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Supplementary Figure 1. Effect of NH4
+ concentration on NO production by N. inopinata. 

Dissolved O2 is shown in open circles and dissolved NO in filled grey triangles. Experiments 

were performed in a 10 mL MR chamber fitted with an O2 and NO microsensor. The arrow 

marks the addition of 5 µM (Panel A), 10 µM (Panel B), or 15 µM (Panel C) mM NH4Cl into the 
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MR chamber; the same sample was measured repeatedly. No NO formation from NH4+ was 

measurable in oxic sterile media controls containing heat-killed biomass. Source data are 

provided as a Source Data file. 

  



 

 

Supplementary Figure 2. Instantaneous O2 consumption and NO production during NH3 

oxidation by N. europaea ATCC 19718. Dissolved O2 is shown in open circles and dissolved 

NO in filled grey triangles. Experiments were performed in a 10 mL microrespiration (MR) 
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chamber fitted with an O2 and NO microsensor. The arrow marks the addition of 2 mM NH4Cl 

into the MR chamber. A total of 3 ✕ 109 cells were used for each of the biological replicates (n = 

3), which corresponds to ~3 times less biomass per experiment than used for comparable 

experiments with N. inopinata in Fig. 3 and Supplementary Figure 6. Panels A, B, and C 

correspond to the three biological replicates (n = 3). No NO formation from NH4
+ was 

measurable in oxic sterile media controls containing heat-killed biomass. Source data are 

provided as a Source Data file. 

  



 

Supplementary Figure 3. Protein abundance levels of Nitrospira inopinata during growth 

on ammonia. Displayed are the 450 most abundant proteins from N. inopinata, after incubation 

with 1 mM ammonium for 48 h under aerobic conditions, in the metaproteome from a 

completely nitrifying enrichment culture that contained N. inopinata as the only ammonia and 

nitrite oxidizer13. Blue arrows and labels indicate key proteins for ammonia oxidation, green 

arrows and labels indicate key proteins for nitrite oxidation, and magenta highlights copper-

containing nitrite reductase (NirK). Columns show the mean normalized spectral abundance 

factor (NSAF), error bars show 1 s.d. of n=4 biological replicates. In total 1,083 proteins in the 

metaproteome were unambiguously assigned to N. inopinata. Only one of four putative NXR 

gamma subunits (NxrC) was among the top 450 expressed proteins. The other three NxrC 

candidates ranked at positions 561, 605, and 931. The AmoE1 protein was ranked at position 

520, and HaoB at position 653. Abbreviations: Amo, ammonia monooxygenase (with subunits A 

to D); CycA, cytochrome c554; CycB, cytochrome cm552; HAO, hydroxylamine dehydrogenase; 

Nir, nitrite reductase; Nxr, nitrite oxidoreductase (with subunits A to C). Figure modified from 

reference13. 



 

Supplementary Figure 4. Instantaneous O2 consumption and NO production during NO2
- 

oxidation by N. moscoviensis. Dissolved O2 is shown in open circles and dissolved NO in filled 

grey triangles. Panels A, B, and C correspond to individual experiments from three (n = 3) 

biological replicates. Experiments were performed in a 10 mL microrespiration (MR) chamber 
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fitted with an O2 and NO microsensor. The arrow marks the addition of 1 mM NO2
- into the MR 

chamber. No NO formation from NO2
- was measurable in oxic sterile media controls containing 

heat-killed biomass. Source data are provided as a Source Data file. 

  



 

 

Supplementary Figure 5. Effect of the NO scavenger PTIO on N. inopinata and N. 

moscoviensis. Panels A and B indicate the influence of PTIO on batch culture substrate 

oxidation activity throughout growth in N. inopinata (Panel A) and N. moscoviensis (Panel B). 

Panels C and D show the influence of PTIO on substrate-dependent instantaneous O2 

consumption (determined using micro-respirometry) in N. inopinata (Panel C) and N. 

moscoviensis (Panel D). For Panels C and D only, cultures which were highly (>50%) inhibited 

by PTIO were re-harvested and washed as described in the Material and Methods and % activity 

was remeasured; the activity (%) of all washed cells was normalized to the unwashed 0 µM 

PTIO control. For all panels, activity (%) shows the difference in rate of linear substrate 

oxidation (or O2 consumption) between the non-inhibited control cultures and cultures that were 

exposed to various concentrations of PTIO; 100% activity signifies no measurable inhibition 
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while 0% activity indicates total inhibition of activity. No activity was measurable in abiotic and 

dead cell controls. Center lines indicate the mean and error bars show the standard deviation of 

the mean for 4 (Panels A and B) or 3 (Panels C and D) biological replicates. The electron donor 

was always 1 mM NH3 for N. inopinata and 1 mM NO2
- for N. moscoviensis. Source data are 

provided as a Source Data file. 

  



 

Supplementary Figure 6. Instantaneous O2 consumption and NO production during NH3 

oxidation by N. inopinata. Dissolved O2 is shown in open circles, dissolved NO in filled grey 

triangles, NO2
- in open diamonds, and NH4

+ in filled squares. The NH4
+ concentration 

immediately after injection for each replicate was inferred from the injected volume of a stock 

NH4Cl solution, otherwise NO2
- and NH4

+ concentrations were determined in 3 technical 

replicates (n = 3) for each biological replicate. Panels A and B correspond to two biological 

replicates; a third biological replicate is shown in Fig. 3. Experiments were performed in a 

microrespiration (MR) chamber fitted with O2 and NO microsensors. The arrow marks the 

addition of 250 µM NH4Cl into the MR chamber. About 110 µM residual NO2
- was present in 
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the chamber once O2 levels dropped below the limit of detection (300 nM). No NO formation 

from NH4
+ was measurable in sterile media controls containing the same amount of heat-killed 

biomass of N. inopinata. Source data are provided as a Source Data file. 

  



 

 

Supplementary Figure 7. Influence of O2 limitation on N2O production by N. moscoviensis. 

Accumulation of N2O in the headspace is shown in nmol L-1 above atmospheric N2O. The black 

bar indicates N2O accumulation in cultures of N. moscoviensis incubated at atmospheric O2 

concentrations whereas the grey bar indicates N2O accumulation in cultures incubated at hypoxic 

(~1.0% at the start of the experiment) O2 concentrations. The amount of biomass at t = 0 was the 

same in the oxic and hypoxic vials. The same amount of substrate was consumed in both 

treatments (1 mM NO2
-). Center lines indicate the mean and error bars show the standard 

deviation of the mean for three (n = 3) biological replicates. Source data are provided as a Source 

Data file. 
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Supplementary Figure 8. Instantaneous O2 consumption and NO production during NO2
- 

oxidation by N. inopinata. Dissolved O2 is shown in open circles, dissolved NO in filled grey 

triangles, and NO2
- in open diamonds. The NO2

- concentration immediately after injection for 

each replicate was inferred from the injected volume of a stock NaNO2 solution, otherwise NO2
- 

concentrations were determined in 3 technical replicates (n = 3) for each biological replicate. 

Panels A and B correspond to two biological replicates; a third biological replicate is shown in 

Fig. 4. Experiments were performed in a 10 mL microrespiration (MR) chamber fitted with an 

O2 and NO microsensors. The arrow marks the addition of 2.5 mM NO2
- into the MR chamber. 
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No NO formation from NO2
- was measurable in oxic sterile media controls containing heat-

killed biomass. Source data are provided as a Source Data file. 

  



 

 

Supplementary Figure 9. Instantaneous O2 consumption and N2O production during NH3 

oxidation by N. inopinata. Panels A and B correspond to two biological replicates; a third 

biological replicate is shown in Fig. 5. Dissolved O2 is shown in open circles, dissolved N2O in 

filled grey triangles, NO2
- in open diamonds, and NH4

+ in filled squares. The NH4
+ concentration 

immediately after injection for each replicate was inferred from the injected volume of a stock 

NH4Cl solution, otherwise NO2
- and NH4

+ concentrations were determined in 3 technical 

replicates (n = 3) for each biological replicate. Experiments were performed in a 10 mL 

microrespiration (MR) chamber fitted with O2 and N2O microsensors. The arrow marks the 
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addition of 250 µM NH4Cl into the MR chamber. About 110 µM residual NO2
- was present in 

the chamber once O2 reached below the detectable levels. Source data are provided as a Source 

Data file. 

 

Supplementary Note 1: 

Gene inventory for NOx metabolism of nitrifiers 

Dissimilatory nitrite reductase NirK. Of the two known non-homologous dissimilatory nitrite 

reductases (NirS and NirK), only the copper-containing dissimilatory nitrite reductase nirK is 

encoded in the genomes of nitrifiers. Our extended comparative genome analysis further 

supports previous observations that nirK genes are not found in all AOB genomes1–3. In this 

context it is interesting to note that in AOB nirK is not required for NO2
- reduction to NO and 

this even holds true for AOB that do possess the gene4–6, strongly suggesting the existence of 

novel dissimilatory nitrite reductases in these organisms. In contrast to AOB, AOA lack a 

canonical HAO and the most current physiological models postulate that NO is an active and 

necessary co-substrate during the oxidation of NH2OH to NO2
- or that NO is the product of 

NH2OH oxidation by either NirK or an anchored PEFG-CTERM domain-containing Cu 

metalloenzyme7,8. In these models, NO is either produced or oxidized by NirK that is encoded in 

the genome of most AOA and was found highly expressed in their transcriptomes and 

proteomes8–10. However, recent work on thermophilic, autotrophic, archaeal ammonia oxidizers 

shows that these microbes do not possess nirK and it has been speculated that they obtain NO 

from metabolic partner organisms11,12. 
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