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1. Derivation of the design equations 

We use the metagrating theory [1] for a periodic array of horizontally oriented magnetic dipoles. The 

structure is illuminated with a TM-polarized plane wave propagating in the yz plane: 

𝑬𝒊𝒏𝒄 = 𝑬𝟎(𝒚 𝐜𝐨𝐬(𝜽𝒊𝒏𝒄) + 𝒛 𝐬𝐢𝐧(𝜽𝒊𝒏𝒄)) 𝒆
−𝒊𝒌𝟎(𝐬𝐢𝐧(𝜽𝒊𝒏𝒄)𝒚−𝐜𝐨𝐬(𝜽𝒊𝒏𝒄)𝒛) (1) 

with E0 the amplitude, k0 the free-space wave number and 𝜃𝑖𝑛𝑐 the angle of incidence. The magnetic 

dipoles, induced by the incoming wave have each a magnetic current: 

𝑰𝒎
𝒙 = −𝒊𝝎𝜶𝒎𝑯𝒆𝒙𝒕

𝒙  (2) 

with 𝐻𝑒𝑥𝑡
𝑥  the impinging magnetic field and αm the effective magnetic particle polarizability. The 

dipoles are ordered in a periodic array (m×n) with periodicity dx and dy in x and y directions, respectively, 

and are located at a distance h above a ground plane. The magnetic surface current density Jm is the 

sum of the currents generated by the discrete magnetic dipole moments: 

𝑱𝒎(𝒙, 𝒚, 𝒛) = 𝒙𝑰𝒎
𝒙 𝜹(𝒛 − 𝒉)∑ ∑ 𝜹(𝒙 −𝒎𝒅𝒙)𝜹(𝒚 − 𝒏𝒅𝒚)

+∞
𝒏=−∞

+∞
𝒎=−∞ 𝒆−𝒊𝒌𝟎 𝐬𝐢𝐧(𝜽𝒊𝒏𝒄)𝒏𝒅𝒚  . (3) 

The Floquet modes into which the array redirects light are the diffraction orders of the given grating 

condition. To avoid scattering into higher order modes, we first consider the case of 1D periodicity in 

the y direction and grating geometries with only three Floquet modes n=0, 1 (first-order diffraction 

above 30). The radiated field for Floquet mode n is given by: 

𝑬𝒏 = (𝒚 − 𝒛
𝒌𝟎 𝐬𝐢𝐧(𝜽𝒏)

𝒌𝟎 𝐜𝐨𝐬(𝜽𝒏)
)𝑸𝒏𝐞𝐱𝐩⁡(−𝒊𝒌𝟎 𝐬𝐢𝐧(𝜽𝒏)𝒚 − 𝒊𝒌𝟎 𝐜𝐨𝐬(𝜽𝒏)𝒛), 

(4) 

 with 
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𝑸𝒏 =
𝟏

𝑺
𝑰𝒎
𝒙 𝐜𝐨𝐬(𝒌𝟎 𝐜𝐨𝐬(𝜽𝒏)𝒉). (5) 

S is the area of the unit cells (𝑆 = 𝑑𝑦⁡for 1D surface). As energy is conserved and no Ohmic dissipation 

is considered, the extinction power Pext equals the power re-radiated in all Floquet modes: 

𝑷𝒆𝒙𝒕 =
𝟏

𝟐𝑺
𝑹𝒆{𝑱𝒎 ⋅ 𝑯𝒂}⁡= 𝑷𝒓𝒂𝒅 =

𝟏

𝟐𝜼𝟎
∑

𝟏

𝐜𝐨𝐬𝜽𝒏

𝒏=∞
𝒏=−∞ |𝑸𝒏| . (6) 

Employing equation (2) and (5), (6) can be rewritten as: 

𝑰𝒎{
𝟏

𝜶𝒎
} =

𝝎

𝜼𝟎⁡𝒅⁡
∑

𝟏

𝐜𝐨𝐬𝜽𝒏

𝒏=+∞
𝒏=−∞ 𝐜𝐨𝐬𝟐(𝒌𝟎𝒉𝐜𝐨𝐬(𝜽𝒏)). 

(7) 

In the radiated fields, the field of the n=0 Floquet mode is: 

𝑬𝟎 = (𝒚 − 𝒛
𝒌𝟎 𝐬𝐢𝐧(𝜽𝒏)

𝒌𝟎 𝐜𝐨𝐬(𝜽𝒏)
)𝑸𝟎𝐞𝐱𝐩⁡(−𝒊𝒌𝟎 𝐬𝐢𝐧(𝜽𝒏)𝒚 − 𝒊𝒌𝟎 𝐜𝐨𝐬(𝜽𝒏)𝒛) 

(8) 

with 𝑄0 =
1

𝑑
𝐼𝑚
𝑥 cos(𝑘0ℎ). To cancel the specular reflection of the incident field from the ground plane 

with the n=0 Floquet mode the condition 𝑄0 = 𝐸0 has to be fulfilled. Combining this condition with 

the form of the magnetic current from (2) gives the condition: 

𝟏

𝜶𝒎
=

𝟐𝒊𝝎

𝜼𝟎⁡𝒅⁡
𝐜𝐨𝐬𝟐(𝒌𝟎𝒉) 

(9) 

Now, we assume that only the 0,-1 and +1 grating orders can carry energy. Comparing equation (7) 

and (9) then leads to the design equation for the cancellation of the specular reflection: 

𝐜𝐨𝐬𝟐(𝒌𝟎𝒉) =
𝟐

𝐜𝐨𝐬(𝜽𝟏)
𝐜𝐨𝐬𝟐(𝒌𝟎𝒉𝐜𝐨𝐬(𝜽𝟏)). 

(10) 

This design equation describes which height h of the magnetic dipoles has to be chosen above the 

ground plane to fully redirect light at normal incidence to the 1 diffraction orders. 

2. Analytical antenna theory 

To implement the metagrating theory into an analytical design structure, we use a method common 

in antenna theory, and derive the radiation of the total array of magnetic dipoles by summing up the 

far fields of all individual dipoles. Here, interaction of the dipoles is not taken into account. The far-

field radiation by antennas for a magnetic dipole pointing in x direction is given by [2]: 

Eθ = iωη
ϵ⁡𝑚𝑥

4π⁡r
⁡e−ikr⁡ sin𝜑        ,                 (11) 

Eφ = iωη
ϵ⁡𝑚𝑥

4π⁡r
⁡e−ikr⁡ cos𝜃cos𝜑                (12) 

with  and  the azimuthal and zenithal angles, respectively. If we consider a 1D geometry (dipoles in 

a line), 𝜑 =
𝜋

2
, and the electrical field is described by: 
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𝐄𝛉 = 𝐢𝛚𝛈
𝛜⁡𝒎𝒙

𝟒𝛑⁡𝐫
⁡𝐞−𝐢𝐤𝐫. (13) 

Here, ω is the angular frequency, ε the permittivity, and η the permeability (𝑘0 = 𝜔𝜂𝜖) and mx is the 

magnetic moment which takes the form 𝑚𝑥 =
1

𝑖𝜔
𝑆𝐸0⁡due to the condition 𝐸0 = 𝑄0. If the dipole is 

located above a ground plane with distance h, image theory can be used to describe the far field: 

𝐄𝛉 = 𝐄𝛉
+ + 𝐄𝛉

− = 𝐢𝐤𝟎𝒎𝒙(⁡
𝟏

𝟒𝛑⁡𝐫+
⁡𝐞−𝐢𝐤𝐫

+
+

𝟏

𝟒𝛑⁡𝐫−
⁡𝐞−𝐢𝐤𝐫

−
) 

(14) 

with r+ and r- describing the distance to the dipole located above the ground plane and the image 

dipole below the ground plane. To calculate the fields in cartesian coordinates r+ and r- can be 

expressed as 𝑟+ = √𝑦2 + (𝑧 − ℎ)2 and 𝑟− = √𝑦2 + (𝑧 + ℎ)2.  The far field radiation of N1 dipoles 

located next to each other at a distance d1 (on the y axis) is then given by the sum of all individual 

dipoles and their image dipole: 

𝑬𝜽,𝑵𝟏
= ∑ 𝑬𝜽

+(𝒚 − 𝒏𝒅𝟏, 𝒛 − 𝒉𝟏) + 𝑬𝜽
−(𝒚 − 𝒏𝒅𝟏, 𝒛 + 𝒉𝟏)

𝑵𝟏
𝒏=𝟎 . (15) 

 

Continuing summing of radiated far fields, results in a total far field of all dipoles: 

𝑬𝜽,𝒕𝒐𝒕 = ∑ 𝑬𝜽,𝑵𝒊

𝒎
𝒊=𝟎 . (16) 

of 𝑁 = 𝑁1 +𝑁2+. . . +𝑁𝑚 dipoles with N1 dipoles with the distance d1, N2 dipoles with the distance d2 

and so on. 

Based on this derivation, not taking into account the interaction between particles, a design of the far-

field scattering of arrays of magnetic dipoles can be made. It should be noted that the scattering 

towards 0 degree cannot be canceled mathematically, as here we are considering a finite array, while 

the design equation (10) is based on an infinite plane wave. For this reason, the analytical calculation 

gives us information about the overall shape of the angular scattering distribution, but not about its 

efficiency. Figure S1 shows the analytically calculated far field for the large-angle reflector 

metasurface, consisting of 5 magnetic dipoles per metagrating, with optimum height derived from the 

design equation. 
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Figure S1 Angular profile of far-field intensity analytically calculated from the sum of 25 
point dipoles (5 dipoles per angle, 35-75°) and their image dipoles with their respective 
distances z each obtained from the design equation. The 0th order scattering contribution 
is removed (grey zone). 

3. Optimization of structure by simulations 

In the following steps, it is shown how we designed the final structure for fabrication. In all steps FDTD 

Lumerical is used. In all simulations for optimization, periodic boundary conditions were used and 

metagratings with one fixed period were studies. The structure was illuminated with a plane wave and 

the power to different grating orders was determined using the grating projection functionality of 

FDTD Lumerical. We choose to optimize the structure for an operational wavelength of =650 nm, 

normally incident on a 1D array of Si pillars placed on a Ag substrate with a silica spacing layer. The 

array has a period of 919 nm (θdiff=45°). We fix the height z of the pillar to 180 nm. Now, by varying the 

width w and the distance h between Ag substrate and center of the pillar, we find that at for h=200 

nm and w=85 nm, almost 50 % of the reflected light is scattered towards the +1st order, which given 

the symmetry, translates to almost 100% diffraction efficiency into the n=1 modes (Figure S2). 
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Figure S2 Diffraction efficiency into the 1st diffraction order as a function of distance h from 
particle to the Ag mirror and particle width w. 

 

For ease of fabrication, the distance h was kept constant for all combined metagratings. To investigate 

the metagrating performance for λ=650 with periodicities different from 919 nm, we vary the period 

p as well as the distance h (Figure S3). We find that for h=200 nm for the smaller and bigger periods, 

up to a pitch of p=1300 nm (above which the 2nd diffraction order appears) the grating efficiency can 

be designed to be above 35% (70% for both n=1 orders). 

 

Figure S3 Diffraction efficiency into the 1st diffraction order as a function of array period p 
and distance h from particle to the Ag mirror. 

. 
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In fabrication, the width of the individual metagratings can be easily tailored.  We investigate how the 

width of the individual particles affects the performance for different periodicities and find that w=85 

nm gives the best result for all periods (Figure S4). 

 

Figure S4 Diffraction efficiency into the 1st diffraction order as a function of array period 
p and particle width w. 

 

With the chosen parameters (w = 85 nm, z = 180 nm, h = 200 nm), we investigate the effect of varying 

the array period for the 500-1200 nm spectral range (Figure S5). The resonant scattering effect around 

650 nm is clearly seen for all periods, and a high coupling efficiency is observed for the bandwidth of 

the magnetic Mie mode, peaking near 100% on resonance. 

 

Figure S5 Diffraction efficiency into the 1st diffraction order as a function of array period 
p and wavelength, showing resonant behavior around 650 nm. No diffraction is observed 
in the dark blue region. 



S7 
 

As described in the main text, for first-order scattering angles θdiff < 30° higher-order diffraction 

complicates the design, that focus on optimizing only the 1 Floquet modes. As mentioned, we address 

this problem by modifying the unit cell to contain a number of identical scatterers (3 or 6, depending 

on the grating pitch) such that their scattering radiation profiles remain within the angular range below 

30°. We tune the distance between the scatterers to optimize the scattering profile for the highest 

coupling efficiency towards the first diffraction order. For coupling to the 5, 15 and 25 angles, we 

reach efficiencies between 38% and 48% (76% and 96% for both orders) by choosing optimized inter-

particle distances of d = 550 nm, 470 nm and 230 nm, respectively (Figure S6).  

 

Figure S6 Diffraction efficiency into the 1st diffraction order as a function of Si pillar 
distance d and wavelength for (a) 3 pillars for θ=25° (b) 3 pillars for θ=15° (c) 6 pillars for 
θ=5°. 
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