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Supplementary Appendix A: Pathwise differentiability

We now review first- and second-order pathwise differentiability. We start by defining a fluctu-
ation submodel through P0 for which the closure of the linear span of all such scores yields the
unrestricted tangent space L2

0(P0), i.e. the set of P0 mean zero functions in L2(P0). Note that
it is the resulting (first-order) tangent space that is important, as all differentiability properties
discussed in this appendix are equivalent for any set of functions h1 that yield the same tangent
space. In the submodel that we present shortly we will restrict the score function to be uniformly
bounded, but this will have no impact on the resulting differentiability properties since the clo-
sure of the linear span of these scores will yield the unrestricted tangent space. Note also that
the second-order tangent space is also determined by the first-order tangent space (see Carone
et al., 2014 and the references therein).

We now present the submodel that we will use in this work. Define the following fluctuation
submodel through P0:

dPt(o) ,
(
1 + th1(o) + t2h2(o)

)
dP0(o),

where P0hj = 0 and sup
o∈O
|hj(o)| <∞, j = 1, 2.

One can verify that the function h1 is the score of the submodel at t = 0.
Let ψt , Ψ(Pt). The parameter Ψ is called (first-order) pathwise differentiable at P0 if there

exists a DΨ
1 ∈ L2

0(P0) such that

ψt − ψ0 = tP0D
Ψ
1 h1 + o(t).

We call DΨ
1 the first-order canonical gradient of Ψ at P0, where we note that DΨ

1 (O) is almost
surely unique becauseM is nonparametric. The canonical gradient DΨ

1 depends on P0 but this
is omitted in the notation because we will only discuss pathwise differentiability at P0.

A function f : O2 → R is called (P ) one-degenerate if it is symmetric and Pf(o, ·) = 0.
We will use the notation P 2f = EP 2 [f(O1, O2)]. The parameter Ψ is called second-order path-
wise differentiable at P0 if there exists some symmetric, one-degenerate, P 2

0 square integrable
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function DΨ
2 such that

ψt − ψ0 =tP0D
Ψ
1 h1 +

1

2
t2P0D

Ψ
1 h2 +

1

2
t2
∫ ∫

DΨ
2 (o1, o2)h1(o1)h1(o2)dP0(o2)dP0(o1) + o(t2).

Supplementary Appendix B: Empirical Process Results

We now present two results from empirical process theory, the first of which can be used to
control the U -processes that we deal with in the main text when H0 holds, and the second of
which can be used to establish an empirical process condition that is used when H1 holds.

Before giving an overview of the empirical process theory that we use, we review the notion
of a covering number. Let µ be a probability measure over Z . For a class of functions f : Z →
R with envelope F (i.e., |f(z)| ≤ F (z) for all z ∈ Z), where 0 < ‖F‖2,µ < ∞, define the
covering number N(ε, µ,F , F ) as the cardinality of the smallest subcollection F∗ ⊆ F such
that, for all f ∈ F , minf∗∈F∗‖f − f∗‖2,µ ≤ ε‖F‖2,µ.

Supplementary Appendix B.1: Bounding U -processes
When H0 holds, our proofs rely on Un(Γ̃n − Γ0) = oP0

(n−1) for our method to control the
type I error rate. This rate turns out to be plausible, but requires techniques which are different
from the now classical empirical process techniques which can be used to establish that (Pn −
P0)(fn − f0) = oP0

(n−1/2) provided P0(fn − f0)2 → 0 in probability.
We ignore measurability concerns in this appendix with the understanding that minor modi-

fications are needed to make these results rigorous.
We remind the reader that a function g : O2 → R is called one-degenerate if and only if

g is symmetric in its arguments and P0g(o, ·) = 0 for all o ∈ O. Let G denote a collection
of one-degenerate functions mapping from O2 to R, where supg |g(o1, o2)| < G(o1, o2) for all
o1, o2 and some envelope function G ∈ L2(P0).

Suppose we wish to estimate some g0 ∈ G. We are given a sequence of estimates ĝn ∈ G
that is consistent for g0. Our objective is to show that

nUn(ĝn − g0) = oP0
(1).

The uniform entropy integral of G is given by

J(t,G, G) , sup
Q

∫ t

0
logN(ε,Q,G, G)dε, (A.1)

where the supremum is over all distributions Q with support O2 and ‖G‖Q,2 > 0. We note
that the above definition of the entropy integral upper bounds the covering integral given by
Nolan and Pollard [1987], which considers a particular choice of Q. The entropy integral above
lacks the square root around the logarithm in the integral that is seen in the standard definition
of the uniform entropy integral used to bound empirical processes [see, e.g., van der Vaart and
Wellner, 1996].

For each g ∈ G, letHg represent the Hilbert-Schmidt operator onL2(P0) given by (Hgf)(o) =
Pg(o, ·)f(·). Let {Wj : j = 1, 2, ...} be a sequence of i.i.d. standard normal random variables
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and {wj : j = 1, 2, ...} be an orthonormal basis of L2(P0). Let Q̃ be a process on G defined by

Q̃(g) =

∞∑
j=1

〈Hgwj , wj〉(W 2
j − 1) +

∑
i 6=j
〈Hgwj , wi〉WiWj .

A functional M : G → R is said to belong to C(G, P 2
0 ) if g 7→ M(g) is uniformly continuous

for the L2(P 2
0 ) seminorm and supG |M(g)| <∞.

We have modified the statement from Nolan and Pollard [1988] slightly to apply to the
entropy integral given in (A.1). We omit an analogue to condition (ii) from Nolan and Pollard’s
statement of the theorem below because it is implied by our strengthening of their condition (i).

THEOREM A.1 (THEOREM 7, NOLAN AND POLLARD, 1988). Suppose that the one-degenerate
class G satisfies

(i’) J(1,G, G) <∞;

(iii’) supQ logN(ε,Q × P0,G, G) < ∞ for each ε > 0, where the supremum is over distribu-
tions Q with support O.

Then there is a version of Q̃ with continuous sample paths in C(G, P0×P0) and nUn converges
in distribution to Q̃.

We will use the following corollary to control the cross-terms.

COROLLARY A.1. Suppose that G satisfies the conditions of A.1 and ĝn is a sequence of
one-degenerate random functions that take their values in G such that P 2

0 (ĝn − g0)2 → 0 in
probability for some g0 ∈ G. Then nUn(ĝn − g0)→ 0 in probability.

The proof relies on the continuity of sample paths of (a version of) Q̃. The proof is omitted,
but we refer the reader to the proof of Lemma 19.24 in van der Vaart [1998] for the analogous
empirical process result.

Supplementary Appendix B.2: Controlling
∫

Γn(·, o)dP0(o)
We now give sufficient conditions under which o 7→

∫
Γn(o1, o)dP0(o) belongs to a fixed

Donsker class with probability approaching one. We recall from van der Vaart and Wellner
[1996] that a class F of functions mapping from O to R is Donsker if its uniform entropy inte-
gral is finite, which holds if its covering number grows sufficiently slowly as the approximation
becomes arbitrarily precise.

Let G2 be some class of functions g : O2 → [−M,M ], M < ∞, that contains {(o1, o2) 7→
Γn(o1, o2) : Γn}. Without loss of generality, we suppose that M = 1. We take the constant
function G2 ≡ 1 as envelope for G2. Let G1 , {o1 7→

∫
g2(o1, o2)dP0(o2) : g2 ∈ G2}, and note

that this class similarly has envelope G1 ≡ 1. The main observation of this subappendix is that

sup
Q1

N(ε,Q1,G1, G1) ≤ sup
Q2

N(ε,Q2,G2, G2), (A.2)

where the supremum on the left is over all distributions Q1 on O such that ‖G1‖2,Q1
> 0 and

the supremum on the right is over all distributions Q2 on O2 such that ‖G‖2,Q2
> 0. If we can
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show this, then the uniform entropy integrals are also ordered [Section 2.5 in van der Vaart and
Wellner, 1996]:∫ ∞

0
sup
Q1

√
logN(ε,Q1,G1, G1)dε ≤

∫ ∞
0

sup
Q2

√
logN(ε,Q2,G2, G2)dε, (A.3)

where the left- and right-hand sides are the uniform entropy integrals of G1 and G2, respectively.
Hence, it will suffice to show that the right-hand side is finite. This can be accomplished using
the variety of techniques given in Chapter 2 of van der Vaart and Wellner [1996].

We now establish (A.2). Fix a measure Q1 over O. Let Q2 represent the product measure
Q1 × P0. Fix ε > 0. Let g2,1, . . . , g2,m be an ε‖G2‖2,Q2

cover of G2 under ‖·‖2,Q2
so that

minj‖g2 − g2,j‖2,Q2
< ε‖G2‖2,Q2

, where we take m to be equal to its minimal possible value
N(ε,Q2,G2, G2). For each j, let g1,j ≡

∫
g2,j(o1, o2)dP0(o2). Fix g1 ∈ G1. Recall that, by the

definition of G1, there exists a g2 ∈ G2 such that g1(·) =
∫
g2(·, o)dP0(o). Let j∗ be such that

‖g2 − g2,j∗‖2,Q2
≤ ε‖G2‖2,Q2

for this g2. Observe that

‖g1 − g1,j∗‖22,Q1
=

∫ (∫
[g2(o1, o2)− g2,j∗(o1, o2)] dP0(o2)

)2

dQ1(o1)

≤
∫

[g2(o1, o2)− g2,j∗(o1, o2)]2 dQ2(o1, o2) = ‖g2 − g2,j∗‖22,Q2
.

By the choice of j∗, it follows that ‖g1 − g1,j∗‖2,Q1
≤ ε‖G2‖2,Q2

= ε‖G1‖2,Q1
, where we used

that G1 ≡ 1 and G2 ≡ 1. That is, g1,1, . . . , g1,m is an ε‖G1‖2,Q1
cover of G1 under ‖·‖2,Q1

.
Thus, N(ε,Q1,G1, G1) ≤ m. Recalling that we took m = N(ε,Q2,G2, G2), we have shown
that N(ε,Q1,G1, G1) ≤ N(ε,Q2,G2, G2). As Q1 was arbitrary, for each Q1 with support O
there exists a Q2 with support O2 such that the the preceding inequality holds. Hence, (A.2)
holds, and thus so too does the uniform entropy integral ordering (A.3).

Supplementary Appendix C: proofs

For any T ∈ S, we will use the shorthand notation Tt , TPt
, d
dtTt

∣∣
t=t̃
, Ṫt̃ and d2

dt2Tt

∣∣∣
t=t̃
, T̈t̃.

Throughout the appendix we use the following fluctuation submodel through P0 for pathwise
differentiability proofs:

dPt(o) ,
(
1 + th1(o) + t2h2(o)

)
dP0(o),

where P0hj = 0 and sup
o∈O
|hj(o)| <∞, j = 1, 2. (A.4)

Proofs for Section 2
We give two lemmas before proving Theorem 1.

LEMMA A.1. For any T,U ∈ S and any fluctuation submodel dPt =
(
1 + th1 + t2h2

)
dP0,

we have that, for all t̃ in a neighborhood of zero,

Φ̇TU
t̃

=

∫ [∫
e−[Tt̃(x

T
1 )−Ut̃(x

U
2 )]2dPt̃(x

T
1 )

] [
h1(o2) + 2t̃h2(o2)

]
dP0(o2)
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+

∫ [∫
e−[Tt̃(x

T
1 )−Ut̃(x

U
2 )]2dPt̃(x

U
2 )

] [
h1(o1) + 2t̃h2(o1)

]
dP0(o1)

− 2

∫∫ [
Tt̃(x

T
1 )− Ut̃(x

U
2 )
] [ d

dt
Tt(x

T
1 )

∣∣∣∣
t=t̃

− d

dt
Ut(x

U
2 )

∣∣∣∣
t=t̃

]
e−[Tt̃(x

T
1 )−Ut̃(x

U
2 )]2dPt̃(x

U
2 )dPt̃(x

T
1 ).

PROOF (PROOF OF A.1). We have that

Φ̇TU
t̃

=
d

dt

∫∫
e−[Tt(xT

1 )−Ut(xU
2 )]2


2∏
j=1

[
1 + th1(oj) + t2h2(oj)

] dP0(o2)dP0(o1)

∣∣∣∣∣∣
t=t̃

=

∫∫
d

dt
e−[Tt(xT

1 )−Ut(xU
2 )]2


2∏
j=1

[
1 + th1(oj) + t2h2(oj)

]
∣∣∣∣∣∣
t=t̃

dP0(o2)dP0(o1) ,

where the derivative is passed under the integral in view of (S2). The result follows by the chain
rule.

For each T,U ∈ S, define

DTU (o) , −2ΦTU (P0) +

∫ {
2 [U0(o1)− T0(o)]DT

0 (o) + 1
}
e−[T0(o)−U0(o1)]2dP0(o1)

+

∫ {
2 [T0(o1)− U0(o)]DU

0 (o) + 1
}
e−[T0(o1)−U0(o)]2dP0(o1) .

We have omitted the dependence ofDTU on P0 in the notation. We first give a key lemma about
the parameter ΦTU .

LEMMA A.2 (FIRST-ORDER CANONICAL GRADIENT OF ΦTU ). Let T and U be members
of S. Then ΦTU has canonical gradient DTU at P0.

PROOF (PROOF OF A.2). To consider first-order behavior it suffices to consider fluctuation
submodels in which h2(o) = 0 for all o. We first derive the first-order pathwise derivative of the
parameter ΦTU at P0. Applying the preceding lemma at t̃ = 0 yields that

d

dt
ΦTU (Pt)

∣∣∣
t=0

=

∫ [∫
e−[T0(xT

1 )−U0(xU
2 )]2dP0(xT1 )

]
h1(o2)dP0(o2)

+

∫ [∫
e−[T0(xT

1 )−U0(xU
2 )]2dP0(xU2 )

]
h1(o1)dP0(o1)

− 2

∫ ∫
(T0(xT1 )− U0(xU2 ))(Ṫ0(xT1 )− U̇0(xU2 ))e−[T0(xT

1 )−U0(xU
2 )]2dP0(xU2 )dP0(xT1 ).

The first two terms in the last equality are equal to

First term =

∫ (
EP0

[
e−[T0(XT )−U0(xU )]2

]
− EP 2

0

[
e−[T0(XT

1 )−U0(XU
2 )]2
])
h1(o)dP0(o)

Second term =

∫ (
EP0

[
e−[T0(xT )−U0(XU )]2

]
− EP 2

0

[
e−[T0(XT

1 )−U0(XU
2 )]2
])
h1(o)dP0(o).
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We now look to find the portion of the canonical gradient given by the third term. We have that

−2

∫ ∫
(T0(xT1 )− U0(xU2 ))Ṫ0(xT1 )e−[T0(xT

1 )−U0(xU
2 )]2dP0(xU2 )dP0(xT1 )

=

∫
2EP0

[
(U0(XU )− T0(xT ))e−[T0(xT )−U0(XU )]2

]
DT

0 (o)h1(o)dP0(o)

2

∫ ∫
(T0(xT1 )− U0(xU2 ))U̇0(xU2 )e−[T0(xT

1 )−U0(xU
2 )]2dP0(xU2 )dP0(xT1 )

=

∫
2EP0

[
(T0(XT )− U0(xU ))e−[T0(XT )−U0(xU )]2

]
DU

0 (o)h1(o)dP0(o).

Collecting terms, a first-order Taylor expansion of t 7→ ΦTU (Pt) about t = 0 yields that

ΦTU (Pt)− ΦTU (P0) = tEP0

[
DTU (O)h1(O)

]
+ o(t).

Thus ΦTU has canonical gradient DTU at P0.

The proof of Theorem 1 is simple given the above lemma.

PROOF (PROOF OF THEOREM 1). A.2, the fact that Ψ(P ) , ΦRR(P )−2ΦRS(P )+ΦSS(P ),
and the linearity of differentiation immediately yield that the canonical gradient of Ψ can be
written as DRR − 2DRS + DSS . Straightforward calculations show that this is equivalent to
o 7→ 2[P0Γ0(o, ·)− ψ0].

We will use the following lemma in the proof of 1 to prove that R0(O) and S0(O) are
degenerate if DΨ

1 ≡ 0 and H0 does not hold. Because we were unable to find the proof that the
U -statistic kernel for estimating the MMD of two variables X and Y is degenerate if and only if
H0 holds or X and Y are degenerate, we give a proof here that applies in a more general setting
than that which we consider in this paper.

LEMMA A.3. Let Q be a distribution over (X,Y ) ∈ Z2, where Z is a compact metric
space. Let (x, y) 7→ k(x, y) be a universal kernel on this metric space, i.e. a kernel for which
the resulting reproducing kernel Hilbert spaceH is dense in the set of continuous funtions on Z
with respect to the supremum metric. Further, suppose that EQ

√
k(X,X) and EQ

√
k(Y, Y )

are finite. Finally, suppose that the marginal distribution of X under Q is different from the
marginal distribution of Y under Q.

There exists some fixed constant C such that∫
〈φ(x1)− φ(y1), φ(x2)− φ(y2)〉HdQ(x2, y2) = C (A.5)

for (Q almost) all (x1, y1) ∈ Z2 if and only if the joint distribution of (X,Y ) under Q is
degenerate at a single point. Above 〈·, ·〉H and φ(z) , k(z, ·) are the inner product and the
feature map inH, respectively.

PROOF. If Q is degenerate then clearly (A.5) holds.
If (A.5) holds, then our assumption that X has a different marginal distribution than Y tells

us that C > 0 [Gretton et al., 2012]. Hence, for almost all (x1, y1),

〈φ(x1)− φ(y1), µX − µY 〉H − 〈µX − µY , µX − µY 〉H = 0,
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where µX and µY inH have the property that 〈µX , f〉H = EQf(X) and 〈µY , f〉H = EQf(Y )
for all f ∈ H [Lemma 3 in Gretton et al., 2012]. The above holds if and only if φ(x1)−φ(y1) =
µX − µY . Noting that µX − µY does not rely on x1, y1, it follows that φ(x1)− φ(y1) must not
rely on x1, y1 for all (x1, y1) in some Q probability one set D ⊆ Z2.

Fix a continuous function f : Z → R and x1, y1 ∈ D. For any ε > 0, the universality of H
ensures that there exists an fε ∈ H such that ‖fε − f‖∞ ≤ ε. By the triangle inequality,

|f(x1)− f(y1)− fε(x1) + fε(y1)| ≤ 2ε.

Because φ(x1) − φ(y1) is constant and f ∈ H, 〈φ(x1) − φ(y1), fε〉H = fε(x1) − fε(y1) does
not rely on x1, y1 for any ε. Furthermore, the fact that fε converges to f in supremum norm
ensures that |fε(x1)− fε(y1)| converges to a fixed quantity K (which does not rely on x1 or y1)
as ε→ 0. Applying this to the above yields that f(x1)− f(y1) = K.

As f was an arbitrary continuous function and X1 6≡ Y1, we can apply this relation to z 7→ z
and z 7→ z2 to show that x1 − y1 and x1 + y1 do not rely on the choice of (x1, y1) ∈ D. Hence
(x1 − y1 + x1 + y1)/2 = x1 and (x1 + y1 − y1 + x1)/2 = y1 do not rely on the choice of
(x1, y1) ∈ D. This can only occur if (x1, y1) are constant over the probability 1 set D, i.e. if Q
is degenerate.

For the two-sample problem in Gretton et al. [2012], one can take Q to be a product distribution
of the marginal distribution of X and the marginal distribution of Y .

PROOF (PROOF OF 1). We first prove sufficiency. If (i) holds, then 2DRS = DRR +DSS .
It follows that DΨ

1 ≡ 0 under H0. Now suppose (ii) holds. It is a simple matter of algebra to
verify that DRR

1 ≡ DRS
1 ≡ DSS

1 ≡ 0. Hence DΨ
1 ≡ 0, yielding the sufficiency of the stated

conditions.
We now show the necessity of the stated conditions. Suppose that σ0 = 0 and H0 does not

hold. It is easy to verify that

D̃Ψ
1 , EP0

[
e−[R0(O)−R0(o)]2

]
+ EP0

[
e−[S0(O)−S0(o)]2

]
− EP0

[
e−[R0(O)−S0(o)]2

]
− EP0

[
e−[R0(o)−S0(O)]2

]
− ψ0

is a first-order gradient in the model whereR0 and S0 are known (possibly an inefficient gradient
depending on the form of R and S). Call the variance of this gradient σ̃0. As the model where
R0 and S0 are known is a submodel of the (locally) nonparametric model, σ̃0 ≤ σ0, and hence
σ̃0 = 0 and D̃Ψ

1 ≡ 0. Now, if σ̃0 = 0 and H0 does not hold, then A.3 shows that R0(O) and
S0(O) are degenerate. Finally, D̃Ψ

1 ≡ 0 and the degeneracy of R0(O) and S0(O) shows that for
almost all o,

DΨ
1 (o) = 2DRS(o) = 2(s0 − r0)

(
DR

0 (o)−DS
0 (o)

)
e−[r0−s0]2 ,

where we use r0 and s0 to denote the (probability 1) values of R0(O) and S0(O). The above is
zero almost surely if and only if DR

0 ≡ DS
0 . Thus σ0 = 0 only if (i) or (ii) holds.

We give the following lemma before proving Theorem 2. Before giving the lemma, we
define the function Π : S → R. Suppressing the dependence on P0 and h1, h2, for all V ∈ S

and t 6= 0 we define

Π(V ) , 2

∫ ∫ [
2(V0(o2)− V0(o1))V̇0(o2)h1(o2) + 2(V0(o2)− V0(o1))2V̇0(o2)2
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+ h2(o2)− V̇0(o2)2 + (V0(o2)− V0(o1))V̈0(o2)
]
e−[V0(o2)−V0(o1)]2dP0(o2)dP0(o1).

LEMMA A.4. For any fluctuation submodel consistent with (A.4), T,U ∈ S with T0(O)
d
=U0(O),

and t ∈ R sufficiently close to zero, we have that

d2

dt2
ΦTU (Pt)

∣∣∣
t=0

= 2

∫ ∫
ΓTU0 (o1, o2)h1(o1)h1(o2)dP0(o2)dP0(o1) + Π(T ) + Π(U).

PROOF. Let Ht(o) , 1 + th1(o) + t2h2(o) and Ḣt(o) , h1(o) + 2th2(o).

d2

dt2
ΦTU (Pt)

∣∣∣
t=0

=
d

dt

∫ ∫ [
Ht(o1)Ḣt(o2) + Ḣt(o1)Ht(o2)

− 2(Tt(o1)− Ut(o2))
(
Ṫt(o1)− U̇t(o2)

)
Ht(o1)Ht(o2)

]
× e−[Tt(o1)−Ut(o2)]2dP0(o2)dP0(o1)

∣∣∣
t=0

(A.6)

We will pass the derivative inside the integral using (S2) and apply the product rule. The first
term we need to consider is

d

dt

[
Ht(o1)Ḣt(o2) + Ḣt(o1)Ht(o2)− 2(Tt(o1)− Ut(o2))

(
Ṫt(o1)− U̇t(o2)

)
Ht(o1)Ht(o2)

]∣∣∣
t=0

= 2 [h2(o1) + h1(o1)h1(o2) + h2(o2)]− 2
(
Ṫ0(o1)− U̇0(o2)

)2
− 2(T0(o1)− U0(o2))

(
T̈0(o1)− Ü0(o2)

)
− 2(T0(o1)− U0(o2))

(
Ṫ0(o1)− U̇0(o2)

)
(h1(o1) + h1(o2)) .

The second is

d

dt
e−[Tt(o1)−Ut(o2)]2

∣∣∣∣
t=0

= −2(T0(o1)− U0(o2))
(
Ṫ0(o1)− U̇0(o2)

)
e−[T0(o1)−U0(o2)]2 .

Returning to (A.6), this shows that d2

dt2 ΦTU (Pt)
∣∣∣
t=0

is equal to

2

∫ ∫ [
− 2(T0(o1)− U0(o2))Ṫ0(o1)h1(o1) + 2(T0(o1)− U0(o2))2Ṫ0(o1)2

+ h2(o1)− Ṫ0(o1)2 − (T0(o1)− U0(o2))T̈0(o1)
]
e−[T0(o1)−U0(o2)]2dP0(o2)dP0(o1)

+ 2

∫ ∫ [
2(T0(o1)− U0(o2))U̇0(o2)h1(o2) + 2(T0(o1)− U0(o2))2U̇0(o2)2

+ h2(o2)− U̇0(o2)2 + (T0(o1)− U0(o2))Ü0(o2)
]
e−[T0(o1)−U0(o2)]2dP0(o2)dP0(o1)

+ 2

∫ ∫ [
2(T0(o1)− U0(o2))

(
U̇0(o2)h1(o1)− Ṫ0(o1)h1(o2)

)
−
(
4(T0(o1)− U0(o2))2 − 2

)
Ṫ0(o1)U̇0(o2) + h1(o1)h1(o2)

]
e−[T0(o1)−U0(o2)]2dP0(o2)dP0(o1).

The expression inside the second pair of integrals only depends on o1 through T (o1). Thus we
can rewrite this term as EP0

[f(T (O1))] for a fixed function f that relies on P0, h1, h2, and U .
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Under H0, we can rewrite this term as EP0
[f(U(O1))]. That is, we can replace each T (O1) in

the second pair of integrals with U(O1). This yields Π(U). Switching the roles of o1 and o2 in
the first pair of integrals above and applying Fubini’s theorem shows that

2

∫ ∫ [
2(T0(o2)− U0(o1))Ṫ0(o2)h1(o2) + 2(T0(o2)− U0(o1))2Ṫ0(o2)2

+ h2(o2)− Ṫ0(o2)2 + (T0(o2)− U0(o1))T̈0(o2)
]
e−[T0(o2)−U0(o1)]2dP0(o2)dP0(o1).

By the same arguments used to for the second pair of integrals, the above expression is equal to
Π(T ) under H0. By (S3), the third pair of integrals can be rewritten as

2

∫ ∫ [
2(T0(o1)− U0(o2))

(
DU

0 (o2)−DT
0 (o1)

)
−
(
4(T0(o1)− U0(o2))2 − 2

)
DT

0 (o1)DU
0 (o2) + 1

]
× e−[T0(o1)−U0(o2)]2h1(o1)h1(o2)dP0(o2)dP0(o1).

PROOF (PROOF OF THEOREM 2). We start by noting that 1
2
d2

dt2ψt

∣∣∣
t=0

is equal to

1

2

[
d2

dt2
ΦTT (Pt)

∣∣∣∣
t=0

+
d2

dt2
ΦUU (Pt)

∣∣∣∣
t=0

− d2

dt2
ΦTU (Pt)

∣∣∣∣
t=0

− d2

dt2
ΦUT (Pt)

∣∣∣∣
t=0

]
=

∫ ∫ [
ΓRR0 (o1, o2) + ΓSS0 (o1, o2)− ΓRS0 (o1, o2)− ΓSR0 (o1, o2)

]
h1(o1)h1(o2)dP0(o2)dP0(o1)

=
1

2

∫ ∫
DΨ

2 (o1, o2)h1(o1)h1(o2)dP0(o2)dP0(o1),

where the penultimate equality makes use of A.4. It is easy to verify that DΨ
2 (o1, o2) =

DΨ
2 (o2, o1) for all o1, o2. The arguments given below the theorem statement in the main text

establish the one-degeneracy of Γ0 under H0 show that EP0
[DΨ

2 (O, o)] = EP0
[DΨ

2 (o,O)] = 0
for all o ∈ O under H0. Condition (S2) ensures that ‖DΨ

2 ‖2,P 2
0
<∞, and thus DΨ

2 is P 2
0 square

integrable and one-degenerate.
Because the first pathwise derivative is zero under the null, we have that

ψt − ψ0 =
1

2
t2
∫ ∫

DΨ
2 (o1, o2)h(o1)h(o2)dP0(o1)dP0(o2) + o(t2).

Thus DΨ
2 is a second-order canonical gradient of Ψ at P0.

We give a lemma before proving Theorem 3.

LEMMA A.5. Fix P ∈M. For all T,U ∈ S, let

RemΦTU

P , ‖LTUP ‖2,P0
‖MTU

P ‖2,P0
+ ‖RemT

P ‖1,P0
‖RemU

P ‖1,P0
+ ‖MTU

P ‖44,P0
.

There exists a mapping ζ(P, P0, ·) : S→ R such that, for all T,U ∈ S for which T0(O)
d
=U0(O),∣∣∣P 2

0 ΓTUP − ΦTU (P0)− ζ(P, P0, T )− ζ(P, P0, U)
∣∣∣ . RemΦTU

P
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PROOF (PROOF OF A.5). In this proof we use F (P, P0, T, U) to denote any constant which
can be written as ζ̃(P, P0, T ) + ζ̃(P, P0, U) for expressions ζ̃(P, P0, T ) and ζ̃(P, P0, U) which
satisfy ζ̃(P, P0, T ) = ζ̃(P, P0, U) whenever T = U . We will write c1F (P, P0, T, U) +
c2F (P, P0, T, U) = F (P, P0, T, U) for any real numbers c1, c2. We then fix ζ to be the fi-
nal instance of ζ̃ upon exiting the proof.

Fix T,U ∈ S. Let b0(o1, o2) , T0(o1)− U0(o2) and b(o1, o2) , TP (o1)− UP (o2) for any
o1, o2. For ease of notation, in the expected values below we will write B and B0 to refer to
b(O1, O2) and b0(O1, O2), respectively. We also write T for TP (O1), T0 for T0(O1), RemT

P for
RemT

P (O1), U for UP (O2), U0 for U0(O2), and RemU
P for RemU

P (O2).
We have that

P 2
0 ΓTUP − ΦTU (P0) = EP 2

0

[
e−B

2 − e−B2
0

]
+ EP 2

0

[
2B
(
DU
P (O2)−DT

P (O1)
)
e−B

2
]

− EP 2
0

[(
4B2 − 2

)
DT
P (O1)DU

P (O2)e−B
2
]

= EP 2
0

[
e−B

2 − e−B2
0

]
− EP 2

0

[
2B (B0 −B) e−B

2
]

+ EP 2
0

[
2B
(
RemU

P −RemT
P

)
e−B

2
]
− EP 2

0

[(
4B2 − 2

)
[T − T0] [U − U0] e−B

2
]

− EP 2
0

[(
4B2 − 2

) (
[T − T0] RemU

P + RemT
P [U − U0]

)
e−B

2
]

− EP 2
0

[(
4B2 − 2

)
RemT

P RemU
P e
−B2

]
.

A third-order Taylor expansion of b0 7→ exp(−b20) about b0 = b yields

e−b
2 − e−b20 =2b(b0 − b)e−b

2 −
(
2b2 − 1

)
(b0 − b)2e−b

2

+
2

3
b
(
2b2 − 3

)
(b0 − b)3e−b

2

+O
(
(b0 − b)4

)
,

where the magnitude of the O((b0 − b)4) term is uniformly bounded above by C(b0 − b)4 for
some constant C > 0 when b0 and b fall in [−1, 1]. For the second-order term, we have

EP 2
0

[
−
(
2B2 − 1

)
(B0 −B)2e−B

2
]

= EP 2
0

[(
4B2 − 2

)
(T − T0) (U − U0) e−B

2
]

− EP 2
0

[(
[T − T0]2 + [U − U0]2

) (
2B2 − 1

)
e−B

2
]
.

Thus we have that

P 2
0 ΓTUP − ΦTU (P0) =EP 2

0

[
2B
(
RemU

P −RemT
P

)
e−B

2
]

+O
(
‖B −B0‖44,P0

)
− EP 2

0

[(
4B2 − 2

)
RemT

P RemU
P e
−B2

]
− EP 2

0

[(
[T − T0]2 + [U − U0]2

) (
2B2 − 1

)
e−B

2
]

+
2

3
EP0

[
B
(
2B2 − 3

)
(B0 −B)3e−B

2
]
. (A.7)

A Taylor expansion of f1(z) = 2ze−z
2

shows that there exists a B̃1(o1, o2) that falls between
B(o1, o2) and B0(o1, o2) for all o1, o2 such that

EP 2
0

[
2B
(
RemU

P −RemT
P

)
e−B

2
]

=EP 2
0

[(
RemU

P −RemT
P

) (
2B0e

−B2
0 + (B −B0)ḟ1(B̃)

)]
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=F (P, P0, T, U) + EP 2
0

[(
RemU

P −RemT
P

)
(B −B0)ḟ1(B̃)

]
,

(A.8)

where the second equality holds under H0. The boundedness of ḟ1 in [−2, 2], the triangle
inequality, and the Cauchy-Schwarz inequality yield

EP 2
0

∣∣∣(RemU
P −RemT

P

)
(B −B0)ḟ1(B̃)

∣∣∣ . EP 2
0

∣∣(RemU
P −RemT

P

)
(B −B0)

∣∣
. EP 2

0

∣∣LTUP (O1)MTU
P (O2)

∣∣+ EP0

∣∣LTUP ∣∣EP0

∣∣MTU
P

∣∣ . ‖LTUP ‖2,P0
‖MTU

P ‖2,P0
.

(A.9)

A Taylor expansion of f2(z) = (2z2 − 1)e−z
2

yields that there exists a B̃2 that falls between B
and B0 such that

EP 2
0

[(
[T − T0]2 + [U − U0]2

) (
2B2 − 1

)
e−B

2
]

=EP 2
0

[(
[T − T0]2 + [U − U0]2

) (
2B2

0 − 1
)
e−B

2
0

]
+ 2EP 2

0

[(
[T − T0]2 + [U − U0]2

)
(B −B0)

(
B(2B2 − 3)

)
e−B

2
]

+ EP 2
0

[(
[T − T0]2 + [U − U0]2

)
(B −B0)2 f̈2(B̃2)

2

]
.

The first line on the right is equal to F (P, P0, T, U) under H0. By the triangle inequality and
the boundedness of f̈2 on [−2, 2], the third line satisfies

EP 2
0

[(
[T − T0]2 + [U − U0]2

)
(B −B0)2 f̈2(B̃2)

2

]
.

4∑
k=0

EP 2
0

∣∣∣[T − T0]k [U − U0]4−k
∣∣∣

.
4∑

k=0

EP0

∣∣∣[MTU
P ]k

∣∣∣EP0

∣∣∣[MTU
P ]4−k

∣∣∣ . ‖MTU
P ‖44,P0

. (A.10)

The final inequality above holds by the FKG inequality [Fortuin et al., 1971]. It follows that

EP 2
0

[(
[T − T0]2 + [U − U0]2

) (
2B2 − 1

)
e−B

2
]

+
2

3
EP0

[
B
(
2B2 − 3

)
(B0 −B)3e−B

2
]

=
4

3
EP 2

0

[(
[T − T0]3 − [U − U0]3

)
B(2B2 − 3)e−B

2
]

+ F (P, P0, T, U) +O(‖MTU
P ‖44,P0

)

=F (P, P0, T, U) +O(‖MTU
P ‖44,P0

), (A.11)

where the final equality holds under H0 by a Taylor expansion of z 7→ z(2z2 − 3)e−z
2

and
analogous calculations to those used in (A.10). We note that the second equality above uses a
different F and a different big-O term than the line above, and that the big-O term can be upper
bounded by C‖MTU

P ‖44,P0
for a constant C > 0.

Plugging (A.8), (A.9), and (A.11) into (A.7), applying the triangle inequality, and using the
bounds on B gives the result.
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We give a lemma before proving Theorem 3.

LEMMA A.6. Let KP , ‖LRSP ‖1,P0
+ ‖MRS

P ‖22,P0
for all P ∈M. If H0 holds, then for all

P ∈M,

sup
o1∈O′

|P0ΓP (o1, ·)| . KP ,

where O′ ⊆ O is some P0 probability 1 set. More generally, for all P0 ∈M,∣∣P 2
0 ΓP − ψ0

∣∣ . KP .

PROOF (PROOF OF A.6). For T,U ∈ S, we have that

ΓTUP =
[
1 + 2(TP − UP )DU

P

]
e−[TP−UP ]2 − 2

[
(TP − UP ) +

(
2(TP − UP )2 − 1

)
DU
P

]
DT
P e
−[TP−UP ]2 .

Above we have omitted the dependence of ΓTU on (o1, o2), T and DT
P on o1, and U and DU

P on
o2. For P0 almost all o1 ∈ O, P0ΓTUP (o1, ·) is equal to

P0 [1 + 2(TP (o1)− UP )(UP − U0)] e−[TP (o1)−UP ]2 +O
(
‖RemU

P ‖1,P0

)
− 2P0

[
(TP (o1)− UP ) +

(
2(TP (o1)− UP )2 − 1

)
(UP − U0)

]
DT
P (o1)e−[TP (o1)−UP ]2

where the magnitude of the big-O remainder term is upper bounded by C‖RemU
P ‖1,P0

for a
constant C > 0 which does not depend on o1. Taylor expansions of the first and third terms
above yield

P0ΓTUP (o1, ·) =P0e
−[TP (o1)−U0]2 − 2P0(TP (o1)− U0)DT

P (o1)e−[TP (o1)−U0]2

+O
(
‖RemU

P ‖1,P0

)
+O

(
‖UP − U0‖22,P0

)
,

where the magnitude of the big-O term can be upper bounded byC‖UP−U0‖22,P0
. If T0(O)

d
=U0(O),

then

P0ΓTUP (o1, ·) =P0e
−[TP (o1)−T0]2 − 2P0(TP (o1)− T0)DT

P (o1)e−[TP (o1)−T0]2

+O
(
‖RemU

P ‖1,P0

)
+O

(
‖UP − U0‖22,P0

)
.

Recall that T,U ∈ S were arbitrary. Using that ΓP , ΓRRP − ΓRSP − ΓSRP + ΓSSP and applying
the triangle inequality gives the first result.

We now turn to the second result. For any T,U ∈ S and P ∈M, we have that

P 2
0 ΓTUP =

[
2(TP − UP ) (U0 − UP − T0 + TP ) + 1

−
(
4(TP − UP )2 − 2

)
(UP − U0)(TP − T0)

]
e−[TP−UP ]2 +O

(
‖LTUP ‖1,P0

)
= [2(TP − UP ) (U0 − UP − T0 + TP ) + 1] e−[TP−UP ]2 +O

(
‖LTUP ‖1,P0

)
+O

(
‖MTU

P ‖22,P0

)
=ΦTU (P0) +O

(
‖LTUP ‖1,P0

)
+O

(
‖MTU

P ‖22,P0

)
,

where the final equality holds by a first-order Taylor expansion of (t, u) 7→ e−[t−u]2 . The fact
that ΓP , ΓRRP − 2ΓRSP + ΓSSP yields the result.
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PROOF (PROOF OF THEOREM 3). Fix P ∈M and let P0 satisfy H0. We have that

P 2
0 ΓP − ψ0 =P 2

0 ΓRRP − ΦRR(P0) + P 2
0 ΓSSP − ΦSS(P0)−

[
P 2

0 ΓRSP − ΦRS(P0) + P 2
0 ΓSRP − ΦSR(P0)

]
.

Taking the absolute value of both sides, applying the triangle inequality, and using A.5 yields∣∣P 2
0 ΓP − ψ0

∣∣ . RemΦRR

P + RemΦSS

P +2 RemΦRS

P . ‖LRSP ‖21,P0
+ ‖MRS

P ‖44,P0
+ ‖LRSP ‖2,P0

‖MRS
P ‖2,P0

,

where the final inequality uses the maximum in the definition of LRSP and MRS
P .

The inequality for when P0 satisfies H1 is proven in A.6.

0.1. Proofs for Section 3
PROOF (PROOF OF 1). By the first result of A.6, |P0Γn(o1, ·)| . Kn for P0 almost all

o1 ∈ O′. We have that

|(Pn − P0)P0Γn| = Kn

∣∣∣∣(Pn − P0)

(
P0Γn
Kn

)∣∣∣∣ .
The fact that

{
o1 7→ P0Γn(o1,·)

Kn
: P̂n

}
belongs to a P0 Donsker class with probability approach-

ing 1, where P̂n varies over the set of its possible realizations, yields that (Pn − P0)
(
P0Γn

Kn

)
=

OP0
(n−1/2) [van der Vaart and Wellner, 1996], and thus the right-hand side above isOP0

(Kn/
√
n).

If Kn = oP0
(n−1/2), then this yields that the right-hand side above is oP0

(n−1).

PROOF (PROOF OF THEOREM 4). Plugging C1), C2), and C3) into (5) yields

ψn − ψ0 = UnΓ0 + oP0
(n−1). (A.12)

By Section 5.5.2 of Serfling [1980] and the fact that Γ0 is P0 degenerate and uniformly bounded,
nUnΓ0  

∑∞
k=1 λk(Z

2
k − 1).

We now prove that all of the eigenvalues of h(o) 7→ EP0

[
Γ̃0(O, o)h(O)

]
are nonnegative.

Consider a submodel {Pt : t} with first-order score h1 ∈ L2(P0) and second-order score
h2 ≡ 0. By the second-order pathwise differentiability of Ψ,

ψt − ψ0

t2
=

1

2

∫ ∫
DΨ

2 (o1, o2)h1(o1)h1(o2)dP0(o1)dP0(o2) + o(1).

The left-hand side is nonnegative for all t 6= 0 since ψt ≥ 0 = ψ0 under H0. Thus taking the
limit inferior as t→ 0 of both sides shows that

1

2

∫ ∫
DΨ

2 (o1, o2)h1(o1)h1(o2)dP0(o1)dP0(o2) ≥ 0.

Using that Γ̃0 = Γ0 under H0 and Γ0 = 1
2D

Ψ
2 , we have that 〈o 7→ EP0

[Γ̃0(O, o)h1(O)], h1〉 ≥
0, where the inner product is that of L2(P0). For any h1 ∈ L2(P0), it is well known that one
can choose a submodel Pt with first-order score h1 ∈ L2(P0). Hence the above relation holds
for all h1 ∈ L2(P0) and all of the eigenvalues of h(o) 7→ EP0

[
Γ̃0(O, o)h(O)

]
are nonnegative.
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PROOF (PROOF OF 2). In this case Γ0(o1, o2) = 2DR
0 (o1)DR

0 (o2) under H0. The central
limit theorem yields that σ−1

1

√
n(Pn − P0)DR

0  Z. By the continuous mapping theorem,
σ−2

1 n(Pn − P0)2Γ0/2 Z2. Now use that

nUnΓ0

2σ2
1

=
n

2σ2
1(n− 1)

[
n(Pn − P0)2Γ0 −

1

n

n∑
i=1

Γ0(Oi, Oi)

]

=
n

2σ2
1(n− 1)

[
n(Pn − P0)2Γ0 −

2

n

n∑
i=1

DR
0 (Oi)

2

]
.

The above quantity converges in distribution to Z2 − 1 by the weak law of large numbers and
Slutsky’s theorem.

PROOF (PROOF OF THEOREM 6). We have

ψn = 2(Pn − P0)P0Γn + P 2
0 Γn + UnΓ̃n

= 2(Pn − P0)P0Γ0 + P 2
0 Γn + UnΓ̃n + 2(Pn − P0)P0 (Γn − Γ0) .

By assumption, UnΓ̃n = oP0
(n−1/2). The final term is oP0

(n−1/2) by the Donsker condition
and the consistency condition [van der Vaart and Wellner, 1996]. By the second result of A.6
and the assumption that Kn = oP0

(n−1/2), this yields that

ψn − ψ0 = 2(Pn − P0)P0Γ0 + oP0
(n−1/2).

Multiplying both sides by
√
n, and applying the central limit theorem yields the result.

PROOF (PROOF OF 3). We have that

Pn0

{
nψn ≤ q̂ub1−α

}
= Pn0

{√
n(ψn − ψ0)

σ0
≤
q̂ub1−αn

−1/2 −
√
nψ0

σ0

}

Fix 0 < ε < ψ0. The right-hand side is equal to

Pn0

{√
n(ψn − ψ0)

σ0
≤
q̂ub1−αn

−1/2 −
√
nψ0

σ0
and q̂ub1−αn

−1 ≤ ε

}
+ o(1)

≤ Pn0
{√

n(ψn − ψ0)

σ0
≤
√
n(ε− ψ0)

σ0
and q̂ub1−αn

−1 ≤ ε
}

+ o(1)

≤ Pn0
{√

n(ψn − ψ0)

σ0
≤
√
n(ε− ψ0)

σ0

}
+ o(1) = Pr

{
Z ≤

√
n(ε− ψ0)

σ0

}
+ o(1),

where Z ∼ N(0, 1). The final equality holds by Theorem 6 and the well known result about
the uniform convergence of distribution functions at continuity points when random variables
converge in distribution [see, e.g., Theorem 5.6 in Boos and Stefanski, 2013]. The result follows
by noting that (ε− ψ0)/σ0 is negative and that limz→−∞ Pr(Z ≤ z) = 0.
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