Supplementary Table S1. Characteristics of human islet donors used in these studies

| Donor<br>number | Diagnosed<br>diabetes | Sex | Age<br>(years) | BMI  | Ethnicity                       | Cause of Death         | Experiments<br>performed |  |
|-----------------|-----------------------|-----|----------------|------|---------------------------------|------------------------|--------------------------|--|
| 1               | No                    | F   | 45             | 26.6 | White                           | Cerebrovascular/stroke | Fig 6 A-C                |  |
| 2               | No                    | F   | 56             | 33.4 | Black or<br>African<br>American | Cerebrovascular/stroke | Fig 6 A-C                |  |
| 3               | No                    | М   | 55             | 28.5 | White                           | Anoxia                 | Fig 6 A-I, Fig 7<br>A-F  |  |
| 4               | No                    | F   | 51             | 22.5 | Asian                           | Cerebrovascular/stroke | Fig 6 A-I, Fig 7<br>A-F  |  |
| 5               | No                    | М   | 54             | 21.7 | White                           | Anoxia                 | Fig 6 A-I, Fig 7<br>A-F  |  |

Supplementary Table S2. Number of cells counted for each experiment

| Figure<br>panels | Type of<br>cells | Experimental conditions | Outcomes                         | number of<br>biological<br>replicates | Total<br>number of<br>cells<br>counted | Number of<br>cells counted<br>(mean +/-<br>SE) |
|------------------|------------------|-------------------------|----------------------------------|---------------------------------------|----------------------------------------|------------------------------------------------|
| 1B-1C            | mouse            | 5mM glu                 | BrdU, gH2AX, predicted, observed | 6                                     | 14295                                  | 2382 +/- 471                                   |
| 2A-2C            | mouse            | 5mM, young              | BrdU, gH2AX, predicted, observed | 5                                     | 9134                                   | 1827 +/- 134                                   |
| 2A-2C            | mouse            | 15mM,<br>young          | BrdU, gH2AX, predicted, observed | 10                                    | 18473                                  | 1847 +/- 290                                   |
| 2A-2C            | mouse            | 5mM, old                | BrdU, gH2AX, predicted, observed | 4                                     | 11009                                  | 2752 +/- 642                                   |
| 2A-2C            | mouse            | 15mM, old               | BrdU, gH2AX, predicted, observed | 4                                     | 11566                                  | 2892 +/- 342                                   |
| 2D-2F            | mouse            | 5mM, cre,<br>young      | BrdU, gH2AX, predicted, observed | 5                                     | 9203                                   | 1841 +/- 181                                   |
| 2D-2F            | mouse            | 5mM, D2,<br>young       | BrdU, gH2AX, predicted, observed | 5                                     | 9589                                   | 1918 +/- 367                                   |
| 2D-2F            | mouse            | 5mM, cre,<br>old        | BrdU, gH2AX, predicted, observed | 4                                     | 8928                                   | 2232 +/- 583                                   |
| 2D-2F            | mouse            | 5mM, D2, old            | BrdU, gH2AX, predicted, observed | 4                                     | 8937                                   | 2234 +/- 245                                   |
| 2G-2I            | mouse            | 15mM, cre,<br>young     | BrdU, gH2AX, predicted, observed | 5                                     | 9653                                   | 1931 +/- 302                                   |
| 2G-2I            | mouse            | 15mM, D2,<br>young      | BrdU, gH2AX, predicted, observed | 5                                     | 12306                                  | 2461 +/- 434                                   |
| 2G-2I            | mouse            | 15mM, cre,<br>old       | BrdU, gH2AX, predicted, observed | 4                                     | 10947                                  | 2737 +/- 360                                   |
| 2G-2I            | mouse            | 15mM, D2,<br>old        | BrdU, gH2AX, predicted, observed | 4                                     | 10341                                  | 2585 +/- 625                                   |
| 2J-2L            | mouse            | 5mM, veh                | BrdU, gH2AX, predicted, observed | 3                                     | 5347                                   | 1782 +/- 280                                   |

| 2J-2L    | mouse | 5mM,<br>harmine                        | BrdU, gH2AX, predicted, observed | 3 | 3626         | 1209 +/- 193                 |
|----------|-------|----------------------------------------|----------------------------------|---|--------------|------------------------------|
| 2J-2L    | mouse | 15mM, veh                              | BrdU, gH2AX, predicted, observed | 3 | 4696         | 1565 +/- 19                  |
| 2J-2L    | mouse | 15mM,<br>harmine                       | BrdU, gH2AX, predicted, observed | 3 | 3737         | 1246 +/- 105                 |
| 3A-3C    | mouse | 15mM, ctrl,<br>young                   | BrdU, gH2AX, predicted, observed | 7 | 9978         | 1425 +/- 233                 |
| 3A-3C    | mouse | 15mM, mito,<br>young                   | BrdU, gH2AX, predicted, observed | 6 | 4239         | 707 +/- 378                  |
| 3A-3C    | mouse | 15mM, ctrl,<br>old                     | BrdU, gH2AX, predicted, observed | 4 | 11566        | 2892 +/- 342                 |
| 3A-3C    | mouse | 15mM, mito,<br>old                     | BrdU, gH2AX, predicted, observed | 4 | 10192        | 2548 +/- 400                 |
| 3D-3F    | mouse | 15mM, ctrl,<br>old                     | BrdU, gH2AX, predicted, observed | 4 | 11566        | 2892 +/- 342                 |
| 3D-3F    | mouse | 15mM, UV,<br>old                       | BrdU, gH2AX, predicted, observed | 4 | 10141        | 2535 +/- 278                 |
| 5A       | mouse | 15mM,<br>+BrdU, young                  | gH2AX                            | 7 | 9978         | 1425 +/- 233                 |
| 5A       | mouse | 15mM, no<br>BrdU, young                | gH2AX                            | 4 | 8606         | 2152 +/- 595                 |
| 5A       | mouse | 15mM,<br>+BrdU, old                    | gH2AX                            | 4 | 11566        | 2892 +/- 342                 |
| 5A       | mouse | 15mM, no<br>BrdU, old                  | gH2AX                            | 4 | 14538        | 3635 +/- 926                 |
|          |       |                                        |                                  |   |              |                              |
| 5C       | mouse | 15mM, X,<br>young                      | gH2AX                            | 5 | 7570         | 1514 +/- 365                 |
| 5C<br>5C | mouse | 15mM, X,<br>young<br>15mM, Y,<br>young | gH2AX<br>gH2AX                   | 5 | 7570<br>9978 | 1514 +/- 365<br>1425 +/- 233 |

| 5C    | mouse | 15mM, X, old                   | gH2AX                            | 4 | 11203 | 2801 +/- 355 |
|-------|-------|--------------------------------|----------------------------------|---|-------|--------------|
| 5C    | mouse | 15mM, Y, old                   | gH2AX                            | 4 | 11566 | 2892 +/- 342 |
| 5C    | mouse | 15mM, Z, old                   | gH2AX                            | 4 | 10111 | 2528 +/- 365 |
| 5D    | mouse | 5mM, D2, +<br>BrdU, young      | BrdU, gH2AX                      | 3 | 5423  | 1808 +/- 286 |
| 5D    | mouse | 5mM, D2, no<br>BrdU, young     | BrdU, gH2AX                      | 3 | 3663  | 1221 +/- 208 |
| 5D    | mouse | 5mM, D2, +<br>BrdU, old        | BrdU, gH2AX                      | 3 | 12684 | 4228 +/- 196 |
| 5D    | mouse | 5mM, D2, no<br>BrdU, old       | BrdU, gH2AX                      | 3 | 10600 | 3533 +/- 252 |
| 5E    | mouse | 15mM, D2, +<br>BrdU, young     | BrdU, gH2AX                      | 3 | 3700  | 1233 +/- 202 |
| 5E    | mouse | 15mM, D2,<br>no BrdU,<br>young | BrdU, gH2AX                      | 3 | 5762  | 1921 +/- 228 |
| 5E    | mouse | 15mM, D2, +<br>BrdU, old       | BrdU, gH2AX                      | 3 | 8296  | 2765 +/- 102 |
| 5E    | mouse | 15mM, D2,<br>no BrdU, old      | BrdU, gH2AX                      | 3 | 8291  | 2764 +/- 279 |
| 5F-5G | mouse | 15mM, lacZ,<br>young           | рНН3                             | 4 | 8366  | 2092 +/- 214 |
| 5F-5G | mouse | 15mM, D2,<br>young             | рНН3                             | 4 | 8244  | 2061 +/- 302 |
| 6A-6C | human | 5mM                            | BrdU, gH2AX, predicted, observed | 4 | 4729  | 1182 +/- 301 |
| 6A-6C | human | 15mM                           | BrdU, gH2AX, predicted, observed | 5 | 3817  | 763 +/- 162  |
| 6D-6F | human | 5mM, cre                       | BrdU, gH2AX, predicted, observed | 3 | 2651  | 884 +/- 227  |
| 6D-6F | human | 5mM, D2                        | BrdU, gH2AX, predicted, observed | 3 | 3571  | 1190 +/- 196 |

| 6G-6I | human | 15mM, cre  | BrdU, gH2AX, predicted, observed | 3 | 2615 | 872 +/- 208  |
|-------|-------|------------|----------------------------------|---|------|--------------|
| 6G-6I | human | 15mM, D2   | BrdU, gH2AX, predicted, observed | 3 | 4271 | 1424 +/- 261 |
| 7A-7C | human | 15mM, ctrl | BrdU, gH2AX, predicted, observed | 5 | 3817 | 763 +/- 162  |
| 7A-7C | human | 15mM, mito | BrdU, gH2AX, predicted, observed | 5 | 3207 | 641 +/- 303  |
| 7D-7F | human | 15mM, ctrl | BrdU, gH2AX, predicted, observed | 5 | 3817 | 763 +/- 162  |
| 7D-7F | human | 15mM, UV   | BrdU, gH2AX, predicted, observed | 3 | 2971 | 990 +/- 247  |

**Supplementary Table S3**. Putative explanations for beta cell co-labeling with BrdU and DNA damage marker gH2AX, implications, and an approach to testing each hypothesis.

| Explanation                                                                                           | Possible mechanism if true                                                                                                                                   | Implications if true                                                                                                                                     | How to test                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DNA damage causes<br>BrdU incorporation                                                               | DNA damage repair results in<br>incorporation of BrdU<br>nucleotide                                                                                          | BrdU incorporation does<br>not reflect cell cycle entry<br>in cells with DNA damage.                                                                     | Induce DNA damage, test<br>for increased frequency of<br>BrdU labeling. Observe<br>pattern of BrdU label.                                                  |
| Brdu exposure<br>causes DNA damage                                                                    | Incorporation of the BrdU<br>nucleotide leads to a DNA<br>damage response                                                                                    | BrdU incorporation<br>reflects cell cycle entry<br>but incurs toxicity. BrdU<br>toxicity may impact cell<br>cycle completion.                            | Test for increased DNA<br>damage in the presence of<br>BrdU compared with DNA<br>damage in the absence of<br>BrdU                                          |
| An upstream<br>process causes both<br>DNA damage and<br>BrdU incorporation                            | Many possible mechanisms.<br>Most likely is that proliferative<br>signals, DNA replication or other<br>cell cycle related process also<br>induces DNA damage | BrdU incorporation<br>reflects cell cycle entry.<br>Cells may not complete<br>the cell cycle. Proliferation<br>is a dangerous process for<br>beta cells. | Test whether proliferative<br>conditions increase the<br>fraction of gH2AX-labeled<br>cells.                                                               |
| DNA damage and<br>BrdU incorporation<br>are unrelated but<br>occasionally co-<br>occur stochastically | Cells occasionally co-label with<br>BrdU and gH2AX by random<br>chance                                                                                       | BrdU incorporation reflects cell cycle entry.                                                                                                            | Test whether the<br>observed BrdU-gH2AX co-<br>labeling frequency<br>matches the predicted<br>frequency based on<br>prevalence of the<br>individual labels |

Supplementary Figure S1. Many BrdU+ beta cell nuclei co-label with pHH3, suggesting progression of BrdU-labeled cells to the mitotic phase of the cell cycle. Mouse islet cells were dispersed and cultured in 15mM glucose for 72 hours, with BrdU present for the final 24 hours, then fixed and stained for insulin, BrdU, pHH3 and dapi. Many BrdU-labeled beta cell nuclei co-stain for pHH3 (arrows). Given the long duration of BrdU exposure, some of the BrdU(+) pHH3(-) cells may have progressed through the cell cycle entirely; note the occasional BrdU doublets, which are negative for pHH3.



**Supplementary Figure S2. In vivo HFD-stimulated beta cell proliferative expansion leads to very few gH2AX-labeled beta cell nuclei.** Pancreas sections from control diet (A) or high fat diet (HFD; B-C) fed mice were stained for insulin, BrdU, gH2AX and dapi. All gH2AX-stained islet nuclei identified in this experiment are shown above; the vast majority of islets imaged contained no detectable gH2AX-labeled cells. Although many insulin+ cells labeling with BrdU were found (white lines), only four gH2AX+ nuclei (white arrows) were found in the 8 sections. The gH2AX+ nucleus in (A) appears to be a non-insulin-positive cell, whereas the gH2AX+ nuclei in (B-C) appear to belong to insulin+ cells. The gH2AX+ nuclei in (B) are also BrdU+, but those in (A) and (C) are BrdU-negative.



©2019 American Diabetes Association. Published online at http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db18-0761/-/DC1

**Supplementary Figure S3. In vivo hyperglycemia-stimulated beta cell proliferative expansion leads to very few gH2AX-labeled beta cell nuclei.** Pancreas sections from mice rendered continuously hyperglycemic for 4 days by intravenous glucose infusion were stained for insulin, BrdU, gH2AX and dapi. As with the HFD experiment shown in Suppl. Fig 2, all gH2AX-stained islet nuclei identified in this experiment are shown above. Again, the vast majority of islets imaged contained no detectable gH2AX-labeled cells. Although many insulin+ cells labeling with BrdU were found (white lines), only four gH2AX+ nuclei (white arrows) were found in pancreas sections from four mice. The gH2AX+ nucleus in (D) appears to be a non-insulin-positive cell, whereas the gH2AX+ nuclei in (A-C) appear to belong to insulin+ cells. In this hyperglycemia experiment, none of the gH2AX+ nuclei were also BrdU+.



©2019 American Diabetes Association. Published online at http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db18-0761/-/DC1

Supplementary Figure S4. Ex vivo cultured intact islets labeled infrequently for gH2AX unless exposed to DNA damaging agent Mitomycin C, and very rarely labeled for both BrdU and gH2AX. Whole mouse islets were cultured for 72 hours in islet medium containing 5mM glucose, 15mM glucose or 15mM glucose with Mitomycin C, with BrdU added for the final 24 hours of culture. The islets were then fixed, embedded in paraffin, sectioned and stained for insulin, BrdU, gH2AX and dapi (A). Some insulin+ cells labeled with BrdU (white lines, B) or gH2AX (white arrows, C) but very few of the gH2AX+ nuclei were also BrdU+ (D).

