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Optimal control problem

Concomitant glucose and drug infusion control
In this strategy, glucose and drug are simultaneously administered on the same time interval, [t0, t1].
Since glucose targets the up-stream signaling pathway by activating miR-451 levels and the drug
aims to regulate the down-stream mTOR activities leading to cell cycle, the goal is to maximize
the objective functional
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It should be noted that maximizing the objective functional entails finding control glucose u∗G(t)
and drug u∗D(t) infusions that up-regulates miR-451 (M) and mTOR (R) above its respective
threshold values. At the same time, intravenous administration costs should be minimized. We
have the following theorem:

Theorem 1. There exist optimal controls u∗G(t) and u∗D(t), and corresponding solutions G∗(t),
M∗(t), A∗(t), R∗(t), D∗(t), [CycB]∗, [Cdh1]∗, [p55cdcT ]∗, [p55cdcA]∗, [Plk1]∗, and [mass]∗ that
maximize the objective functional (1) over (2). Given this optimal solution, there exist adjoint
equations satisfying
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with transversality conditions

λi(t1) = 0 for i = 1, 2, . . . , 11. (7)

Furthermore,

u∗G(t) = min
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Proof. The convexity of the integrand of objective functional guarantees the existence of optimal
controls u∗G(t) and u∗D(t). Applying Pontryagin’s Maximum principle converts our maximization
problem into maximizing the Hamiltonian given by

H = M +R− B1
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2
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∑
λifi, (9)

where λi’s are so-called adjoints and fi’s are the right hand side of Eq (3) for i = 1, 2, . . . , 11. The
following adjoint equations and transversality conditions are obtained:
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After differentiating H with respect to the control uG and uD and considering the bounds yield the
characterization of the controls given by Eq (8).

Alternating glucose and drug infusion control
This strategy proposes alternating glucose and drug intravenous infusions. Recall that glucose
directly regulates miR-451 and mTOR activities in the up-stream and down-stream signalling
pathway, respectively. The idea is to have glucose infusion only on [t0, t1] and drug infusion on
[t1, t2]. Hence, the goal is to maximize the objective functional
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(
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Ωalt = {uG(t) ∈ L (t0, t1), uD(t) ∈ L (t1, t2) |
0 ≤ uG(t) ≤ umax, t ∈ [t0, t1] , 0 ≤ uD(t) ≤ umax, t ∈ [t1, t2]} ,

(12)

subject to system (3) where uD = 0 for t ∈ [t0, t1] (i.e., no drug infusion) , and uG = 0 for t ∈ [t1, t2]
(i.e., no glucose infusion), with auxilliary equations (4). It is assumed that the drug in consideration
only influences the down-ward signaling pathway to the cell cycle. We have the following theorem:

Theorem 2. There exist optimal controls u∗G(t) for t ∈ [t0, t1] and u
∗
D(t) for t ∈ [t1, t2], and cor-

responding solutions G∗(t), M∗(t), A∗(t), R∗(t), D∗(t), [CycB]∗, [Cdh1]∗, [p55cdcT ]∗, [p55cdcA]∗,
[Plk1]∗, and [mass]∗ that maximize the objective functional (11) over (12). Given this optimal
solution, there exist adjoint equations satisfying Eq (5) with transversality conditions

λi(tj) = 0 for i = 1, 2, . . . , 11, j = 1, 2. (13)

Furthermore,
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(14)

The proof of the above theorem follow analogously from the previous theorem with modifica-
tions on Hamiltonian, adjoint and optimality equations accounting for different objective functional
for t ∈ [t0, t1] and t ∈ [t1, t2].

4



In the following simulation results, the weight parameters B1 = B2 = 1.0, the simulation time
is 168 hours (7 days), and maximum dosage rate umax = 1.0. Fig A illustrates the optimal glucose
dosage rate u∗G(t) and corresponding time evolution of glucose concentrations for concomitant
(blue curves) and alternating controls (orange curves). It can be seen that alternating control
yields more glucose infusion over the simulation time and the glucose profile is shifted to the left.
In Fig B, optimal drug dose rates u∗D(t) and corresponding time evolution of drug concentrations
for concomitant (blue curves) and alternating controls (orange curves) are depicted. Notice the
difference in infusion times and drug concentration dynamics. It is shown in Fig C that both
strategies are able to restrict miR-451 and mTOR above their respective threshold values, and
AMPK complex levels below its threshold. Fig D displays the trajectory of concomitant and
alternating controls in 3D spaces showing different perspectives.

Figure A: Glucose concentration profiles. Glucose infusion protocol and corresponding con-
centrations under concomitant and alternating controls over 168h (7d) period.
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Figure B: Drug concentration profiles. Drug infusion protocol and corresponding concentrations
under concomitant and alternating controls over 168h (7d) period.
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Figure C: miR-451, AMPK, mTOR levels. Concentration profiles of miR-451, AMPK, and
mTOR under concomitant and alternating controls over 168h (7d) period.
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Figure D: 3D trajectories. Concomitant and alternating control trajectories in (A) miR-451–
AMPK-mTOR space, (B) glucose–miR-451–mTOR space, and (C) drug–miR-451–mTOR space.
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