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Fig. S1. Reduced survival and spontaneous disease in N153S and V154M SAVI heterozygous mice 
293T cells were transfected with plasmid encoding either the human WT or mutant Human STING variants 
along with NFkB reporter gene (A, Left) Representative mouse (A, Middle) and spleen pictures (A, Right) of 
5-week-old males, WT, N153S HET and V154M HET mouse. Visualization of Sanger sequencing to 
differentiate the WT allele from the N153S HET allele. Nucleotide “A” (B, upper panel) in WT allele was 
mutated to “G” (B, lower panel) Nucleotide “C” (B, upper panel) to “T” (B, lower panel) was a silent 
mutation. For the V154M HET allele nucleotides “G” and “T” (C, upper panel) were mutated to “A” and
“G” (C, lower panel) Nucleotide “C” (C, upper panel) to “T” (C, lower panel) and “G” (C, upper panel) to 
“T” (C, lower panel) were silent mutations. (D) Lysates were prepared from total lung tissue from WT, N153S 
HET and V154M HET and probed for STING protein and Actin was used as loading control.
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Fig. S2. SAVI mutant mice express interferon and 
inflammatory gene signature
RNA from total spleen (A) and total bone marrow (B) 
was isolated from 4-6 weeks old mice and mRNA 
profiling of ISGs was performed using nanostring 
technology. The data obtained was normalized and fold 
change was calculated over reads from WT mice. 
DMXAA was injected IP at 10mg/ml, 50ul/mouse for 8 
hours and RNA from total spleen was used. 
(C) BMDM lysates were prepared from 5-6 weeks old 
WT, N153S or V154M HET mice and probed for
pIkBa and actin as loading control. WT cells treated with 
100ng LPS for 30 min were used as positive
control. (D) WT BMDMs transfected with 2ug/ml cGAMP 
were either untreated or treated with 5um
Bafilomycin A for the indicated time points and total cell 
lysates were probed for STING and actin as
loading control. (E) pIkBa levels were measured in total 
cell lysates in WT BMDMs transfected with
2ug/ml cGAMP as well as N153S and V154M mutant 
BMDMs treated with 5um Bafilomycin A for
indicated time points.
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Fig. S3. V154M mutant presents 
severe immune cell alterations as 
compared to N153S SAVI mutant 
mice 
Quantification of CD11b+ myeloid 
cell numbers in the spleen is shown 
(A). Representative flow plots for 
litter mate WT and respective SAVI 
mutants that were 6 weeks old, 
myeloid cells were identified as 
CD11b+ (Panel B), CD11b+ Ly6Ghi 
were used as markers to identify 
percent neutrophils (Panel C) 
percentages of splenic T cells were 
calculated by TCRb+ staining (Panel 
D) CD19+ were quantified as
percent in SAVI mutants and their
respective WT littermate controls
(Panel E). Spleens from 16-20
weeks old mice were analyzed for
CD19+ cells and quantified as
percent (Panel F). The activation
status of T cells was measured
using mean fluorescence intensity of
CD69 and MHC Class II on CD19+
cells was used as activation marker
for B cells (Panel G).
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Fig. S4. SAVI mutations cause abnormal lymphocyte development 
Representative flow plots for litter mate WT and respective SAVI mutants for percentages of CD4-CD8- double 
negatives in thymus (A). Bone marrow of 16-20-week-old mice were analyzed for immature or mature B cells (B). 
Representative flow plots for myeloid progenitors as characterized by lin-sca1-ckit+ (C). Spleen (D) and bone 
marrow were analyzed for percentages of immature RBCs as characterized by Ter119+CD71+ (E).  
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Fig. S5. IRF3, IFNAR and MLKL deficiency fail to rescue V154M SAVI phenotype
(A) RNA from bone marrow derived macrophages was isolated and mRNA profiling of ISGs was
performed using Nanostring technology. The data obtained was normalized and fold change
was calculated over reads from WT mice.
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Fig. S6. Bone Marrow chimeras reveal distinct disease outcomes between the N153S 
and V154M mutant mice
Percentage of CD11b+ Ly6Ghi neutrophils in spleen for WT to WT, NS into WT and VM into 
WT chimeric strains (A). Flow plots for CD19 + B cells (B) and TCRb+ T cell percentages from
spleen are shown (C). Within the splenic TCRb+ gate, CD45.2+, CD45.1+ cells were analyzed
to obtain percentages of donor or recipient derived T cells respectively (D). The analysis was
performed on reconstituted mice, 8-10 weeks after the bone marrow transplants. The chimera
experiment was repeated twice with n=8-10 mice per genotype.



Supplementary Tables: 

Table S1: Histology evaluation (H&E) of tissues in aged SAVI mice 

Liver n=5 
(16 weeks) 

Kidney n=5 
(16 weeks) 

Heart n=5 
(16 weeks) 

Lung n= 5 mice 
(8-24 weeks)  
Inflammation 

Lung n= 5 mice 
(10-24 weeks)  
Fibrosis 

WT 0 0 0 0 0 
N153S 2 0 0 6 0 
V154M 2 0 0 11 5 

Average score of inflammation in total of 5 mice, scoring scale as described in (1, 2) 

Table S2: Summary of lung disease in SAVI patients with various STING mutations 

References STING 
Mutation 

No. of 
patients 

Lung disease Direct comparison of V155M 
and N154S STING mutants 

Liu et al. (3) V147L 1 No Interstitial lung disease/No 
fibrosis Enhanced IFNβ promoter activity 

in V155M as compared to 
N154S  

N154S 4 2/4 Interstitial lung disease and 
fibrosis 

V155M 1 Interstitial lung disease and 
fibrosis  

Chia et al. (4) N154S 1 Interstitial lung disease/ND N/A 

Clarke et al. (5) V155M 1 Interstitial lung disease/ND N/A 

Omoyinmi et al. (6) V155M 1 Interstitial lung disease and 
fibrosis 

N/A 

Yu et al. (7) V155M 1 Interstitial lung disease and 
pulmonary hypertension 

N/A 

Jeremiah et al. (8) V155M 4 3/4 Interstitial lung disease and 
fibrosis 

N/A 

Picard et al. (9) V155M 3 Interstitial lung disease and 
fibrosis 

N/A 

Munoz et al.  (10) V147M 1 Interstitial lung disease/ND N/A 

Melki et al. (11) R281Q 1 Interstitial lung disease and 
fibrosis 

N/A 

R284G 1 Normal Lung Function N/A 
C206Y 1 Normal Lung Function N/A 

Saldhanha et al. (12) R284S 1 Pulmonary hypertension N/A 
Konno et al. (13) R284S 1 ND N/A 
König et al. (14) G166E 5 No Interstitial lung disease Increased production of IFNβ in 

N154S as compared to G166E 
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