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Relationship	 between	 advantage	 factor	 (p)	 and	 competitive	
advantage	(s)	
	
To	 determine	what	 the	 time	 step	 (∆t)	 in	 the	model	 is,	 we	 consider	 the	 exchange	
between	 two	 neighbouring	 demes,	 one	 carrying	 a	 mutation	 with	 a	 competitive	
advantage	s.	The	chance	that	this	mutation	is	copied	to	the	other	deme	in	one	time	
step	 (if	 D0=1)	 is	 0.5+p	 (Eq.	 3).	 We	 thus	 need	 to	 find	 the	 time	 it	 takes	 for	 a	
competitive	mutation	carried	by	50%	(f0=0.5)	of	a	population	of	size	2ND	(ND	is	the	
population	of	one	deme).	A	range	of	models	exists	to	predict	the	chance	of	and	the	
time	 to	 fixation	 [58-61,63,108]	 for	 a	 range	 of	 cases	 (diploid	 or	 not,	 recessive	 or	
dominant,	etc.).	Equations	for	our	purpose	here	are,	however,	not	readily	available.	
We	therefore	use	a	simple	numerical	model,	to	estimate	∆t	for	a	given	p	and	ND.		
	 The	 model	 has	N	 individuals,	 each	 carrying	 either	 0,	 1	 or	 2	 copies	 of	 the	
mutation.	Each	generation,	each	individual	mates	with	two	randomly	selected	other	
individuals,	 each	 time	producing	one	offspring	 that	 carries	one	 randomly	 selected	
allele	 from	 the	 two	 parents.	 If	 the	 two	 alleles	 contain	 one	 or	 two	 copies	 of	 the	
mutation,	 another	offspring	 is	 created	with	 a	 chance	of	 s/2	or	 s,	 respectively.	The	
number	of	offspring	in	the	next	generation	is	thus	slightly	larger	than	N,	because	of	
the	 additional	 offspring	 stemming	 from	 the	 parents	 that	 carry	 the	 competitive	
mutation.	 To	 keep	 the	 population	 constant,	 N	 individuals	 are	 randomly	 selected	
from	the	offspring.	This	 is	 repeated	until	 the	mutation	has	reached	 fixation	or	has	
completely	disappeared	from	the	population.		
	 The	 fixation	 probability,	 i.e.	 the	 total	 number	 of	 fixation	 events	 divided	 by	
number	 of	 simulations	 (here	 10,000x)	 equals	 0.5+p.	 For	 small	 values	 of	 s,	 p(N)	
increases	linearly	with	s,	with	a	slope	a	 that	depends	on	N	(S1	Fig.).	The	slope	a	 is	
itself	 linearly	 proportional	 with	 N	 (S1	 Fig.),	 resulting	 in	 a	 linear	 relationship	
between	p(N)	and	s:	
	 p N( ) = 0.145sN .	 	 	 	 	 	 	 (A)	

The	population	ND	of	a	deme	is	the	product	of	the	population	density	ρ	and	size	S	of	
the	deme,	giving	(using	N=2ND):	

	 p = 0.29sρS 2 	 or		 s = p
0.29ρS 2

.	 	 	 	 	 (B)	
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Duration	of	one	time	step	(∆t)	
	
When	 starting	 with	 50%	 of	 the	 population	 with	 a	 mutation,	 the	 number	 (T)	 of	
generations	(of	g	years/generation)	to	reach	fixation	or	extinction	of	 the	mutation	
decreases	slowly	with	s,	when	s	is	small.	For	s≈0	we	can	therefore	approximate	T(s)	
with	T(s=0).	A	plot	of	mean	T(s=0)	as	a	function	of	N	shows	a	linear	relationship	with	a	
slope	 of	 1.85	 generations/individual	 (S1	 Fig.).	 Considering	 that	 an	 exchange	
between	two	demes	is,	on	average,	only	considered	1/D0	times	per	two	time	steps	
and	N=2ND,	we	get	for	the	duration	of	one	time	step	(∆t):	

	 T ≈1.85N = 7.4 ρS
2

D0

⇔∆ t = 7.4 ρS
2g

D0

.	 	 	 	 (C)	

We	 see	 that	 the	 time	 step	 depends	 on	 the	 size	 S	 of	 the	 demes,	 but	 not	 on	 the	
competitive	 advantage	 (s).	 Changing	 the	 size	 of	 demes	 (while	 keeping	 all	 other	
parameters	the	same)	should	not	affect	the	velocity	(in	km/yr).	Spreading	velocity	
of	a	deme	depends	on	its	competitive	advantage	s,	and	hence	on	p	(Eq.	B).	It	should	
not	depend	on	deme	size	S.	 Simulations	 show	 that	 the	velocity	 in	demes	per	 time	
step	is	approximately	proportional	to	the	square	root	of	p	(Eq.	7).	

	 v demes / timestep[ ]∝ p1/2 ⇔ v km / yr[ ]∝ p1/2S
∆ t

=
sρ( )1/2 S2

ρS2g
=
s1/2

ρ1/2g
	 (D)	

This	 shows	 that	 the	 spreading	 velocity	 is	 indeed	 approximately	 independent	 of	
model	 resolution,	but	 that	p	 should	be	 chosen	depending	on	 s,	 population	density	
and	resolution.	The	slight	dependency	on	model	resolution	(the	exponent	in	Eq.	7	is	
not	0.5,	but	0.54)	is	explained	by	the	resolution	of	the	diffusional	front.	
	 In	our	simulations	presented	here,	we	mostly	use	p=0.05	and	S=50	km	as	a	
compromise	 between	 resolution	 and	 computational	 effort.	 If	 we	 assume	 a	
population	density	of	between	0.01	and	0.1	 individuals/km2,	 the	choice	of	p	and	S	
implies	that	the	competitive	advantage	of	the	mutations	is	between	0.07%	and	0.7%	
(Eq.	B).	The	resulting	time	step,	assuming	g=25	years/generation,	is	between	about	
one	and	ten	thousand	years	(Eq.	C).		
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