of fixed population size using a Moran process,
and compared the speed with which subclones expand versus the exponen-
tial growth model described in the main text (Supplementary Note Figure
9A&B). The fitness advantage of a mutant in both fixed and growing popula-
tions was defined as the average offspring per generation (of the background
host population). We introduced a fitter mutant in the growing popula-
tion when the population was of size N, and simulated the Moran model
for fixed size N; thus a new mutant starts out at a frequency 1/N in both
cases. We followed the average frequency of the mutant over time. In the
fixed population model the fitter mutant spreads through the population
at a significantly faster rate (Supplementary Note Figure 9C; p < 0.001),
and we noted that subclonal expansions can also lead to subclonal clusters
in the VAF distribution in a fixed population (Supplementary Note Figure
9E). We note that a constant population of cells that acquires new passenger
mutations and undergoes neutral drift results in a neutral tail in the VAF
distribution that however, does not directly encode the mutation rate[1] as
in the case of exponential growth.

Under a logistic regime, initial cancer growth is exponential, slowing
to a constant population size (with turnover) once a carrying capacity is
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reached. We investigated how this pattern of population growth influenced
the measurement of evolutionary dynamics. We simulated logistic growth
where the population first grows exponentially and then transitions into a
Moran model (Supplementary Note Figure 9B). We found that assuming
for example a small carrying capacity of 104 cells, even if the fixed popu-
lation size phase is 20 times longer than the growth phase, the dominant
signature is that of the initial (neutral) growth, not the neutral drift within
the fixed size population (Supplementary Note Figure 9F). Consequently,
the mutation rate estimates match those measured in a purely exponen-
tial neutral model (figure 9F&G). We note that this is because tumours
are very large populations, and effects of neutral drift during the constant
phase are unlikely to be significant since the time it takes for variants to
rise to a detectable frequency under these conditions is proportional to the
population size N. Hence, even for barely-detectable tumours of 106 cells,
it would take approximately a million generations before seeing those drift
tails: much longer than a human lifetime. Hence in cancer data, irrespective
of whether or not the population has become constant, the VAF distribution
encodes initial tumour growth, and neutral tails do accurately inform on the
mutation rate.

5.2 Power law growth

Power law type growth is another growth law used to model tumours. The
expected allelic frequency distribution for neutral power law growth is de-
rived below. Specifically, we wish to solve equation (1) for a growth law
described by:

N(t) = 1 + btn (49)

where b is the growth rate and n is the dimension. Solving equation (1) for
M(t) give,

M(t) = πµb

∫ t

tmin

(1 + btn) dt (50)

M(t) = πµb

(
t− tmin +

b

n+ 1

(
t1+n − t1+nmin

))
(51)

Mutation frequencies are inversely proportional to the population size at the
time they arise, so f is given by:

f =
1

πN(t)
=

1

π(1 + btn)
(52)
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Figure 9: We used a Moran model to compare the dynamics between fixed size
populations and growing population, A, and found that in fixed size population se-
lection can be more rapid C. We simulated a Moran model with N = 100, and
introduced a mutation at N = 100 in the growing population so in both models the
initial frequency of the mutation f0 = 1/100, the subclone has fitness advantage
1 + s = 0.5. We then measured the frequency at a later time T , in the fixed popula-
tion size the ratio fT /f0 increases quicker than in the growing population. Shown
here are the results from 1000 simulations, dark line shows median value of these
1000 simulations, shaded ares shows 95% interval. The Moran model can also pro-
duce VAF histograms similar to the neutral case, D (no selection, 300 generations)
and the non neutral case E (1 + s = 2, number of generations = 10). However
simulating a tumour that grows logistically and transitions into a Moran model B
shows that the VAF distribution is a consequence of the early exponential dynamics.
When the population was in fixed population size Moran model phase for 20 times
longer (in generations) than it was in the growth phase, the main signature of the
VAF distribution is that of exponential growth this can be seen as we observe no
difference in our neutrality metric F, or the inferred mutation rate G, over what
would be expected from the exponentially growing model.

Under neutrality, frequency and time are interchangeable, so solving for the
frequency f(t) gives:

t =

(
1/fπ − 1

b

)1/n

(53)

Using this in M(t) we arrive at the following for the cumulative number of
mutations at a frequency f .

(54)

M(f) = πµb

((
1/fπ − 1

b

)1/n

−
(

1/fmaxπ − 1

b

)1/n

+

b

n+ 1

((
1/fπ − 1

b

)n+1/n

+

(
1/fmaxπ − 1

b

)n+1/n
))
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Removing all constants we get the following:

M(f) ∼
(

1

πf
− 1

) 1
n

+
1

n+ 1

(
1

πf
− 1

)n+1
n

(55)
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