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AutoTube Manual 
 
 
This file contains the licence agreement, installation and user guideline for AutoTube. AutoTube 
quantifies vascular parameters such as the vessel area, width, skeleton length, and the number of 
branching points from 2D images of vascular networks in tissues or in in vitro assays. AutoTube is 
freely available, comprises a simple Graphical User Interface (GUI), and helps to perform 
otherwise highly time-consuming image analyses in a rapid, automated objective, and reproducible 
manner.  
 
The software is provided as a source code and is available on GitHub 
under https://github.com/autotubularity/autotube. It has been tested on three different operating 
systems: macOS (10.12 Sierra and 10.13 High Sierra), Windows 8 and 10, and Ubuntu 16.04. We 
suggest to run the application on computers with at least 8GB of RAM Memory.  

Since the source code of AutoTube is freely available, this offers the possibility for further 
adaptation or extension of the software according to the specific research needs. An exact copy of 
the software at the time of the paper acceptance has also been deposited under the following link: 
https://tinyurl.com/y9sopo94. It is intended for archiving purposes. 

Potential users of AutoTube can run the software online prior to using it locally on their own 
machines. To do so, we have created a password-protected Virtual Machine (VM). To obtain 
access to the VM, interested users are encouraged to contact the corresponding author by e-mail. 
 
 

 
Table of Contents:  
 
 

1) Licence Agreement 
 
2) Source Code       
 
3) Graphical User Interface (GUI) 
 
4) Source Code Functions 
    
 
 
 
 
Copyright 2018, Pharmaceutical Immunology Group of the Institute of Pharmaceutical Sciences 
(IPW) of ETH Zurich (ETHZ): http://www.pharmaceutical-immunology.ethz.ch
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1. Licence Agreement 
 
AutoTube is an open source software. If you use all or any portion of this software, we ask 
that you quote the original paper (Montoya, Russo, Runge et al., Angiogenesis 2018) in 
which AutoTube was described.  
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2. Source Code 
 
The source code of AutoTube can be accessed from the following link: 
https://github.com/autotubularity/autotube 
 
To run AutoTube from the source code, you have to download the autotube_source.zip file 
from the link and store it locally. After uncompressing the file, three directories will be 
extracted: 
 

 
 
The code directory contains the image processing functions to analyse the images. The 
gui directory contains the AutoTube graphical interface. Finally, the libs directory contains 
third-party libraries used by AutoTube. To run AutoTube directly from Matlab, double-click 
on the AutoTube.m file contained inside the gui directory. Then follow the next steps: 
 
Step 1: Once Matlab is opened, click on the Run green button on the Editor Toolbox (as 
shown in the red rectangle in the Figure below): 
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Step 2: After clicking on the Run button, the AutoTube GUI is opened and is ready to use. 
You should get the same Figure below: 
 

 
 
Another possibility of running AutoTube from Matlab is to use the guide command from the 
Matlab Console. To do so, follow the next steps: 
 
Step 3: Type guide AutoTube.fig in the Matlab Command Window as shown in the Figure 
below: 
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Step 4: The AutoTube.fig GUI is opened. Click next into the Run green button: 
 

 
 
Step 5: The AutoTube GUI is opened and is ready to use. 
 

 
 
Step 6: To validate that AutoTube is running smoothly, you can process one test image. 
To do so, download the test image named test_image.tif from the following link: 
https://tinyurl.com/ycnbmmxh. Store the image locally to your hard drive. Note that also the 
automatic results from AutoTube are going to be stored in this directory. In the example 
below, the .tif image was downloaded into the MATLAB directory under Documents. 
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Step 7: In the AutoTube GUI click "select folder" (No. 1 in the Figure below) to choose the 
directory containing the image, in our example /Documents/MATLAB". Next, adjust the 
"input color channel" to red (No. 2 in Figure) and set the "remove small regions" value to 
0.2 (No. 3 in Figure). To run the analysis, click on the button "Analyze" (No. 4 in the Figure 
below). 
 

 
 
Step 8: Once the analysis is finished, you will find a new directory named "output" at the 
same location, where the test image was downloaded. You will find additional 
subdirectories containing the results from the image processing steps conducted by 
AutoTube. 
 

 
 
 
 
 
Important note:  
The BM3D version included in the source code of AutoTube, when running on Linux or 
Mac OS operating systems (Beta version, obtained directly from the authors and to be 
soon released under http://www.cs.tut.fi/~foi/GCF-BM3D/), is different from the BM3D v2.0 
version used when running on Windows (v2.0, released on January, the 30th of 2014 under 
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http://www.cs.tut.fi/~foi/GCF-BM3D/). This is due to the fact that the current official BM3D 
v2.0 is not compatible with the newest versions of Mac OS in combination with Matlab 
versions > R2017a. To solve this issue, the authors of BM3D are planning to officially 
release soon the modified Beta version, which is already included in the source code of 
AutoTube. 

Please note that our validation experiments confirmed that the use of the different BM3D 
versions only has a minute impact on the overall analysis results. Specifically, we analysed 
an entire vascular data set (belonging to Figure 3 and Supplemental Figure 2 of the 
AutoTube manuscript) with AutoTube that either employed the Windows- or the MacOS-
based BM3D version. In this comparison both BM3D analysis modes delivered highly 
similar results, in terms of absolute values measured, standard deviations and biologic 
interpretation (see Figure 1, below). Thus, no major differences in the results are expected 
when using either of the two AutoTube-embedded BM3D analysis modes.  

 
 
 

Figure 1: Comparison of the 
impact Windows- (version 2.0) 
or Mac OS-based (beta 
version) BM3D-denoising on 
the analysis of the lymphatic 
vasculature in WT or IL-7Rα -/- 
murine ear skin. AutoTube was 
run on the same image dataset 
using either the Windows- or 
Mac OS-based BM3D-denoising 
mode. The dataset used for the 
analysis is the same as for 
Figure 3 and Supplemental 
Figure 2 of the AutoTube paper 
and can be downloaded from 
https://doi.org/10.3929/ethz-b-
000262426. Parameters 
analysed include the area 
covered by lymphatic vessels 
(LV area), the absolute length of 
the skeleton (LV length), the 
average vessel width (LV width) 
and the number of branching 
points (# branching points) per 
picture. Correlation analyses are 
shown in (A) and standard 
column graphs in (B).  
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3. Graphical User Interface (GUI) 

 
 
Figure 2: Screenshot of the Graphical User Interface (GUI) of AutoTube. The individual 
steps (numbers in RED) are explained in detail in the text below. 
  
In this manual, we describe the necessary steps that the User needs to follow to analyse a 
set of tube images. In addition, the different parameters of the GUI are explained and 
suggested values are proposed. We tried to make the AutoTube GUI intuitive and easy to 
use. In the following, the most important steps for the correct usage of the software are 
explained. Note that each of the steps are associated with a number in red in Figure 2.  
 
Step 1: Click on the “Select Folder” button to locate the directory containing the (*.TIF, 
*.JPEG, *.PNG) files of your experiments. You should select the top directory containing 
the images. After that, click “Enter”. You’ll next see that the list of image filenames gets 
displayed. 
 
Step 2: Microscope Setting parameters. These parameters are related to the microscope 
and are used to convert distances from pixels to µm.  
There are five main parameters: 

• Object Magnification: this is the power of the microscope objective. Example values 
are: 10x, 20x, and 40x. 

• Lens Magnification: extra magnification of e.g. 1.25x, 1.6x, or 2x. Leave it at 1 if 
your microscope does not have any extra lens magnification. 

• C-Mount: is usually set to 1. Other values, e.g. 0.45x, may be used if a camera 
adapter with that power of magnification is in place. 

• Camera Pixel Size (CCD): linear size in µm of a physical pixel (assumed to be 
square) in the CCD chip of the camera used. Typical values are in the range 0.5 - 
16 µm.  
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• Binning: combines pixels in the camera to one single pixel in the acquired image - 
typically used under low light conditions. The common options are 1 (1X1), 2 (2X2), 
or 4 (4x4). Set this value to 1 as default and it represents that each pixel in the 
camera is mapped to its own pixel in the output image. 
 

 The final image pixel size is given by the following equation: 

pixel size = camera pixel size * binning / (obj. mag. * lens mag. * c-mount) 
 
 
Step 3: Pre-processing parameters for the input images. These parameters are 
responsible for reducing detrimental effects from image acquisition, such as poor contrast, 
uneven illumination or noise (For more details, please read the Image Pre-processing 
subsection in the Materials and Methods Section of the paper). There are four main 
parameters to be tuned: 
 
• Input Colour Channel: the colour channel over which the analysis is going to be 

performed. 
• Adjust Intensity: choose whether an intensity adjustment correction shall be 

performed. You can choose among three different options: auto-contrast operation, 
global histogram equalization, and adaptive histogram equalization. The auto-contrast 
and histogram equalisation options are useful when the contrast across the different 
image regions is homogeneous, otherwise, use adaptive histogram equalization. 

• Correct Illumination: choose whether the illumination should be normalized and set the 
approximate diameter size (in pixels) associated with the circular uneven illumination 
effect. Note that this parameter is related to the microscope lenses diameter in pixels. 
The lenses diameter size that we considered for both lymphatic (LV) and blood 
vessels (BV) was set to 51, and for the acquisition settings of our images, a value in 
the range 40-60 pixels. 

• Correct Noise: choose whether noise shall be removed from the input images. Options 
include: BM3D or Wiener Filtering. BM3D is a more robust de-noising method that 
should be preferred and is the default option for image de-noising. The Wiener filter is 
a less computationally heavy approach, preferred when results should be obtained 
faster.  

 
 
Step 4: Tube-Detection parameters. They are responsible for the actual partition of the 
images into foreground (vessels) and background regions. For more details, refer to the 
Tube Detection subsection in the Materials and Methods section of the paper. Five main 
parameters can be tuned here: 
 
• Detect Finer Tubes: when selected, finer tubes are detected by looking for image 

regions containing edges.  
• Highlight Tubes: when selected, the Frangi Vesselness Filter is applied. The User also 

has to give as input an estimate in pixel values of the width of the tubes. This option is 
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especially useful when the quality of the staining is low and also when the images 
exhibit some artefacts that do not belong to the tubes. We saw empirically that for 
blood vessels, the values of 3, 5, or 7 obtained good results, while for lymphatic 
vessels, we used values of 11, 13, or 15.  

• Remove Small Regions: after thresholding, regions whose area is below a given 
percentage of the total image size, are removed. By default, all regions smaller than 
1% of the total image size are removed. 

• Fill Holes: after thresholding, it is possible to fill holes/gaps in the detected vessels. 
The User has to define the area in pixels of the holes to be filled. 

• Threshold Type: The User can select different Thresholding techniques including, 
Otsu/Multi-Otsu, Kittler, and Adaptive (CLAHE). The Otsu Thresholding technique is 
the most conservative Thresholding option. This option is recommended when the 
images are especially clean and staining is strong. Multi-Otsu is an extension of the 
Otsu Method, in which additional tubes are detected by considering more pixel 
classes. In our analysis, we fixed the number of pixel classes/modes to 3, one for the 
background pixels and the other two for the vessels. Especially when the staining is 
weak, the third class covers vessel regions that are otherwise not detected. Multi-Otsu 
is the default option. The Kittler method is sensitive to local noise, however it is able to 
detect tubes even in weak stained images. Finally, the Adaptive method achieves 
especially good performance when the images exhibit uneven illumination factors in 
different regions. For more details and references, please read the Materials & 
Methods section of the AutoTube manuscript.  

 
 
Step 5: Tube-Analysis parameters. They are used when computing the morphometric 
properties of the detected vessels. In specific, they are useful for post-processing the 
detected tubes. 
• Compute Tube Envelope: this option computes the convex-hull over the detected 

tubes (tube-region envelope) and returns the area of the detected tubes over the area 
of the envelope. This value is subsequently stored in the output statistical file. 

• Remove Short Ramifications: this option removes the ramifications of the skeleton that 
are shorter than a given pixel value. The User selects the minimum-length for the valid 
ramifications. For BVs, we found that a good initial value is 30pix and for LV we set 
this parameter to 15pix, when both images are acquired using a 10x objective. 

• Merge Branches Spatially: when the quality of the stainings is low, some image 
regions appear pixelated. Therefore, the software occasionally detects too many 
branching points in close proximity. Branching points that are very close together are 
typically false-positives and therefore can be merged. The User defines the radius of 
the circular regions over which the branching points are averaged. We found that for 
BV this parameter can be set up to 15pix (~ 25 µm), while for LV we used a parameter 
value of 10pix (~ 16.7 µm). 

 
For more details, please read the Tube Analysis subsection in the Materials and Methods 
Section of the paper. 
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Step 6: Analysis. Once the parameters are configured and the User clicks on the “Analyse 
Image” button, the selected images are processed and the morphometric properties are 
computed. Note that the label of the button gets automatically updated based on the 
number of images selected, i.e if only one image is selected, then the label of the button is 
“Analyse 1 Image”, however there is no limit on the total number of images selected for the 
analysis. Once an image is analysed, then the next image gets automatically processed 
until all selected images are analysed. On the other hand, a total number of 9 output 
directories are created on disk to store the output after applying each image processing 
step. Note that storing the images after each processing step helps the User to have a 
better understanding of the effect of the parameter values. The User can next adapt the 
parameters accordingly. Examples of directories include the “01_adjusted” directory, 
where the images after intensity-adjustment are stored. In the directory “08_overlays”, the 
final skeleton and branch points are stored for each image. Finally, in the directory 
“09_statistics”, an excel file is created containing the morphometric properties for each 
processed image. 
 
Step 7: Manual Correction. It is possible that after the automatic analysis of the images 
some false-positive or false-negatives tubes might need to be corrected. To do so, the 
User can paint/add circular regions corresponding to “missing” tubes by left-clicking with 
the mouse on the “Tube Detection” Image in Tube Detection panel. This will add for each 
click a circular spot. Also, to remove false-positive tubes, the User needs to right-click with 
the mouse, the regions that should be removed, on the “Tube Detection” Image in Tube 
Detection panel. Every time this is executed, the User can adapt the size of the Brush, by 
changing the parameter value in the Brush-slider. 
 
Step 8: Recompute Skeleton. After having manually corrected the detected tubes, the 
morphometric tube properties (e.g., skeleton, branch points) need to be recomputed for 
the new tubes. To do so, the User needs to click on the “Recompute Skeleton” button. 
Once the processing is finished, the new skeleton and branching-points are displayed in 
the “Tube Analysis” panel. If needed, the User can modify again the detected tubes. Note 
that for each single image that needs to be updated, this step needs to be repeated. 
 
Step 9: Statistics. Once the User is satisfied with the detected tubes, the “Statistics” button 
is clicked to generate a csv file containing the statistics of the morphometric tube 
properties. The excel file can be found in the “09_statistics” directory that is found in the 
“output” directory, at the same location, where the images are stored on disk. The name of 
the file is stats_summary_skelcut{digit1}_branchcut{digit2}.csv 
The variable digit1 corresponds to the value used for defining the minimum-length of valid 
ramifications (see Step 4). The variable digit2 corresponds to the value of the radius set to 
average the branching points (see Step 4). 
 
Note that the csv file will contain the extracted geometrical properties in both pixel 
and µm units. For that purposes, the column names in the csv file will be followed 
respectively by “(pix)” or “(µm)” in their titles to denote the used units. 
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4. Source Code Functions 

In this Section, we present the core image processing functionalities of AutoTube. They 
involve: (i) intensity adjustment, (ii) correction of uneven illumination, (iii) image denoising, 
(iv) tube detection, and (v) tube analysis. For each of these functionalities, a description on 
the header of the function is included which contains the input and output variables of the 
given function together with a sentence explaining the goal of the given function.  

 

function im_adj = doAdjust(im, opts) 
% doAdjust: this function adjust the intensity of a given input image. By 
% default an "adaptive histogram equalization" transform is applied. 
%  
% inputs: 
%       im: a 2D gray-level image. 
%       opts: a matlab structure containing the type of intensity 
%           -> opts.adjustment (string) adjustment to be applied, 
'autocontrast', 'global', or 'adaptive' (default) 
% 
% output: 
%       im_adj: intensity-adjusted image. 
  
    if ~isfield(opts, 'adjustment') 
       opts.adjustment = 'autocontrast';  
    end 
     
    opts.adjustment = lower(opts.adjustment); 
     
    if isempty(strfind(opts.adjustment, 'autocontrast')) == 0 
        im_adj = imadjust(im);  
    elseif isempty(strfind(opts.adjustment, 'global')) == 0 
        im_adj = histeq(im); 
    elseif isempty(strfind(opts.adjustment, 'adaptive')) == 0 
        im_adj = adapthisteq(im); 
    else 
        im_adj = adapthisteq(im); 
    end 
end 
 
 
function im_illu = doIlluCorrection(im, opts) 
% doIlluCorrection: this function normalizes illumination from a gray-level 
image 
% using the top-hat transform. 
%  
% inputs: 
%       im: a 2D gray-level image. 
%       opts: a matlab structure containing the parameters for the 
%             illumination correction. The default size of the circular 
%             kernel is of 51. 
% output: 
%       im_illu: 2D illuminated-normalized image. 
  
    if ~isfield(opts, 'illumination') 
        opts.illumination = []; 
    end 
  
    if ~isfield(opts.illumination,'seSzeIllu') 
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        se = strel('disk', 51); 
    else 
        se = strel('disk', opts.illumination.seSzeIllu); 
    end 
     
    op  = imopen(im, se); 
    im_illu = im - op; 
end 
 
function im_den = doDenoising(im, opts) 
% doDenoising: this function denoises an input image, i.e. reduces noise. 
% By default a BM3D-based denoising is applied. 
%  
% inputs: 
%       im: a 2D gray-level image. 
%       opts: a matlab structure containing the type of denoising to be 
%               applied. 
%       -> opts.denoising.type: (string) type of denoising to be applied: 'BM3D' 
or 'wiener' filter. 
% 
% output: 
%       im_den: denoised image. 
  
    if ~isfield(opts, 'denoising') 
       opts.denoising= [];  
    end 
  
    if ~isfield(opts.denoising, 'type') 
       opts.denoising.type = 'BM3D';  
    end 
     
    if ~isfield(opts.denoising, 'bm3d') 
       opts.denoising.bm3d = '';  
    end 
     
    if ~isfield(opts.denoising.bm3d, 'sigma') 
       opts.denoising.bm3d.sigma = 100;  
    end 
     
    if strcmpi(opts.denoising.type, 'BM3D') 
        im = im2double(im); 
        if ispc 
            [~, im_den] = BM3D_win(1, im, opts.denoising.bm3d.sigma); 
        elseif ismac || islinux 
            [im_den, ~] = BM3D_mac_linux(im, opts.denoising.bm3d.sigma/255.0, 
'np'); 
        else 
            error('Operating System not supported!'); 
        end 
    elseif strcmpi(opts.denoising.type, 'wiener') 
        [im_den,~] = wiener2(im, [5 5]); 
    else 
        error('Unkown denoising method: %s\n', opts.type); 
    end 
end 
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function imFrangi = doFrangi(im, opts) 
% doFrangi: this function applies the Frangi filter on a given input image. 
%  
% inputs: 
%       im: a 2D gray-level image. 
%       opts: a matlab structure containing the parameters for the frangi 
%               filter. 
% 
% output: 
%       imFrangi: frangi-vesselness response. 
% 
% references: for more details on the method, refer to: 
%             Frangi et al. Multiscale Vessel Enhancement Filtering 
  
    if ~isfield(opts, 'tubularity') 
        opts.tubularity = [ ]; 
    end 
     
    if ~isfield(opts.tubularity, 'beta1') 
        opts.tubularity.beta1 = 0.5; 
    end 
     
    if ~isfield(opts.tubularity, 'beta2') 
        opts.tubularity.beta2 = 15; 
    end 
     
    if ~isfield(opts.tubularity, 'blackwhite') 
        opts.tubularity.blackwhite = false; 
    end 
     
    if ~isfield(opts.tubularity, 'sigmaInit') 
        opts.tubularity.sigmaInit = 1; 
    end 
     
    if ~isfield(opts.tubularity, 'sigmaRatio') 
        opts.tubularity.sigmaRatio = 2; %sqrt(2); 
    end 
     
    if ~isfield(opts.tubularity, 'sigmaEnd') 
        opts.tubularity.sigmaEnd = 5; 
    end 
  
    sigmas     = 
opts.tubularity.sigmaInit:opts.tubularity.sigmaRatio:opts.tubularity.sigmaEnd; 
    beta       = 2*(opts.tubularity.beta1)^2; 
    correction = 2*(opts.tubularity.beta2)^2; 
     
    filtImArr = zeros([size(im) numel(sigmas)]); 
     
    for ii=1:numel(sigmas) 
         
        [ixx, ixy, iyy] = do_hessian(im, sigmas(ii)); 
         
        ixx = sigmas(ii)^2*ixx; 
        ixy = sigmas(ii)^2*ixy; 
        iyy = sigmas(ii)^2*iyy; 
         
        [lambda2, lambda1] = eig_image(ixx, ixy, iyy); 
         
        % Compute some similarity measures 
        lambda1(lambda1==0) = eps; 
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        Rb = (lambda2./lambda1).^2; 
        S2 = lambda1.^2 + lambda2.^2; 
  
        % Compute the output image 
        imFilt = exp(-Rb/beta) .*(ones(size(im))-exp(-S2/correction)); 
  
        if(opts.tubularity.blackwhite) 
            imFilt(lambda1 < 0)=0; 
        else 
            imFilt(lambda1 > 0)=0; 
        end 
         
        filtImArr(:,:,ii) = imFilt; 
    end 
     
    imFrangi = max(filtImArr, [], 3); 
end 
 
 
function [im_bw, varargout] = doThresh(im, opts) 
% doThresh: this function performs image thresholding on a gray-level 
% image. 
%  
% inputs: 
%       im: a 2D gray-level image. 
%       opts: a matlab structure containing parameters for the thresholding 
%             type: 
%          -> opts.thresh: otsu/multi-otsu/kittler/adaptive. By default otsu is 
used. 
% 
% output: 
%       im_bw: 2D binarized/thresholded image. 
  
    if ~isfield(opts, 'thresh') 
       opts.thresh = 'kittler';  
    end 
     
    if ~isfield(opts, 'fillSmallHoles') 
       opts.fillSmallHoles = true;  
    end 
     
    if ~isa(im,'uint8') 
        im = im2uint8(im); 
    end 
     
    opts.thresh = lower(opts.thresh); 
  
    im_gray = []; 
    if strcmpi(opts.thresh, 'otsu') 
        level = graythresh(im); 
        im_bw = imbinarize(im,level); 
    elseif strcmpi(opts.thresh, 'multiotsu') 
        thresh = multithresh(im, 3); 
        seg_I = imquantize(im, thresh); 
        im_bw = seg_I > 1; 
    elseif strcmpi(opts.thresh, 'kittler') 
        im = im2uint8(im); 
        [optThresh, ~ ] = kittler( im ); 
        im_bw       = zeros(size(im)); 
        im_bw(im > optThresh) = 1; 
        im_gray     = im; 
        im_gray(im < optThresh) = 0; 
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    elseif strcmpi(opts.thresh, 'adaptive') 
        im = im2uint8(im); 
        T = adaptthresh(im, 0.5); 
        im_bw = imbinarize(im,T); 
    else 
        level = graythresh(im); 
        im_bw = imbinarize(im,level); 
    end 
     
    if opts.fillSmallHoles 
       filled     = imfill(im_bw, 'holes'); 
       holes      = filled & ~im_bw; 
       bigholes   = bwareaopen(holes, 30); 
       smallholes = ~bigholes & holes; 
       im_bw      = im_bw | smallholes; 
    end 
     
    %# smoothing thresholded boundaries. 
    im_bw = imopen(im_bw, ones(2,2));  
     
    varargout{1} = im_gray; 
end 
 
 
function im_clean = doCleaning(im, opts) 
% doCleaning: this function post-process a binary image by removing small 
%       objects or by filling holes. 
%  
% inputs: 
%       im: a 2D binary input image. 
%       opts.cleaning: a matlab structure containing some parameters for the 
post-processing. 
%       -> opts.cleaning.minAreaPercent: minimal percenta size of the 
%                   total image size for an object to not be removed. 
%       -> opts.cleaning.minHoleSize: minimum hole size in pixels to be 
%                   filled. 
% 
% output: 
%       im_clean: post-processed binary image. 
  
    if ~isfield(opts, 'cleaning') 
        opts.cleaning = []; 
    end 
  
    if ~isfield(opts.cleaning, 'minAreaPercent') 
        opts.cleaning.minAreaPercent = 0.01/100; 
    end 
     
    if ~isfield(opts.cleaning, 'minHoleSize') 
        opts.cleaning.minHoleSize = 0; 
    end 
  
    bw          = logical(im); 
    stats       = regionprops(bw,'area','Perimeter'); 
     
    cc          = bwconncomp(bw, 8); 
    L           = labelmatrix(cc); 
     
    allAreas    = [stats.Area]; 
     
    minArea     = opts.cleaning.minAreaPercent * numel(im); 
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    keepMask    = allAreas > minArea; 
     
    bwSmallSegs = ismember(L, find(keepMask)); 
     
    leftIdx     = unique(L(:,1));   leftIdx(leftIdx==0) = []; 
    rightIdx    = unique(L(:,end)); rightIdx(rightIdx==0) = []; 
    topIdx      = unique(L(1,:));   topIdx(topIdx==0) = []; 
    bottomIdx   = unique(L(end,:)); bottomIdx(bottomIdx==0) = []; 
     
    bwSmallSegs(ismember(L, leftIdx)) = 1; 
    bwSmallSegs(ismember(L, rightIdx)) = 1; 
    bwSmallSegs(ismember(L, topIdx)) = 1; 
    bwSmallSegs(ismember(L, bottomIdx)) = 1; 
     
    im_clean      = (bw & bwSmallSegs); 
     
    if opts.cleaning.minHoleSize  
        minimum_hole_size   = opts.cleaning.minHoleSize; 
        allfilled           = imfill(im_clean, 'holes'); 
        allholes            = allfilled & ~im_clean; 
        threshold_holes     = bwareaopen(allholes, minimum_hole_size); 
        small_holes         = allholes & ~threshold_holes; 
        im_clean              = im_clean | small_holes; 
    end 
     
end 
 
function [im_skel, im_branches, varargout] = doSkeleton(im, opts) 
% doSkeleton: this function extracts the skeleton from a binary input 
% image. Short ramifications can also be pruned. 
%  
% inputs: 
%       im: a 2D binary image input image containing vessels as forebround 
objects. 
%       opts: a matlab structure containing the parameters for the ramification-
prunning: 
%           -> opts.skeleton.cleanSpur: 1 to prune ramifications. 
%           -> opts.skeleton.spurLength: length of ramifications to be pruned in 
pixel units. 
% 
% output: 
%       im_skel: 2D binary output image with extracted skeleton. 
%       im_branches: binary output image with branches as white pixels. 
  
    if ~isfield(opts, 'skeleton') 
        opts.skeleton = []; 
    end 
     
    if  ~isfield(opts.skeleton, 'cleanSpur') 
        opts.skeleton.cleanSpur = 1; 
    end 
  
    im_skel = bwmorph(im, 'thin', 'inf'); 
             
    im_branches = bwmorph(im_skel, 'branchpoints'); 
     
    if opts.skeleton.cleanSpur == 1 
        [im_skel_d, ~]  = getPrunnedBranches(im_skel, opts); 
        im_branches_d   = bwmorph(im_skel_d, 'branchpoints'); 
    else 
        im_skel_d = im_skel; 
        im_branches_d = im_branches; 
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    end 
     
    varargout{1}  = im_skel_d; 
    varargout{2}  = im_branches_d; 
end 
  
function [skelD, im_branches] = getPrunnedBranches(im_skel, opts) 
  
    if ~isfield(opts.skeleton, 'spurLength') 
        opts.skeleton.spurLength = numel(im_skel); 
    end 
  
    B = bwmorph(im_skel, 'branchpoints'); 
    E = bwmorph(im_skel, 'endpoints'); 
     
    [rows,cols] = find(E); 
    B_loc = (B); 
  
    Dmask = false(size(im_skel)); 
    for k = 1:numel(cols) 
        D = bwdistgeodesic(im_skel,cols(k),rows(k)); 
        distanceToBranchPt = min(D(B_loc)); 
         
        if ~opts.skeleton.spurLength  
            Dmask(D < distanceToBranchPt) = true; 
        else 
            Dmask(D < distanceToBranchPt & distanceToBranchPt < 
opts.skeleton.spurLength) = true; 
        end 
    end 
    skelD = im_skel - Dmask; 
    skelD = bwmorph(skelD,'thin');  
     
    [yy,xx] = find(B);  
    im_branches = zeros(size(im_skel)); 
    im_branches(sub2ind(size(im_branches), yy, xx)) = 1; 
    im_branches = logical(im_branches); 
  
end 
 

 


