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Supplementary Material & Methods 

Trait data collection and selection 

We searched for trait combinations that promote species with the potential to become 

invasive. To investigate this question, we extracted ant species traits from the AntProfiler 

collaborative database (https://antprofiler.ese.u-psud.fr). This database includes information 

on 2,176 ant species (134 genera) distributed across ecozones for the entire world (Fig. S1), 

an ant phylogeny (Fig. S2), and ecological traits related to their occurrence, morphology, 

behavior, and invasive status (1).  

From this database, all traits were used for the missing data imputation step, but we reduced 

the number of traits for the predictive model. The full description of the trait selection process 

is detailed and illustrated in Figure S3. Specifically, we excluded traits that were too 

correlated with other traits (i.e., Pearson’s Chi-squared Test for Count Data p<0.05). We also 

removed two traits that are not available prior to species introduction to avoid restricting our 

profiling tool to species that already moved from their native range: exotic status and 

distribution by ecozone. We then removed traits that were not significantly different between 

invasive and non-invasive species. Finally, we removed species that had too many missing 

values in order to have a maximum of ~60 % missing values per trait (2).This resulted in a 

final subset of four traits: Colony foundation, Colony structure, Nesting type and Association 

with disturbed areas and 992 species (out of 2,176). Table S1details the coding rules for the 

four traits. 

 

Missing data handling  

Despite our data collection efforts, the database contained many missing values. The two 

possible approaches to deal with missing data are deletion and imputation. Deleting missing 

https://antprofiler.ese.u-psud.fr/
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data is the simplest and most widely chosen option, but can be highly problematic when data 

are not missing at random, as this can lead to biased estimates of model parameters and 

incorrect conclusions (3–7). Removing data would also have drastically reduced the sample 

size and predictive power of the screening tool, since only 184 species had no missing values 

for all 4 traits. In this regard, we explored how missing data could be imputed in our database 

in order to minimize bias and maximize prediction accuracy. 

Missing data imputation consists of replacing a missing value by a prediction of its value. It 

has been proven that repeating missing data imputation multiple times (called multiple 

imputation) is more accurate than replacing missing values only once in order to accurately 

recover missing observations and estimate model parameters (3, 4, 7, 8). It was also shown 

that random forest methods provide highly accurate imputations and that this algorithm 

performs better when phylogenetic information is included during the process (2, 9). In light 

of this, we implemented a multiple imputation of our database using the R package 

missForest (10, 11), while including phylogenetic information following the method of 

Penone et al. (2). The details of the multiple imputation parametrization are described below. 

First, we downloaded the most recently published ant genus phylogenies (12, 13), which 

cover all of the genera present in our database. Second, we measured the strength of the 

phylogenetic signal in each of our traits in order to decide whether it was informative to 

include genus-level phylogenetic information for the multiple imputation (14). Figure S4 and 

Table S4 present the results of this analysis, which enabled us to conclude that a phylogenetic 

signal was discernible in our four pre-selected traits. This meant that using phylogenetic 

information to replace the missing values for these traits was likely to improve the quality of 

the imputation. Third, we ran a principal coordinates analysis on the phylogenetic tree. This 

type of analysis is routinely used to represent the phylogenetic distances among clades as well 

as the phylogenetic structure of a tree in the form of a series of eigenvectors (following (15, 
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16)). These eigenvectors can then be easily incorporated in a model as additional variables to 

improve the quality of the missing values replacement (2). We calibrated the multiple 

imputation by choosing both the best parameters and the best trade-off between a low 

imputation error and as many species as possible (see the procedure summary in Fig. 1, Fig 

S6 and S7). The details of the multiple imputation calibration are given below. We used out-

of-bag error estimations to calibrate the models as these were shown to accurately estimate 

imputation error (e.g., (11)). We selected the optimal number of eigenvectors to impute each 

trait (Fig. 1-Band Fig. S5). For the final multiple imputation, each trait was then imputed 

using its own optimal number of eigenvectors, varying between 1 and 26 according to the trait 

considered. Because the first eigenvectors tend to split the species relative to the most basal 

nodes, traits that need less eigenvectors for imputations might potentially be the ones that 

appeared earlier in the evolutionary history of ants. However, this also depends on the 

structure of the phylogeny. Note that by imputing the traits using eigenvectors, we might have 

inflated the phylogenetic signal of the traits and thus the phylogenetic structure of our models. 

Finally, we performed 100 imputations using the best parameters found in the preliminary 

analyses. These were 100 for the number of trees to grow in the forest (ntree=100), 6 for the 

number of variables randomly selected at each node to set-up the split of the random forest 

(mtry=6), and 15 for the maximum set of iterations (maxiter=15; see TableS1). We set a 

maximum of 15 iterations to limit the running time, while leaving enough iterations to meet 

the stopping criterion. In most cases, the stopping criterion was met before the maximum 

number of imputations. In the remaining cases, the imputation estimation might be slightly 

reduced, however, because we repeated the imputation 100 times, this should not affect our 

results. The percentage of missing values and the imputation error for each trait are provided 

in Table S1. 
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Predictive model building 

Potential future invasive species 

We modeled the invasive profile using generalized linear models with our four selected traits 

as predictors and a binomial distribution. We excluded interactions between traits to avoid 

model overfitting. The subsequent analyses were run on this list of 992 species, including all 

19 known invasive species (Fig. S8). 

We ran 100 models for each of the previously imputed datasets and used model predictions to 

determine future invasive species. For each model, we identified potentially new invasive ant 

species as those with a predicted invasiveness probability above the lower 5thcentile of the 19 

known invasive species probability distribution. Each identified species was considered to be 

potentially invasive if it was selected in at least 90 of the 100 models. In addition, we verified 

whether our models were able to correctly classify known invaders by recoding them as non-

invasive and predict them from the models with the remaining 18 invasive species (i.e., 19-1; 

leave-one-out models). Model-averaged coefficients were very similar to those of the global 

models; we thus present the results of the global models alone. 

 

Areas at risk 

Species Distribution Models (SDMs) are based on correlations between environmental 

variables and geolocalized species records and can be used to delineate potential species 

distributions (17). We built SDMs for the ant species found to have similar profiles to those of 

known invasive species in order to identify the areas that present suitable environmental 

conditions for these species and thus areas at risk of invasion. SDMs, even if based on 
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climatic variables alone, have been widely recognized as powerful tools to predict the 

potential distribution of invasive ants (18). 

We used as presence points for the models geo-referenced presence records from the Global 

Biodiversity Information Facility (GBIF, https://www.gbif.org) and Global Ant Biodiversity 

Informatics project (19), supplemented with data from the literature (20–22) (Fig. S9). 

Presence data were deeply explored before running the SDMs, removing duplicate 

observations and those taken from buildings and greenhouses. Pseudo-absences were selected 

in the study area taking into account the dispersal rate of the modeled species (10 km) to 

avoid to (1) potentially include presences as absence locations, (same niche), (2) pseudo-

replication and (3) the possible issue that absences occur in locations that are suitable for the 

species but the species has not yet had the time to reach that environment. In addition, 

pseudo-absences were generated in large numbers: 1000 if we had fewer than 1000 

occurrences for that species, 10,000 otherwise. We also made sure that they were equally 

weighted to the presences, as recommended to obtain the greatest accuracy of the predictions 

(23).We sourced the 19 bioclimatic variables (averaged from 1970 to 2000) available from the 

Worldclim 2.0 database (http://www.worldclim.org) at 10 arc min resolution (24). These 

variables represent a combination of means, extremes, variability, and seasonality of 

temperature and precipitation data that are known to influence species distribution (25). Then, 

to ensure that we did not use correlated variables in the SDMs, we measured the correlation 

between these 19 bioclimatic variables: we used a hierarchical classification method based on 

a distance metric (Pearson’s correlation coefficient at a threshold of 0.8, similarly to (26)). 

This resulted in eight variable correlation groups (Fig. S10). We then retained only one 

variable from each correlation group by selecting those that are known to limit the distribution 

of terrestrial invertebrates and that have already been applied to a range of insect species (27–

29). We used seven different SDM algorithms within the ‘biomod2’ package (30) using the R 

https://www.gbif.org/
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platform (10): generalized linear model, flexible discriminant analysis, artificial neural 

network, random forest, generalized boosting model, maximum entropy, and multiple 

adaptive regression splines. These seven algorithms were used to build an ensemble model 

(i.e. TSS-weighted average of all models used) that encompassed the variability between them 

and provided the central tendency (31). This final consensus distribution comprised the 

weighted mean, proportional to the True Skills Statistics (TSS), of the seven modeling 

techniques. Two metrics were used to evaluate the accuracy of each SDM: the True Skill 

Statistics (TSS) (32) and the Area Under the receiver operating characteristic Curve (AUC) 

(33). 

Ensemble models were run for each of the predicted invaders with sufficient occurrence 

points in order to produce individual climatic suitability distribution maps (Fig. S11). It is 

noteworthy that two species (Formica yessensis and Aphaenogaster spinosa) had very few 

occurrence points (24 and 42, respectively), meaning that the resulting distribution maps 

should be taken with additional caution. Finally, we also combined these individual 

predictions by summing each species potential distribution as binary maps in order to obtain a 

cumulative invasion risk map from these future invaders. Binary transformation was based on 

the threshold that maximized the TSS for each species. For all steps, the R code is available at 

https://github.com/caterinap/Antprofiler. The cleaned-up dataset is available upon simple 

request to the corresponding author. 
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Figure S1: Geographic distribution of the species present in our database and included in our 
model. Information in black represents invasive species (known invasive species according to the 
IUCN list), and in other colors non invasive species (all other species in our database). We had 
information about the ecozone for 961 out of the 992 species in our database. 
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Figure S2: Taxonomic coverage of our database. Grey tips show ant genera not present in the
antprofiler database. Dark blue tips show genus present in the antprofiler database, but having
too many NA (>70 %) to be included in the model (n = 22 genus). Red tips show genus
comprising invasive species (n = 15 genus, included in the model), and light blue tips represent
all other genus included in the model (n = 113 genus). This tree was adapted from Blanchard et
al. 2016. The outgroup is the genus Apis, in black on this representation.



Figure S3: Successive decisions made to select the variables used in our predictive model. FILTER 1: we removed
traits based on information that is not available prior to species introduction to avoid restricting our profiling tool to
species that have already had the chance to be moved outside their native zone. FILTER 2: we removed traits that had
too many missing values (> ~60%). FILTER 3: we computed pairwise correlations between traits and selected only non
correlated traits and traits that were correlated with invasive status (based on p>0.05).
The light grey shading and the orange arrow show traits removed at each step. Dark shading (and blue arrow) show
the selected traits at this step. The final traits retained are coloured in black.
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Fig S4: Measure of eigenvectors phylogenetic signal strength. This analysis was run before using the
eigenvectors for missing data imputation. It is a distinct method

Various metrics exist for measuring phylogenetic signal in trait data. Here, we measured the amount of
phylogenetic information in the categorical and binary traits using phylogenetic signal-representation
curves for each traits (61–63). To obtain these curves, we computed phylogenetic eigenvector
regressions, by successively adding eigenvectors to model trait variation, and plotted the corresponding
R2 against the accumulated eigenvalues (Fig. S4).

The phylogenetic signal is measured following Guénard et al (2012) method. The principle of this method
is to use an increasing number of eigenvectors as explanatory variables to model the variation in each
trait and measure the R2 of the model calibrated with each cumulated number of eigenvectors. A high R2

(vertical axis) means that the eigenvectors are powerful in explaining the variation in that particular trait,
and should therefore be used to impute the missing data in that trait.
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Fig S5: Imputation error (OOB error) according to number of eigenvectors (X axis) used for imputation for 
the 4 traits used in our models. The light blue dots show the number of eigenvectors retained for the 
imputation of each trait, i.e. the smallest number of eigenvector giving the minimum OOB error we could 
get. Each point on the graph is the OOB error averaged over 10 repeated imputations. 



Fig. S6: Steps performed to calibrate MI.

A. Principle of missing value imputation using random forest (missForest) 
Steps repeated for each trait; 
1) Replacement of the missing data by the majority value in the column. 
2) A random forest is fitted using the rest of the variables of the dataset (with n = 100 trees and 6 

variables tested at each node). Replace NA with the most frequent imputed value in the forest, 
weighted by proximity. 

3) Repeat this process iteratively until the stopping criterion is attained, i.e. when the difference 
between the nth imputed matrix and the n-1th imputed matrix increases for the first time. The details 
of the algorithm can be found in Stekhoven & Bühlmann, 2012 (Missforest-Non-parametric missing 
value imputation for mixed-type data. Bioinformatics 28:112–118). 
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Fig. S7: Comparison of imputation error with categorical traits (left) and their corresponding binary traits 
(right). Imputation error is an order of magnitude greater when dealing with categorical traits, compared 
to binary ones. To keep imputation error as low as possible, we transformed the categorical trait “colony 
structure” and “nesting type” into binary traits. OOB: out-of-bag error.
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Fig. S8: (A) Visual analysis of missing values repartition among traits (columns) and species (lines) for the 
992 ant species used for the model, and (B) evolution of the number of ants retained according to the 
number of NA tolerated per ant. 
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Missing value     

A

B



Fig. S9: Occurrences of 18 of the potential invasive and super-invasive ants used to build each species’s SDM, 
gathered from GBIF & GABI databases, and from Wetterer’s work. 



Supplementary Figure S9 (cont.)



Fig. S10: Correlation groups between climatic variables and signification of climatic variables. Hierarchical 
ascendant classification based on distance = (1- Pearson’s r), where red rectangles represent correlated 
variables at a threshold of 0.8 ((i.e. distance < 0.2) and green shaded variables are the ones we used for the 
SDMs. 
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bio1 = annual mean temperature
bio2 = mean diurnal range (mean of monthly (max temp - min temp))
bio3 = isothermality (bio2/bio7) (* 100)
bio4 = temperature seasonality (standard deviation *100)
bio5 = max temperature of warmest month
bio6 = min temperature of coldest month
bio7 = temperature annual range (bio5-bio6)
bio8 = mean temperature of wettest quarter
bio9 = mean temperature of driest quarter
bio10 = mean temperature of warmest quarter
bio11 = mean temperature of coldest quarter
bio12 = annual precipitation
bio13 = precipitation of wettest month
bio14 = precipitation of driest month
bio15 = precipitation seasonality (coefficient of variation)
bio16 = precipitation of wettest quarter
bio17 = precipitation of driest quarter
bio18 = precipitation of warmest quarter
bio19 = precipitation of coldest quarter



Fig. S11: Predicted climatic suitability distribution map for each of the 18 potential invasive ants, under
current climatic conditions (the maps of the two super-invasive species are in Fig3). The number
below each map corresponds to the number of occurrence points available to run the SDM. The
suitability probability is increasing from pale to dark blue. Since the exact native range is often
unknown, the projected climatic suitability includes the native range of species.
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Supplementary Figure S11 (cont.)
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Table S1: Traits used for the model, description of their coding rules, 
percentage of their missing values in the dataset with 992 species, 
number of eigenvectors and imputation error (out-of-bag error).

Trait name Colony Foundation Colony structure
Association with 
disturbed areas

Nesting type

Coding rules for 
binary traits

1: independent 
colony foundation,
0: otherwise

1: forms super-
colonies 
(supercolonialist), 
0: mono or 
polydomous

1: preferably found 
associated in disturbed 
areas (disturbance
specialist), 
2: otherwise

1: species found in > 
1 nesting type 
(ubiquitous), 
0: otherwise

Percentage NA in 
data

62.6 62.6 52.5 5.7

Number eigenvectors 
for imputations

26 1 1 1

Mean Imputation 
errror ± SD in 100 
datasets (OOB)

0.010 ± 0.011 0.006 ± 0.005 0.153 ± 0.030 0.0005 ± 0.0009



Table S2: Phylogenetic signal calculated for the ten traits with lower percentage of missing values,

based on Blanchard and Moreau (2016) genus level phylogenetic tree. This signal corresponds to the

mean R2 of the phylogenetic eigenvector regressions for categorical and binary traits, and to the

Pagel’s 𝝀 for the only continuous trait (min. body size). Traits used in the predictive models are in bold.

Trait Phylogenetic signal

Habitat Generalist 0.766

Disturbance Specialist 0.905

Independent colony fundation 0.828
Polygyny 0.935

Super coloniality 0.995
Monodomous 0.816

Nesting generalist 0.980

Monogyny 0.725

Omnivorous (diet generalist) 0.420

Number of workers 0.848

Body Size 0.412



Table S3: Results of the linear model to predict invasiveness probability. Chisquare Wald values are
averaged over 100 models fitted with 992 ant species. Model averaging provided very similar results as
the ones presented here.

Trait Df
Chisq mean

(100 models)

Chisq sd

(100 models)
Mean P-value

Super colonial
(colony structure) 1 18.86 0.81 < 0.001

Disturbance Specialist
(association with disturbed areas) 1 5.94 0.37 0.01

Ubiquitous
(nesting type) 1 4.98 0.59 0.03

Independent foundation
(colony foundation) 1 5.31 0.35 0.07



A. Models with all 992 species B. Models with 991 species 
(leave-one-out invasive)

species
Percentage 

models

Invasiveness 
probability 
(mean 100 

models)

Percentage 
models

Invasiveness 
probability (mean 

1900 models)

Technomyrmex difficilis 100 0.87 100 0.86

Lepisiota canescens 100 0.83 100 0.82

Anoplolepis custodiens 98 0.38 98 0.37

Formica yessensis 100 0.23 95 0.23

Tapinoma litorale 100 0.17 100 0.16

Tapinoma sessile 100 0.17 100 0.16

Ochetellus glaber 100 0.17 100 0.16

Lasius fuliginosus 100 0.14 100 0.13

Aphaenogaster spinosa 100 0.13 100 0.12

Cardiocondyla emeryi 100 0.13 100 0.12

Cardiocondyla minutior 100 0.13 100 0.12

Dolichoderus_bispinosus 100 0.13 100 0.12

Lasius_sabularum 100 0.13 100 0.12

Monomorium_minimum 100 0.13 100 0.12

Neivamyrmex_nigrescens 100 0.13 100 0.12

Neivamyrmex pilosus 100 0.16 100 0.12

Tetramorium bicarinatum 100 0.23 100 0.12

Tetramorium simillimum 100 0.16 100 0.12

Table S4: Predicted invasive species using A) 100 models and 992 species (results presented in the
main text); and for B) 1900 models (i.e. 100 models*19 invasive) and 991 species, where one of the
19 known invasives were excluded from the analyses. The percentage of models where the species
was selected as invasive and the average invasiveness probability are given.



Table S5: Predicted invasiveness probabilities for already known invasive species when they were
coded as 0 and then predicted by the model (leave-one-out invasives). These results show that our
models were accurate in predicting invasiveness. Note that Acromyrmex octospinosus was not
identified as invasive by our models due to its very low invasiveness probability (see manuscript)

Invasive species Percentage models
Invasiveness probability

(mean 1900 models)

Anoplolepis_gracilipes 100 0.83

Brachyponera_chinensis 100 0.17
Lasius_neglectus 100 0.87

Linepithema_humile 100 0.83

Monomorium_floricola 100 0.13

Monomorium_pharaonis 100 0.83
Myrmica_rubra 100 0.83

Nylanderia_pubens 100 0.83

Paratrechina_longicornis 100 0.83

Pheidole_megacephala 100 0.39

Solenopsis_geminata 100 0.87
Solenopsis_invicta 100 0.87

Solenopsis_papuana 100 0.13
Solenopsis_richteri 100 0.17

Tapinoma_melanocephalum 100 0.83

Technomyrmex_albipes 100 0.87

Trichomyrmex_destructor 100 0.87

Wasmannia_auropunctata 100 0.83
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