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Samples ID Cell type ied Source IGHV status FISH cytogenetics
nb_1 Naive B cell CD19+CD23:CD271gD* Tonsil NA NA
nb_2 Naive B cell CD19:CD23CD271gD* Tonsil NA NA
nb_3 Naive B cell CD19°CD23CD271gD* PB NA NA
nb_4 Naive B cell CD19:CD23CD271gD* [ NA NA
nb_5 Naive B cell CD19+CD23*CD271gD* PB NA NA
nb_6 Naive B cel CD19+CD23-CD271gD* PB NA NA
gcb_1  Germinal center B cell CD19'CD23'CD27"IgD Tonsil NA NA
gcb 2 Germinal center B cell CD19:CD23CD27+1gD Tonsil NA NA
geb_3 Memory B cell CD19'CD23"CD27"IgD PB NA NA
gob_4 Memory B cell CD19+CD23:CD271gD" PB NA NA
geb_5 Memory B cell CD19°CD23"CD27IgD PB NA NA
cd20_1 B cell CD19°CD20°CD38"* Tonsil NA NA
o1 cLL NA PB mutated del(13q)
a2 o NA PB mutated del(6a21), del(13q)
ol 3 oL NA PB mutated del(13q)
o4 cLL NA PB mutated normal (46,XX)
cl s oL NA PB mutated normal (46,XX)
cl 6 cLL NA PB unmutated  del(11q), del(13q), amp(2p)
o7 o NA PB unmutated del(13q)
ol 8 o NA PB mutated del(13q)
cll 9 cLL NA PB mutated del(13q)
dl_10 oL NA PB mutated del(13q)
dll_11 o NA PB mutated normal (46,XY)
dl_12 oL NA PB unmutated del(13q)
cll13 oL NA PB mutated del(11q), del(13q)
cll_14 oL NA PB mutated normal (46,XY)
dl_15 o NA PB unmutated NA
cll_16 oL NA PB mutated del(13q)
cll17 oL NA PB mutated del(13q)
di_18 cLL NA PB mutated normal (46,XX)
cll_19 oL NA PB unmutated Tri12
dll_20 o NA PB unmutated del(11q)
cll_7 cll_2 cll_4
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Supplementary Figure 1. H3K27ac analysis of CLLs and normal B cell controls at super-
enhancers.

(a) Overview of samples used in this study across our cohort. See Supplementary Data 1 for
the list of additional CLL and normal B cell samples used in this study from the Blueprint
Initiative. (b) Summary table of healthy B cell and CLL patient samples used in this study
across our cohort, including cell type, surface markers, source, /[GHV mutational status, FISH
cytogenetics and CLL driver mutations. PB: Peripheral Blood. (¢) Enhancer profiles for four
representative CLL samples, using H3K27ac ChIP-seq signal. Super-enhancers (SE) are
highlighted in red with ranks of selected SE-associated genes. See Methods for SE
identification criteria. (d) Extended heatmap of H3K27ac profiles shown in Fig. la for 297
differentially regulated super-enhancers (absolute logo[H3K27ac fold-change] > 2 and Wald
test BH-FDR < 0.01) between CLL and normal B cells. Red indicates high H3K27ac level,
blue low H3K27ac level. (e) Spearman’s rho correlation coefficients of H3K27ac enrichment
signal at super-enhancers across our cohort and Blueprint initiative samples. Red indicates high
Spearman’s correlation, blue indicates low Spearman’s correlation. (f) Left: Heatmap of
H3K27ac profiles for 27 differentially regulated super-enhancers (absolute logo[H3K27ac fold-
change] > 1 and Wald test BH-FDR < 0.05) between CLL /GHV mutated and unmutated
samples. Red indicates high H3K27ac level, blue low H3K27ac level. Right: volcano plot of
differential H3K27ac signal at super-enhancers between CLL /GHV mutated and unmutated
samples. (g) Same as panel (f) for 25 differentially regulated super-enhancers (absolute
log2[H3K27ac fold-change] > 1 and Wald test BH-FDR < 0.05) between CLL patient samples
with common somatic copy number abnormalities [del(13q), del(11q), del(17p), del(6q),
amp(2p)] and normal karyotype. Cytogenetics were evaluated by FISH analysis (see Methods).
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Supplementary Figure 2. Targeted bulk DNAme sequencing capture assay of CLLs and
normal B cell controls.

(a) On-target rate of the hybrid capture DNAme probes across all CLL (/GHV unmutated, n =
2; IGHV mutated, n = 3) and normal B (peripheral blood naive B cells, n = 3; peripheral blood
memory B cells, n = 2) samples. (b) Unsupervised principal component analysis (PCA) of
targeted DNAme sequencing capture assay data for CLL and normal B samples. Same samples
as in panel (a) were used. PCA was computed by filtering rows with a standard deviation lower
than the 50 percentile of standard deviation distribution. (¢) Global (eff) and promoter CpG
islands (right) mean CpG methylation in pooled CLL compared with pooled normal B samples,
measured with targeted bisulfite sequencing capture assay. Same samples as in panel (a) were
used. (d) Scatterplots of pairwise Spearman correlation between CLL and normal B samples.
Same samples as in panel (a) were used. The red line in the plot is from linear regression fit
and the green line is from LOWESS polynomial regression fit. (e) Percentage of differentially
methylated regions (DMRs) covered by targeted bisulfite sequencing capture assay that overlap
with distinct genomic features. (f) CLL CpG methylation compared with normal B cells at
hyper-methylated super-enhancers in CLL (n= 122, leff) and hypo-methylated super-enhancers
in CLL (n = 2009, right). (g) Top: Gene set enrichment for CLL hypomethylated super-
enhancers. Bottom: Gene ontology enrichment for CLL hypomethylated super-enhancers. See
Supplementary Data 9 for complete list of significantly enriched gene sets. (h) Cumulative
distribution of CpG methylation values in CLL and normal B cells at super-enhancers (n =
2,869) (top left). Scatter plots comparing methylation pattern consistency at super-enhancers
of two normal B cell samples (top right), and two CLL samples (bottom left). A comparison
between CpG methylation levels at super-enhancers in CLL (no. of CpGs used = 468,303) and
normal B cells (no. of CpGs used = 502,607) is also shown (bottom right). Throughout the
figure, error bars represent 95% confidence interval.
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Supplementary Figure 3. Normal B cells exhibit higher coordinated transcriptional
regulation compared with CLL.

(a) Regression analysis of mutual information (MI) at super-enhancers (n = 2,869) between
bulk DNAme based on targeted bisulfite sequencing capture assay and H3K27ac for CLL (y-
axes) and normal B (x-axes) samples. (b) MI at transcription start sites of genes between
DNAme (based on bulk bisulfite sequencing) and gene expression in CLL and normal B
samples. (¢) Summary table of healthy donors and CLL patient single cell samples used in this
study, including the cell type, surface markers, /GHV mutational status and number of single
cells sequenced. (d) From /eft to right: number of states gained when adding bulk RNA-seq
data to the epigenomic mapping (H3K4me3, H3K27ac, H3K27me3, bulk DNAme based on
bisulfite sequencing) in the DPM analysis for CLL and normal B samples; number of states
gained when adding H3K4me3 data to the epigenomic mapping (bulk RNA-seq data,
H3K27ac, H3K27me3, bulk DNAme); number of states gained when adding H3K27ac data to
the epigenomic mapping (bulk RNA-seq data, H3K4me3, H3K27me3, bulk DNAme); number
of states gained when adding H3K27me3 data to the epigenomic mapping (bulk RNA-seq data,
H3K27ac, H3K4me3, bulk DNAme); number of states gained when adding DNAme data to
the epigenomic mapping (bulk RNA-seq data, H3K27ac, H3K27me3, H3K4me3). Boxplots
represent median and bottom and upper quartile. Lower and upper whiskers correspond to
1.5*IQR. * indicates two-sided Mann-Whitney U test P-value < 0.05. ** indicates P-value <
0.01. 100 DMP iterations were performed for each sample. (¢) KEGG pathways enriched at
genes marked by H3K27me3"/H3K4me3"°"/H3K27ac" from Fig. 3e. Shown are the top 10
KEGG pathway categories (hypergeometric test BH-FDR < 0.05). (f) Position weight matrices
of the top 10 motifs over-represented in CLL in regions marked by
H3K27me3"/H3K4me3"°Y/H3K27ac" from Fig. 3e. Motif enrichment hypergeometric test P-
value and the best match to the reference motif in the JASPAR core database are also shown.
(g) Cumulative distribution of single-cell gene expression Shannon’s information entropy for
H3K27me3"/H3K4me3'"°Y/H3K27ac*"-marked genes in CLL (red; n = 94) and normal B
(blue; n = 84) cells, along with genes (n = 371) with matched mean expression to
H3K27me3"/H3K4me3'"°"/H3K27ac'*¥-marked genes in CLL (yellow).
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Supplementary Figure 4. Decreased coordination between different layers of the CLL
epigenome and increased cell-to-cell transcriptional heterogeneity.

(a) Genomic coverage (%) of chromatin states from Fig. 4a in CLL /GHV mutated and IGHV
unmutated, showing no significant difference between the two disease subtypes. (b) Percentage
of genomic feature covered by each chromatin state from Fig. 4a. (¢) Spearman’s rho
correlation coefficients of histone marks enrichment signal across Blueprint initiative samples
at ‘H3K27ac-H3K27me3’ regions (left) and ‘Repressed Polycomb (PRC)’ regions (right)
identified in our data. Red indicates high correlation, blue low correlation. (d) Fold-change
gene expression [log2(RPKM)] between CLL and normal B cells in relation to genomic
distance (kb) from regions that gain H3K27ac in CLL (orange; n = 11,740 genes), regions that
gain H3K27me3 in CLL (blue; n = 8,867 genes), and regions that did not exhibit chromatin
state transition between normal B and CLL cells (grey, n = 833 genes). P-values are shown for
two-sided Mann-Whitney U test. (e) Gene sets (CGP) enriched in closest genes (average
distance of 496 bp) to genomic segments that gain H3K27ac from normal B cells to CLL
(hypergeometric test BH-FDR < 0.05; see Supplementary Data 10 for the top 50 enrichments).
(f) Left: Single-cell gene expression Shannon’s information entropy (y-axis) in relation to the
population average gene expression (x-axis, logio[ TPM]) in scCLL 21 single cells (n = 94).
Colored lines — local regression curves for genes in a ‘H3K27ac-H3K27me3’ (brown) or
‘Repressed Polycomb (PRC)’ (grey) state. Right: Single-cell gene expression Shannon’s
information entropy for each of the two HMM chromatin states for genes with population
average gene expression of [-3,-2], [-2,-1], [-1,0], [0,1] logio[ TPM] (to control for differences
in this variable), respectively. Boxplot represents median and bottom and upper quartile. Lower
and upper whiskers correspond to 1.5*IQR. P-values are shown for two-sided Mann-Whitney
U test. (g) Generalized additive regression tests that model single-cell gene expression
Shannon’s information entropy based on population average gene expression and chromatin
state status across the 2 CLL samples that underwent single-cell whole-transcriptome
sequencing. Throughout the figure, error bars represent 95% confidence interval.



