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Mathematical Appendix
Derivation of the formula for effective selection
In the main text, we present a formula for the effective selection acting upon an allele, calculated in terms of the frequency of
the allele at subsequent time-points. This was derived from the equation for a change in allele frequency in the WF-CM model.
In this model, the change in an allele frequency can be calculated as
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where q(tk) represents the frequency of the beneficial variant at generation tk, and E(·) denotes the expectation of a random
variable. Given the focal site will change during generation tk, τ(o) and τ(i) represent the times when a focal beneficial
mutation carrier mutates to the wild type, and when a wild type carrier achieves the focal beneficial mutation, respectively.
In Equation 1, (1+ seff)q(tk)(1− µ) is the fraction (without rescaling) of offspring carrying the beneficial variants given
their parents do not undertake mutations at the focal site during generation tk, µ(1+ seff)q(tk)E

(
τ(o)
)

is the non-rescaling
fraction of beneficially mutated offspring given their parents mutate from mutated type to wild type during generation tk, and
µ
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is the corresponding fraction of beneficially mutated offspring contributed by the individuals
who mutate from wild type to mutated state in generation tk.

From this derivation we obtain the formula used in the main text for inference of Wright-Fisher model with continuous
mutations,
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If E
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= 0, which corresponds to the instantaneous mutations at the beginning of each generation, Equation

(1) will degenerate to describe the original Wright-Fisher model,
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and the corresponding equation to infer the effective selection of the original Wright-Fisher model is as follows,
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Derivation of the uniform time distribution of mutations in the WF-CM model
Within our continuous-mutation Wright-Fisher model we assume that viruses accumulate mutations over time in a uniform
manner. We here discuss this assumption in the context of influenza infection.

A highly detailed model of the intracellular infection process has been given elsewhere?. We here consider a similar model,
albeit one including a number of simplifying assumptions. Heldt et al., show that the rate at which viruses are released by the
cell increases gradually from 3 hours post adsorption of the first virus until the end of the period of cellular infection. We here
approximate this process, assuming that viral production occurs at a constant rate over time. Next, where Heldt et al. model a
complex process of RNA replication and protein production we assume that proteins are produced and released instantaneously,
being translated from the pool of viral RNA that exists within a cell at an given time. Finally, we model the replication of viral
RNA as a simple branching process.

In our highly simplified model, each strand of RNA replicates at a constant rate within the cell, beginning with a single
copy of each strand. We assume that the timing of strand replication occurs according to an exponential distribution, such that
the mean time for one of n strands to replicate is given by 1/n; ignoring deviation from this timescale implies that replication
round r occurs at the time
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r

∑
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1
i
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We note that after r rounds of replication there are r+1 copies of each strand.

We now consider the mean number of replication events undergone by a strand in the population after r replications, which
we denote by mr. At any given time, the total number of replication events to have occurred in the population as a whole is
given by mtot

r = (r+1)mr. During the next replication event, a strand is chosen for replication, which produces a copy of itself
that has undergone one additional replication. The new population will contain r+2 strands. Therefore
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producing an increase of 1/(r+2) in mr in the time interval 1/(r+1) between tr and tr+1. It may be straightforwardly observed
the mean number of replications undergone by a strand in the population increases roughly linearly over time.

Thus, considering the proteins produced by a mean strand in the cell, it will be noted that initially, these proteins will
contain no mutations relative to the infecting virus. As time goes by, the strand will accumulate mutations linearly over time
through replication error, the same accumulation of mutations being seen in the proteins produced by translation. Thus our
simplified model of replication leads to a WF-CM model which has a uniform distribution in the timings of mutations.

Numerical approximations in the simulation
In order to reduce the computational time required by our simulation, a series of approximations were applied as the population
size became larger. Within our calculation, the population is divided into bins of viruses with roughly equal fitness. We suppose
that there are N viruses in a bin. In each generation, to account for mutation, we first calculated n, the number of mutations
incurred by viruses in that bin, as a Poisson distributed random variable with parameter NµL, where µ is the viral mutation rate
per base, and L is the length of the viral genome. The next step was then dependent upon the viral population size. At small
population sizes (less than 5×105), viruses were then uniformly chosen from the set of N viruses, assigning each mutation to
a virus in turn. At population sizes between 5×105 and 5×106, a binomial distribution was used to calculate the expected
proportion pi of viruses affected by i mutations. In so far as the probability of a specific virus being affected by a given mutation
is 1/N, these values were calculated as
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The number of viruses receiving i mutations, ai, was then calculated as a sample from a multinomial distribution.

P({a0,a1, . . .}) =
n!

∏i ai!
∏

i
pai

i (8)

A cap of seven mutations per generation was applied to each virus. At population sizes between 5×106 and 107 the multinomial
was further approximated by a series of Poisson distributed random variables, with ai being calculated as a sample from a
Poisson distribution with rate N pi, for i≥ 1. Finally a0 was calculated as N−∑i≥1 ai. At population sizes greater than 107 this
step was further approximated, ai being calculated as the expectation of the Poisson distribution with rate N pi. Collectively
these approximations sped up the implementation of our code.
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Supplementary Figures

Figure S1. Equilibrium distribution of relative viral fitnesses immediately following transmission of five viral particles. A
fitness of 1 corresponds to the mean fitness of the transmitted population. Blue distributions show results under a multiplicative
model of selection; red shows results including the effects of epistasis.
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Figure S2. Example trajectories for the beneficial variant under the Wright-Fisher model with (red) and without (blue)
mutational load. Selection here is equal to 3. Bold lines indicate mean trajectories. Trajectories shown here are those in which
the beneficial variant is first observed in the third generation of the simulation.
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Figure S3. Effective selection coefficients from simulations conducted using the WF-CM model under default parameters,
including mutational load with epistasis. Vertical red bars show 90% confidence intervals for the effective selection. Gray
shading represents the distribution of inferred effective selection values. The blue dotted line shows equivalence between the
true and effective selection coefficients.
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Figure S4. Upper (red) and lower (blue) one-tailed 95% confidence values for the effective selection of a beneficial variant in
the case of the de novo emergence of a beneficial variant in a population under our default model parameters. Confidence
values mark the top and bottom 5% of effective selection coefficients as a fraction of the mean and are shown for simulations
run with mutational load and with (dashed lines) and without (solid lines) epistasis. Error bars tend to approximately ± 25% of
the mean effective selection.
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Figure S5. Probability that the beneficial variant will rise to a frequency of 50% or greater during the course of an infection.
Data are shown from simulations that exclude the effects of mutational load (blue) or include it, either under an additive model
of selection (yellow) or under a model incorporating negative epistasis (red). Simulations were conducted with an initial
population bottleneck of 5 and a mutation rate of 1.8×10−4 per base per generation. Error bars show estimated 95%
confidence intervals in the reported mean values. Data are shown here for the Wright-Fisher model.
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Figure S6. Effective selection coefficients inferred from simulations conducted using the WF-CM model for the case in
which a single transmitted virus carries the beneficial allele, and in which mutational load was not included in the simulation.
Vertical red bars show 90% confidence intervals for the effective selection. Gray shading represents the distribution of inferred
effective selection values. The blue dotted line shows equivalence between the true and effective selection coefficients.
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Figure S7. Effect of mutational load upon a transmitted variant. Simulations were initiated with one out of five viruses
carrying the beneficial allele. Data are shown here for the Wright-Fisher model. A. Probability that the beneficial variant will
reach fixation during the course of an infection. Results are shown for simulations in the absence (blue) or presence (yellow) of
mutational load. B. Probability that a variant will die out during the course of infection. Error bars show the extent of variation
across 10,000 simulations for each point. The probability of death does not tend to zero due to the possibility of all viruses to
be lethally mutated in the first generation; this event does not occur in the WF-CM model
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Figure S8. Change in relative viral load under the model described by Beauchemin and Handel (2011) given initial
populations that differ by two orders of magnitude. In a model where infection is limited by a fixed number of uninfected cells,
the peak number of viruses in the system is largely independent of the number of particles founding infection.
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