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1. Filtering and smoothing densities for state-space models

In a state-space model the joint posterior distribution for the parameters
and the hidden states, using Bayes’ theorem, is given by

π(ψ, x0:T |y0:T ) =
π(y0:T |x0:T , ψ)π(x0:T |ψ)π(ψ)

π(y0:T )
.

If the focus of inference lies on estimating the model parameters, their
marginal posterior distribution can be obtained by integrating out the hid-
den states. The properties of state-space models allow to write (see e.g.
Doucet and Johansen, 2009; Wilkinson, 2012)

π(ψ|y0:T ) ∝ π(ψ)π(y0:T |ψ)

= π(ψ)π(y0|ψ)

T/∆t∏
i=1

π(yi∆t |y0:(i−1)∆t
, ψ),

where

(S1) π(y0|ψ) =

∫
π(y0|x0, ψ)π(x0|ψ)dx0,

and

π(yi∆t |y0:(i−1)∆t
, ψ) =(S2)∫

π(yi∆t |xi∆t , ψ)π(xi∆t |x(i−1)∆t
, ψ)π(x(i−1)∆t

|y0:(i−1)∆t
, ψ)dx(i−1)∆t:i∆t

.

The density π(y0:T |ψ) is the model likelihood, and is available in closed
form when all the densities involved are Gaussian. In such case, indeed, the
integrals (S1) and (S2) can be explicitly solved, resulting in turn in Gaussian
densities. The mean and variance of these distributions are provided by
Kalman filter recursions.

On the other hand, inference on the hidden states can be performed by
obtaining the smoothing density of the model, i.e.

π(x0:T |y0:T , ψ) = π(xT |y0:T , ψ)

(T−∆t)/∆t∏
i=0

π(xi∆t |xi∆t+∆t , y0:T , ψ),

1



2

where again the properties of state-space models are exploited to write the
density in a sequential form.

2. Derivation of the unobserved states approximate mean and
variance equations in non-delayed systems

The mean and variance equations (2) and (3) in the main text can alter-
natively be derived from the Euler-Maruyama approximation over a time-
interval δt of the unobserved states SDE (see Singer, 2006; Särkkä, 2007),
i.e. the CLE (1) in the main text can be approximated as

Xt+δt = Xt + g(Xt)δt + a(Xt)∆Bt + o(δt),

where ∆Bt =
√
δtZt, and Zt is a standard normal. Letting A(·) = a(·)a(·)T

and dropping the terms of order o(δ2
t ), it follows that (Singer, 2006)

E[Xt+δt |y0:t] ≈ E[Xt|y0:t] + E[g(Xt)|y0:t]δt(S3)

Var[Xt+δt |y0:t] ≈ Var[Xt|y0:t] + Cov[Xt, g(Xt)|y0:t]δt(S4)

+ Cov[g(Xt), Xt|y0:t]δt + E[A(Xt)|y0:t]δt.

Let ρt = E[Xt|y0:t], the first order Taylor expansion of g(·) and A(·) about
ρt is

g(Xt) ≈ g(ρt) + Jg(ρt)(Xt − ρt)(S5)

A(Xt) ≈ A(ρt) + JA(ρt)(Xt − ρt).(S6)

where J denotes the Jacobian matrix. The expansions (S5) and (S6), trun-
cated at the first order, are then plugged into (S3) and (S4), allowing their
propagation under linearity (Singer, 2006). Defining Pt = Var[Xt|y0:t] and
rearranging, the mean and variance equations read

ρt+δt − ρt ≈ g(ρt)δt(S7)

Pt+δt − Pt ≈ Jg(ρt)Ptδt + P Tt Jg(ρt)
T δt +A(ρt)δt.(S8)

By dividing both sides of (S7) and (S8) by δt, and letting δt → 0, the
time-continuous form of (2) and (3) in the main text is recovered.

3. Model derivation

Assume that the full system, accounting for transcription, nuclear export,
translation, complex formation and nuclear import, can be described by the
following set of ODEs, also known as the Goodwin oscillator (Goodwin,
1965),

dxMg(t) =
[
ν(xPp(t))− µxMg(t)

]
dt(S9)

dxP1(t) = α[xMg(t)− xP1(t)]dt(S10)

...

dxPp(t) = α[xPp−1(t)− xPp(t)]dt,(S11)

where xMg denotes the mRNA counts, and xP1 , . . . , xPp the counts of the
intermediate species. Moreover, let ν(·) denote the assumed transcription
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function. It is shown in Smith (2010) that the system in (S9)-(S11), with
initial condition

xMg(0) = φ(0)

Pj(0) =

∫ ∞
0

φ(−s)Kj,α(s)ds, j = 1, ..., p

where φ : (−∞, 0]→ IR is bounded and continuous, is equivalent to

(S12) dxMg(t) =

[
ν

(∫ ∞
0

xMg(t− s)Kp,α(s)ds

)
− µxMg(t)

]
dt,

with initial condition xMg(θ) = φ(θ), for θ ≤ 0, and

(S13) Kp,α(s) =
αps(p−1)e−αs

(p− 1)!
,

is the probability density function of a Ga(p, α), evaluated at s. We partially
follow El Cheikh et al. (2012) for the proof.
The intermediate species xP1 , ..., xPp ODEs can be explicitly solved. Indeed,
the solution for xP1(t) is given by

xP1(t) = αe−αtxP1(0) +

∫ t

−∞
αeα(t−u)xMg(u)du.

As t → ∞, the contribution of the initial condition tends to 0, and the
remaining integral can be seen as a convolution between xMg and a Ga(1, α).
Consider then an arbitrary xPj , for j ∈ {2, ..., p}, and suppose that xPj−1(t)
is the convolution between xMg and a Ga(j − 1, α). The solution for xPj (t)
is equivalently given by

xPj (t) = αe−αtxPj (0) +

∫ t

−∞
αeα(t−u)xPj−1(u)du,

where again, neglecting the initial condition, a convolution between xPj−1

and a Ga(1, α) is obtained. By induction, the additive property of the
convolution, and the fact that the convolution of p independent Ga(1, α) is
a Ga(p, α), it can be concluded that, as t→∞ ,

xPp(t) = (xMg ∗Kp,α)(t),

where K is defined as in (S13). By plugging the result into the mRNA
equation, (S12) is obtained.

Two main assumptions are required for the previous result: first, all the
translation and degradation rates of the intermediate states are assumed to
be equal, and second, it is based on deterministic dynamics. If the degra-
dation rates are different, we have a convolution of gamma densities having
different rate parameters. We assume that this distribution can still however
be reasonably approximated by a single Gamma density.

As for the deterministic form, we postulate that most of the stochastic-
ity is generated by the mRNA state, given that cellular protein levels are
generally much higher than mRNA counts (see e.g. Suter et al., 2011), and
replace the ODE for xMg with the stochastic MJP for XMg . The resulting
stochastic model for the mRNA is an immigration and death process, whose
macroscopic rate equation is given by (S12). The diffusion approximation
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of such model for the mRNA and for an additional intermediate state, is
employed for inferential purposes also in Heron et al. (2007).

4. Derivation of the unobserved states approximate mean and
variance equations in systems incorporating delays

The derivation of the mean and variance equations for systems incorporat-
ing time-delayed species follows steps analogous to Section 2 for non-delayed
systems. In particular, from an Euler-Maruyama approximation of the CLE
(7) in the main text, after dropping the terms of order o(δ2

t ) we have that

E [Xt+δt |y0:t] = E [Xt|y0:t] + E [g(Xt)|y0:t] δt(S14)

+ δtE

f
 t/δt∑
s=(t−τm+δt)/δt

Xsδt ·Kt−sδt+δt/2

 |y0:t


Var[Xt+δt |y0:t] = Var[Xt|y0:t] + Cov [xt, g(Xt)|y0:t] δt(S15)

+ Cov [g(Xt), Xt|y0:t] δt

+ Cov

[
Xt, f

(∑
s

Xsδt ·Kt−sδt+δt/2

)
|y0:t

]
δt

+ Cov

[
f

(∑
s

Xsδt ·Kt−sδt+δt/2

)
, Xt|y0:t

]
δt

+ E

[
A

(
Xt,

∑
s

Xsδt ·Kt−sδt+δt/2

)
|y0:t

]
δt,

where Kt−sδt+δt/2 is the discretised delay density evaluated at t− sδt + δt/2
and normalised, and

A

(
Xt,

∑
s

Xsδt ·Kt−sδt+δt/2

)
= l(Xt) + q

(∑
s

Xsδt ·Kt−sδt+δt/2

)
.

Taylor-expand the nonlinear function g(·) about ρt = E[Xt|y0:t], and f(·)
about ρ̄s =

∑
s ρsδt ·Kt−sδt+δt/2, up to the first order

g(Xt) ≈ g(ρt) + Jg(ρt)(Xt − ρt)

f

(∑
s

Xsδt ·Kt−sδt+δt/2

)
≈ f (ρ̄s) + Jf (ρ̄s)

+
∑
s

(Xsδt − ρsδt) ·Kt−sδt+δt/2.

Performing analogous expansions for l(·) and q(·) about ρt and ρ̄s, respec-
tively, it can be shown that

E

[
A

(
Xt,

∑
s

Xsδt ·Kt−sδt+δt/2

)
|y0:t

]
= A (ρt, ρ̄s) .
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Plugging the results into (S14) and (S15), we obtain

E[Xt+δt |y0:t] ≈ E[Xt|y0:t](S16)

+ δtg(ρt) + Jg(ρt)E[Xt − ρt|y0:t]δt + f (ρ̄s) δt

+ Jf (ρ̄s)
∑
s

E [(Xsδt − ρsδt)|y0:t] ·Kt−sδt+δt/2δt

= ρt + δtg(ρt) + f (ρ̄s) δt

Var[Xt+δt |y0:t] ≈ Pt + δt
[
Jg(ρt)Pt + P Tt Jg(ρt)

T
]

(S17)

+ δt

[
Jf (ρ̄s)

(∑
s

Psδt,t ·Kt−sδt+δt/2

)]

+ δt

[(∑
s

Pt,sδt ·Kt−sδt+δt/2

)
Jf (ρ̄s)

T

]
+ δtA (ρt, ρ̄s) .

The mean and variance prediction can be iterated until the next observa-
tion time-point, to obtain ρt:t+∆t and Pt:t+∆t .

A time-continuous form for the evolution of the mean and variance can
be derived by letting δt → 0. In particular, from (S16) and (S17), we have

ρt+δt − ρt
δt

≈ g(ρt) + f (ρ̄s)

Pt+δt − Pt
δt

≈
[
Jg(ρt)Pt + P Tt Jg(ρt)

T
]

+

[
Jf (ρ̄s)

(∑
s

Psδt,t ·Kt−sδt+δt/2

)]

+

[(∑
s

Pt,sδt ·Kt−sδt+δt/2

)
Jf (ρ̄s)

T

]
+A (ρt, ρ̄s) ,

and, as δt → 0,

dρ(t)

dt
≈ g(ρ(t)) + f

(∫ t

t−τm
ρ(s) ·K(t− s)ds

)
dP (t)

dt
≈
[
Jg(ρ(t))P (t) + P (t)TJg(ρ(t))T

]
+

[
Jf

(∫ t

t−τm
ρ(s) ·K(t− s)ds

)(∫ t

t−τm
P (s, t) ·K(t− s)ds

)]
+

[(∫ t

t−τm
P (t, s) ·K(t− s)ds

)
Jf

(∫ t

t−τm
ρ(s) ·K(t− s)ds

)T]

+A

(
ρ(t),

∫ t

t−τm
ρ(s) ·K(t− s)ds

)
.
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5. Initial condition

The observations obtained from time 0 to time τm require modelling which
does not rely on past observations. The model assumed for the initial con-
dition should be as parsimonious as possible, as the estimates obtained are
only instrumental at obtaining a sensible initial estimate of the mean and
variance of the system.

In our example, we assume a single change in transcription rate occurring
around the observed peak time, thus eliminating the dependence on past
mRNA. Formally, the unobserved state equation has the form

dX(t) =
[
I{0:tc}ν1 + I{tc:τm}ν2 − µ0X(t)

]
dt

+
√
β
√

I{0:tc}ν1 + I{tc:τm}ν2 + µ0X(t)dB(t),

where I is the indicator function, tc is the time at which transcription
switches from rate ν1 to rate ν2. Finally, β and µ0 are the scale and the
degradation rate for the initial condition, additionally introduced in order
to avoid a possible source of bias in the estimation process due to model
mismatch. Note that the parameter β plays the same role as the scale pa-
rameter κ in the main text (to see this, move κ from the observed state
to the unobserved scale equation, and rescale the transcription function pa-
rameters accordingly), and thus we additionally drop κ from the observed
state equation. The non-delayed system is treated as outlined in Section 2.2
of the main text.

6. MCMC details

The MCMC algorithm adopted has a pilot run of 3× 104 iterations. For
the first 103 iterations the transcription function parameters are updated
independently with a random walk Metropolis-Hastings scheme, with a fixed
variance for the gaussian proposals equal to 1. The remaining parameters
are updated in two blocks, one for the initial condition parameters and one
for the measurement parameters, each using a fixed diagonal covariance
matrix for the proposals with diagonal entries equal to 1/dk, where dk is the
dimension of block k = 1, 2. From iteration 103, the transcription function
parameters are sampled in an additional block. With probability 5%, the
covariance matrix of each block is equal to 0.12/dk, while with probability
95%, it is equal to the covariance matrix of the previously accepted values
times 1/d for the transcription function parameters block, and 2.382/dk for
the remaining blocks (see Roberts and Rosenthal, 2009). The unobserved
states discretisation time-interval here is set to δt = 0.5 h, to obtain a fast
first exploration of the posterior density.

From iteration 3 × 104, a delayed acceptance component is additionally
introduced (Christen and Fox, 2005; Golightly et al., 2015; Sherlock et al.,
2017). In a delayed acceptance scheme, samples are first proposed according
to a ‘fast’ likelihood evaluation, we choose in our case to adopt δt = 0.5
h, and accepted or rejected according to the usual acceptance ratio of a
Metropolis-Hastings scheme. If the proposed samples are accepted, a slower
and more precise evaluation of the likelihood is performed, in our case δt is
set to 0.1 h. The acceptance ratio of the nested step is, then, (Christen and
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Fox, 2005; Golightly et al., 2015)

αDA = min

{
1,
π0.1(y0:T |Ψ∗)
π0.1(y0:T |Ψ)

π0.5(y0:T |Ψ)

π0.5(y0:T |Ψ∗)

}
,

where Ψ∗ is the proposed sample of parameters, accepted in the fast likeli-
hood evaluation step, and Ψ the accepted sample from the previous iteration
of the MCMC algorithm. Moreover, we denote by π0.1 the likelihood un-
der δt = 0.1 h, and by π0.5 the likelihood under δt = 0.5 h. The choice
of a delayed acceptance scheme is motivated by the fact that the proposed
filter becomes computationally time-demanding as the chosen δt decreases.
Indeed, we have a computational cost which is approximately 3.5 times
higher under the δt = 0.1 h case than in the δt = 0.5 h one (see Table S2).
Moreover, the profile likelihoods and filter performance seem to be already
relatively satisfactory when δt = 0.5, suggesting that proposals accepted at
the first stage are likely to be accepted also at the nested stage, and thus
the algorithm can be efficient for this application. Sherlock et al. (2017)
also investigates efficiency of the delayed acceptance algorithm with respect
to the jump size of the proposals. These can be can be larger than in a
non-delayed scheme, as the acceptance/reject step of the first stage allows a
faster exploration of the posterior density. In practice, we have found that
the traditional multiplying constant of 2.382/dk for the proposals covariance
is already too large for the transcription function parameters block, and we
have thus reduced it to 1/dk. This value has been kept constant through the
pilot and the final run. In the pilot run, it seems to provide a satisfactory
behaviour in exploration of the posterior density, and, for the later samples,
we believe that the small change in the shape of target likelihood, as well
as a relatively low observed acceptance rate, may motivate to not increase
such value.

After the pilot run, we discard 105 iterations as a burn-in, and thin the
chains by retaining one sample every 100 iterations.

We note that the evaluation of the likelihood may encounter occasional
numerical problems, especially in the initial iterations, and for very low or
high proposed values of the degradation rate. In such cases, the proposed
values are rejected. We also note that mixing of the chains may be chal-
lenging for the transcription function parameters, as also suggested by the
posterior density plots in Figure 2 of the main text and Supplementary
Figures S5-S11.
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Supplementary Figures and Tables
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Figure S1. Molecule counts rescaled by their mean level,
integrated over 0.5 hours and corrupted with measurement
error. The assumed levels of signal to noise ratio is 20. SSA
trajectories for the unobserved state are obtained according
to reactions (8) and (9) in the main text, and assume pa-
rameters Rmax = 90 molecules/h, Kpc = 1.5×102 molecules,

n = 5, µ = 0.25 1/h, E[τ ] = 9.2 h, SD[τ ] =
√

15 h, and
τm = 30 h. The initial condition is given by the first 30
hours of a sample Cry1-luc time series recorded in mice brain,
aggregated de-trended and normalised.
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One step-ahead prediction

s/n=100 s/n=20

δt = 0.5 h 0.96 (0.012) 0.94 (0.0096)

δt = 0.25 h 0.97 (0.0091) 0.95 (0.012)

δt = 0.1 h 0.96 (0.0068) 0.95 (0.014)

δt = 0.05 h 0.96 (0.0052) 0.95 (0.015)

δt = 0.01 h 0.95 (0.0053) 0.95 (0.016)

Partial smoothing

s/n=100 s/n=20

δt = 0.5 h 0.36 (0.036) 0.84 (0.044)

δt = 0.25 h 0.81 (0.024) 0.93 (0.022)

δt = 0.1 h 0.94 (0.0095) 0.95 (0.012)

δt = 0.05 h 0.95 (0.0088) 0.95 (0.0088)

δt = 0.01 h 0.95 (0.0086) 0.95 (0.0075)

Table S1. Empirical coverages (95% level ) of the predictive
and partial smoothing density provided by the filtering algo-
rithm for the system under study. Values computed for two
signal to noise ratios (s/n), 100 and 20, and for five discreti-
sation time-intervals (δt). Mean (standard deviation) for 10
replicate simulated data-sets. Coverages are computed after
the initial 30 hours accounting for the delay.

Total
Prediction Kalman update

- covariance - covariance

δt = 0.5 h 0.12 s (0.019) 0.02 s (0.002) 0.01 s (0.001)

δt = 0.25 h 0.16 s (0.016) 0.04 s (0.004) 0.01 s (0.002)

δt = 0.1 h 0.44 s (0.024) 0.22 s (0.012) 0.07 s (0.004)

δt = 0.05 h 4.97 s (0.202) 3.73 s (0.146) 0.65 s (0.076)

δt = 0.01 h 421.00 s (24.435) 393.04 s (22.490) 17.46 s (0.985)

Table S2. Running times (in seconds) of the filtering algo-
rithm and selected sub-functions for the system under study.
Values computed for five discretisation time-intervals (δt).
Mean (standard deviation) for 10 replicate simulated data-
sets. Simulations are run on a 1.7 GHz Intel Core i7 proces-
sor, with 8 GB of RAM.
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Figure S2. Unobserved state prediction (top), unobserved
state partial smoothing (middle), and observed state predic-
tion (bottom) for one sample simulated time-series of Figure
1 in the main text. The true simulated values are superim-
posed in red, the mean of the predictive or partial smoothing
distribution is plotted in blue, while the light blue lines rep-
resent 95% variability intervals.
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Figure S3. Univariate log-likelihood plots for the model pa-
rameters, excluding the parameters of the initial condition,
for one sample simulated time-series of Figure 1 in the main
text. The remaining parameters are set at their true simula-
tion values (initial condition adjusted by visual inspection).
The red line marks the true value (for δt = 0.1). The signal
to noise ratio is equal to 100.
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Figure S4. Univariate log-likelihood plots for the model pa-
rameters, excluding the parameters of the initial condition,
for one sample simulated time-series of Figure S1. The re-
maining parameters are set at their true simulation values
(initial condition adjusted by visual inspection). The red
line marks the true value (for δt = 0.1). The signal to noise
ratio is equal to 20.
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data shown in Figure S1, the signal to noise ratio is equal to
20 (one chain is excluded due to non-convergence).
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One step-ahead prediction

s/n=100 s/n=20

δt = 0.5 h 0.85 (0.025) 0.87 (0.024)

δt = 0.25 h 0.94 (0.022) 0.94 (0.025)

δt = 0.1 h 0.96 (0.014) 0.95 (0.02)

δt = 0.05 h 0.96 (0.014) 0.95 (0.019)

δt = 0.01 h 0.95 (0.015) 0.95 (0.021)

Partial smoothing

s/n=100 s/n=20

δt = 0.5 h 0.28 (0.043) 0.74 (0.04)

δt = 0.25 h 0.73 (0.026) 0.91 (0.019)

δt = 0.1 h 0.92 (0.0092) 0.94 (0.015)

δt = 0.05 h 0.95 (0.0075) 0.95 (0.014)

δt = 0.01 h 0.95 (0.0061) 0.95 (0.014)

Table S3. Empirical coverages (95% level ) of the predictive
and partial smoothing density provided by the filtering algo-
rithm for the system under study. Values computed for two
signal to noise ratios (s/n), 100 and 20, and for five discreti-
sation time-intervals (δt). Mean (standard deviation) for 10
replicate simulated data-sets. Coverages are computed after
the initial 30 hours accounting for the delay. Hill coefficient
equal to 7.
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One step-ahead prediction

s/n=100 s/n=20

δt = 0.5 h 0.78 (0.027) 0.83 (0.043)

δt = 0.25 h 0.93 (0.018) 0.93 (0.024)

δt = 0.1 h 0.96 (0.016) 0.95 (0.02)

δt = 0.05 h 0.96 (0.012) 0.95 (0.019)

δt = 0.01 h 0.95 (0.012) 0.95 (0.018)

Partial smoothing

s/n=100 s/n=20

δt = 0.5 h 0.26 (0.019) 0.71 (0.036)

δt = 0.25 h 0.68 (0.035) 0.9 (0.031)

δt = 0.1 h 0.91 (0.017) 0.95 (0.022)

δt = 0.05 h 0.94 (0.013) 0.95 (0.019)

δt = 0.01 h 0.94 (0.01) 0.95 (0.017)

Table S4. Empirical coverages (95% level ) of the predictive
and partial smoothing density provided by the filtering algo-
rithm for the system under study. Values computed for two
signal to noise ratios (s/n), 100 and 20, and for five discreti-
sation time-intervals (δt). Mean (standard deviation) for 10
replicate simulated data-sets. Coverages are computed after
the initial 30 hours accounting for the delay. Hill coefficient
equal to 9.
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One step-ahead prediction

s/n=100 s/n=20

δt = 0.5 h 0.77 (0.027) 0.81 (0.031)

δt = 0.25 h 0.92 (0.013) 0.92 (0.027)

δt = 0.1 h 0.95 (0.0054) 0.95 (0.027)

δt = 0.05 h 0.95 (0.0053) 0.95 (0.027)

δt = 0.01 h 0.95 (0.0064) 0.95 (0.026)

Partial smoothing

s/n=100 s/n=20

δt = 0.5 h 0.26 (0.036) 0.68 (0.032)

δt = 0.25 h 0.69 (0.021) 0.89 (0.025)

δt = 0.1 h 0.92 (0.011) 0.95 (0.014)

δt = 0.05 h 0.94 (0.0076) 0.96 (0.014)

δt = 0.01 h 0.95 (0.0064) 0.96 (0.013)

Table S5. Empirical coverages (95% level ) of the predictive
and partial smoothing density provided by the filtering algo-
rithm for the system under study. Values computed for two
signal to noise ratios (s/n), 100 and 20, and for five discreti-
sation time-intervals (δt). Mean (standard deviation) for 10
replicate simulated data-sets. Coverages are computed after
the initial 30 hours accounting for the delay. Hill coefficient
equal to 11.
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Figure S6. Kernel densities estimates of the model param-
eters posterior densities, excluding the parameters of the ini-
tial condition. The prior density is shown in red while the
red vertical line marks the true value. The signal to noise
ratio is equal to 20. Hill coefficient equal to 7.
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Figure S7. Kernel densities estimates of the model param-
eters posterior densities, excluding the parameters of the ini-
tial condition. The prior density is shown in red while the red
vertical line marks the true value. The signal to noise ratio is
equal to 100 (one chain is excluded due to non-convergence).
Hill coefficient equal to 7.
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Figure S8. Kernel densities estimates of the model param-
eters posterior densities, excluding the parameters of the ini-
tial condition. The prior density is shown in red while the red
vertical line marks the true value. The signal to noise ratio is
equal to 20 (one chain is excluded due to non-convergence).
Hill coefficient equal to 9.
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Figure S9. Kernel densities estimates of the model param-
eters posterior densities, excluding the parameters of the ini-
tial condition. The prior density is shown in red while the
red vertical line marks the true value. The signal to noise
ratio is equal to 100 (two chains are excluded due to non-
convergence). Hill coefficient equal to 9.
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Figure S10. Kernel densities estimates of the model param-
eters posterior densities, excluding the parameters of the ini-
tial condition. The prior density is shown in red while the red
vertical line marks the true value. The signal to noise ratio is
equal to 20 (one chain is excluded due to non-convergence).
Hill coefficient equal to 11.
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Figure S11. Kernel densities estimates of the model pa-
rameters posterior densities, excluding the parameters of the
initial condition. The prior density is shown in red while the
red vertical line marks the true value. The signal to noise
ratio is equal to 100 (two chains are excluded due to non-
convergence). Hill coefficient equal to 11.
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Figure S12. Model fit diagnostic plots for Cry1-luc data.
Top: posterior predictive data density (median and 95%
HPDI); Middle: standardised residuals; Bottom: q-q nor-
mal plot for the median standardised residuals. Samples are
obtained from a thinned set of MCMC posterior parameter
samples. Plots on the left concern the full observation time,
while in the right plots the initial condition is discarded.


