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Supplementary Methods 
 

Analysis of tissue signatures across four omics data types 

Pair-wise similarity between cell lines was estimated by calculating mutual information98 between  
transcriptome1, proteome2, drug sensitivity3, metabolite exchange rates4 and intracellular metabolome 
profiles. Euclidian distance was used to estimate similarity in growth rates across cell line pairs. Receiver-
operator-characteristic (ROC) curve analysis was then applied to test for similar molecular profiles across cell 
lines from the same tissue type (main text Figure 1c). To find metabolites featuring significant difference in 
relative abundances across tissue types we used one-way ANOVA analysis. Statistical significance (i.e. p-values) 
were corrected for multiple hypothesis testing using the Storey method5 (i.e. q-values). Metabolites exhibiting 
a q-value below 0.05 for at least one tissue were considered significantly tissue-dependent. 

Measurement of glucose and lactate exchange rates  

Uptake of glucose and secretion of lactate was quantified in 54 adherent cell lines from the NCI-60 panel. 
Supernatants of growing cell cultures were collected every 24 hours for 5 days of cultivation. Samples between 
20 and 80% confluence were retained for estimates of glucose uptake and lactate secretion. Residual glucose 
in culture supernatants was quantified using an enzymatic assay involving coupled glucose oxidase and 
peroxidase reactions (GOPOD format, K-GLUC, Megazyme, Bray, UK). For each sample, 5 µL supernatant was 
mixed with 150 µL assay reagent, and incubated at 40°C for one hour before reading absorbance at 510 nm. 
Lactate was quantified from FIA-TOFMS measurements (as described above) against a standard calibration 
curve comprising different lactate concentrations in constant RPMI1640 background. To estimate exchange 
rates, measured amounts of glucose and lactate were fitted with a linear model relating ion intensity to cell 
numbers over 3 biological replicates. For each cell line estimated curve slopes were multiplied by the 
corresponding cell line growth rates and normalized by the volume correcting factor (Supplementary Data 1). 

RNA interference, siRNA transfection and HIF-1A knockdown 

Transfection- and pooled siRNA reagents were obtained from Horizon Discovery Group Company, Lafayette, 
CO: DharmaFECT 1 siRNA Transfection Reagent (cat. no. T-2001), ON-TARGETplus Human HIF1A siRNA – 
SMARTpool (cat. no. L-004018-00) and ON-TARGETplus Non-targeting Pool (cat. no. D-001810-10). Upon 
receipt, siRNAs were resuspended in 1x siRNA buffer (B-002000-UB, diluted 1:5 in sterile-filtered and nuclease-
free water) and stored at -20°C. To verify transfection of IGROV1 cells with these reagents, a fluorescent control 
siRNA (BLOCK-iT Alexa Fluor Red Fluorescent Control, cat. no. 14750100, Thermo Scientific) was transfected to 
monitor internalization of siRNA into cells using a Nikon Ti-E inverted microscope equipped with an LED 
illumination system (pE-2, CoolLED, Andover, UK) and a Hamamatsu ORCA (C4742-95-12ER) camera. Cells were 
counted manually in phase contrast and fluorescence images, respectively, and a transfection efficiency of 92% 
was calculated (see Supplementary Figure 6). For knockdown and dynamic metabolome profiling experiments, 
IGROV1 ovarian cancer cells were resuspended in RPMI1640 cell culture medium (5% dFBS, 2 g/L glucose, 2 
mM glutamine) without antibiotics, seeded at low cell density (approx. 20% confluence) in 96-well plates and 
allowed to attach at 37°C and 5% CO2 for approximately 6 hours. The transfection mix was prepared as per 
manufacturer’s instructions. For each well to be transfected, 0.25 µL transfection reagent were mixed with 
9.75 µL serum- and antibiotics-free medium. In parallel, 5 µM stock solutions of siRNA were pre-diluted in a 
total volume of 10 µL serum- and antibiotics-free medium per well to achieve final concentrations at 
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transfection of 10, 25 and 50 nM of HIF-1A siRNAs, and 25 nM of the non-targeting control siRNA. After 
incubating the separate components at room temperature for 5 minutes, both were mixed and incubated for 
20 minutes at room temperature. Finally, 20 µL of the medium in each well was replaced by 20 µL transfection 
mix in three biological replicates per condition. Transfected cell cultures were then incubated at 37°C and 5% 
CO2 atmosphere for a total of 144 hours. Nine replicate 96-well plates were prepared: two for metabolomics 
sampling (using the protocol described in Supplementary Figure 1) at time point: 48, 64, 87 and 111 hours after 
transfection, and one plate for continuous monitoring of cell confluence in a TECAN Spark 10M plate-reader. 
Sampling time-points were selected to be between one and two population doublings after transfection 
(Supplementary Figure 6) to allow for sufficient reduction of HIF-1A protein levels by dilution during growth. 
The presence of fluorescent control siRNA in separate control cells was verified as described above at all 
sampling time-points to ensure sustained transfection. Cell extracts were analyzed by flow-injection TOFMS as 
described above. Analysis of time-dependent fold-changes relative to the non-targeting control was performed 
as described in detail in ref. 6.  

Associations between TR activity and drug action 

In this analysis we used publicly available data (http://dtp.cancer.gov/mtargets/mt_index.html) on the 
sensitivity of the NCI-60 cell lines to 21738 compounds. Cell-line drug sensitivity is reported as the normalized 
Z-score of the GI50 values (e.g. the concentration of a compound that causes 50% growth inhibition, relative to 
the no drug control). Here we considered only the 130 FDA approved drugs (Supplementary Data 4). Some of 
the FDA-approved anticancer drugs were tested in the NCI-60 screen twice, resulting in the overall selection of 
187 drug sensitivity profiles across the NCI-60 tumor cell panel. The influence of TRs on drug susceptibility is 
inferred using a multivariate statistical analysis to decouple the contribution of different tissues of origin from 
changes in TR activity. For each TR i and drug j, drug susceptibility (S) is modeled as a linear combination of 
changes in TR activity (TRα) and tissue-specific offsets values (β):  

𝑆𝑆TRi
dj = 𝜆𝜆 ∙ TRi

α + 𝛽𝛽Lung + 𝛽𝛽Colon + 𝛽𝛽Melanoma + 𝛽𝛽Prostate + 𝛽𝛽Kidney + 𝛽𝛽CNS + 𝛽𝛽Breast Supplementary eq. (1) 

λ and β values are estimated using least squares fitting. The significance of the association between changes 
in TR activity and drug susceptibility is estimated by calculating the p-value of the Spearman correlation 
between TR activity and drug susceptibility after removal of tissue-specific offset β values across the 54 cell 

lines (i.e. 𝑆𝑆TRi
dj − 𝛽𝛽Lung− . . .− 𝛽𝛽Breast). The inferred slope λ, p-value significance and Z-score normalized βKidney 

values are used in Figure 3e-f, to visualize the inferred relationships between drug susceptibility and changes 
in VHL and HIF-1 activity. In order to find significant associations between TRs with common biological 
functions and drug modes of action (Figure 3d), we first use The Database for Annotation, Visualization and 
Integrated Discovery (DAVID - https://david.ncifcrf.gov/) to identify 131 clusters of functionally related TRs 
based on associated GO-terms (Supplementary Data 3). Subsequently we used a hypergeometric test to 
analyze significant TR-drug associations (i.e. p-value ≤ 2.67e-04, Bonferroni-adjusted threshold) and look for 
an enrichment of TR-functional clusters across different drug MoAs (Supplementary Data 4). 

Prediction of metabolite-TR effectors 

Because of the poor correlation between protein levels and NCA estimated TR activities (Supplementary Figure 
5), we systematically investigate whether variation in TR activities across cell lines could be explained by 
alternative models. Instead of assuming a base model where the TR activity is a simple linear function of protein 
abundance, we model TR activity as a function of TR protein levels and the post-translational regulatory 
functions of metabolites and/or kinases, individually or in combination as follows: 

http://dtp.cancer.gov/mtargets/mt_index.html
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TRactivity
j =  𝐾𝐾1

1+
𝑀𝑀𝑖𝑖
𝐾𝐾2

∙ 𝑃𝑃TRj +𝐾𝐾3 for a metabolite inhibitor, Supplementary Eq. (2) 

TRactivity
j =  𝐾𝐾1∙𝑀𝑀i

𝑀𝑀i+𝐾𝐾2
∙ 𝑃𝑃TRj + 𝐾𝐾3 for a metabolite activator,  Supplementary Eq. (3) 

TRactivity
j =  𝐾𝐾1

1+𝑃𝑃x𝐾𝐾2
∙ 𝑃𝑃TRj +𝐾𝐾3 for a kinase inhibitor,   Supplementary Eq. (4) 

TRactivity
j =  𝐾𝐾1∙𝑃𝑃x

𝑃𝑃x+𝐾𝐾2
∙ 𝑃𝑃TRj + 𝐾𝐾3 for a kinase activator,   Supplementary Eq. (5) 

TRactivity
j =  � 𝐾𝐾1∙𝑃𝑃x

𝑃𝑃x+𝐾𝐾2
+ 𝐾𝐾1

1+𝑀𝑀i
𝐾𝐾4

� ∙ 𝑃𝑃TRj + 𝐾𝐾3 for a kinase activator & metabolite inhibitor,  Suppl. Eq. (6) 

TRactivity
j =  � 𝐾𝐾1

1+𝑃𝑃x𝐾𝐾2
+ 𝐾𝐾1

1+𝑀𝑀i
𝐾𝐾4

� ∙ 𝑃𝑃TRj + 𝐾𝐾3 for a kinase inhibitor & metabolite inhibitor,  Suppl. Eq. (7) 

TRactivity
j =  � 𝐾𝐾1∙𝑃𝑃x

𝑃𝑃x+𝐾𝐾2
+ 𝐾𝐾1∙𝑀𝑀i

𝑀𝑀i+𝐾𝐾4
� ∙ 𝑃𝑃TRj + 𝐾𝐾3 for a kinase activator & metabolite activator,  Suppl. Eq.(8) 

TRactivity
j =  � 𝐾𝐾1

1+𝑃𝑃x𝐾𝐾2
+ 𝐾𝐾1∙𝑀𝑀𝑖𝑖

𝑀𝑀i+𝐾𝐾4
� ∙ 𝑃𝑃TRj + 𝐾𝐾3 for a kinase inhibitor & metabolite activator.  Suppl. Eq. (9) 

Where K1,2,3,4 are free parameters in the model, 𝑃𝑃TR
j is the relative protein abundance associated to TRj, Px 

represents the relative protein abundance of kinase x and Mi the level of metabolite i. 
For models in which we assume the non/inhibitory actions of a single metabolite or kinase, we use a non-linear 
model fitting scheme to find the best set of 3 parameters to describe changes in TR activity across cell lines. To 
minimize the probability of local minima, we adopted the GlobalSearch function of Matlab and 50,000 starting 
points. By using the same approach, we tested all possible combinations between pairs of metabolites and 
kinases that can act either as activators and/or inhibitors, to find the best set of 4 parameters that describe TR 
activity. For each pair or triplet of TRs and metabolites and/or kinases we estimate the Mean Squared Error 
(MSE) associated to each tested model. In addition, we estimated the MSE when fixing the model parameters 
and randomly permuting TR activity, TR protein, metabolite and kinase levels across cell lines (MSEe). For each 
TR we then repeat model fitting, each time by randomly shuffling metabolite and kinases levels. We used this 
approach to empirically assess the significance of each model in better explaining TR activity. To this end, we 
calculated MSE values for each model in which kinases and metabolite levels were randomly permuted 
(MSERandom and MSEe

Random ). Finally we retain only those models in which MSE and MSEe are both above the 
0.1% of the respective distributions of MSERandom and MSEe

Random (Supplementary Data 5). The proteome dataset 
(ArrayExpress, project accession: E-PROT-2) reports protein levels for 100 annotated TRs and 63 kinases, and 
to reduce computation time we here consider only differentially abundant metabolites annotated to KEGG 
identifiers (260 metabolites selected). Fitting analysis was performed in Matlab using the “fitnlm” function, on 
a cluster with 900 computational nodes. 
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Supplementary Discussion 

Mathematical modeling of metabolic pathways and TR-metabolite correlations 

Here, we describe a set of assumptions sufficient to formally explain and describe the existence of a dependency 
between metabolite abundance and TR activity. We assume that a TR has the ability to directly regulate the 
flux demand or supply of a linear metabolic pathway, which consists of 4 intermediate metabolites, 3 
irreversible and 1 reversible reactions, which we assume to follow Michaelis-Menten kinetics. A schematic 
representation is illustrated in Supplementary Figure 5, panel a. 

TRs can regulate reaction rates by changing the abundance of enzymes.  In reactions that operate above 
maximum enzyme capacity regulation of enzyme abundance confers to the TR high control on pathway usage. 
In such a case, the flux through the reaction is largely proportional to the amount of enzyme (Ei), which we 
assume to be a monotonous function of TR activity. Specifically, we assume enzyme abundance to be a positive 
linear function of TR activity. The individual control coefficient that is defined as the slope of the log–log plot 
of flux versus TR activity reflects the influence of TR on the flux through the pathway7. In this particular example 
where the flux decreases by the same relative amount as the TR activity, the value of the control coefficient is 
1. Hence, at steady state, flux through the pathway is set by and proportional to TR activity. 

Vinput = Kcat,i *Ei , where Ei ∝ β*TRactivity  Supplementary Equation (10) 

Notably, functional regulations where TRs are capable of regulating pathway activity are the associations we 
aim to extrapolate from our combined analysis of the transcriptome and metabolome of cancer cell lines. To 
this end, if we assume that the intermediate reactions in the pathways operate well below maximum flux 
capacity we can derive direct functional dependencies between flux, TR activity and substrates levels that holds 
true for irreversible reactions: 

𝑉𝑉1 = 𝑉𝑉max1 ∙
𝑀𝑀1

𝑀𝑀1+𝐾𝐾𝑚𝑚1
   Supplementary Equation (11) 

𝑀𝑀1 = 𝐾𝐾m1∙𝑣𝑣input
𝑉𝑉max1−𝑣𝑣input

   Supplementary Equation (12) 

If 𝑣𝑣input ≪ 𝑉𝑉max1: 

𝑀𝑀1 = 𝐾𝐾m1
𝑉𝑉max1

∙ 𝑣𝑣input = 𝐾𝐾m1
𝑉𝑉max1

∙ 𝐾𝐾cat1 ∙ β ∙ TRactivity  Supplementary Equation (13) 

as well as for reversible reactions: 

𝑉𝑉2 =
𝑉𝑉max2∙ �𝑀𝑀2−

𝑀𝑀3
𝐾𝐾eq

�

𝐾𝐾m2,M2∙ �1−
𝑀𝑀3

𝐾𝐾m2,M3
�+𝑀𝑀2

   Supplementary Equation (14) 

𝑉𝑉3 = 𝑉𝑉max3 �
𝑀𝑀3

𝐾𝐾m3,M3+𝑀𝑀3
�   Supplementary Equation (15) 

𝑀𝑀2 = 𝑣𝑣input∙𝐾𝐾m2,M2
𝑉𝑉max2−𝑣𝑣input

+
𝑣𝑣input∙𝐾𝐾m3,M3∙𝑉𝑉max2

𝐾𝐾eq�𝑉𝑉max2−𝑣𝑣input��𝑉𝑉max3−𝑣𝑣input�
+

𝑣𝑣input
2 ∙𝐾𝐾m2,M3

�𝑉𝑉max2−𝑣𝑣input��𝑉𝑉max3−𝑣𝑣input�
 Supplementary Eq. (16) 

𝑀𝑀2 = 𝑣𝑣input ∙ �
𝐾𝐾m2,M2
𝑉𝑉max2

+
𝐾𝐾m3,M3

𝐾𝐾eq∙𝑉𝑉max3
� = β ∙ TRactivity ∙ �

𝐾𝐾m2,M2
𝑉𝑉max2

+
𝐾𝐾m3,M3

𝐾𝐾eq∙𝑉𝑉max3
�  Supplementary Eq. (17) 
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where M represents metabolite abundance, vinput is the flux through the pathway at steady-state, Km, Kcat and 

Vmax are the Michaelis-Menten constant, the catalyst rate constant and maximum flux capacity, respectively. 
Notably, kinetic parameters (i.e. Kcat and Vmax) can be assumed to be largely conserved across different cell lines, 
and enzyme levels of reactions mainly regulated by substrate abundance are expected to exhibit little 
fluctuations. In support of this assumption, we observed that the median fluctuation of protein levels, 
estimated as the standard deviation of protein levels across cell lines divided by the corresponding average 
values (i.e. coefficient of variance), is below 50%. Hence, for pathways in which steady-state flux is directly 
regulated by activity of one TR, and intermediate reactions are governed by substrate abundances, one could 
expect to find a correlative signature between the relative TR activity and metabolite abundances across cell 
lines, similarly to the simplified metabolic toy model described here. 

It is worth noting that the incidence of metabolic reactions that operate above or below maximum enzyme 
capacity is still a matter of debate. While recent experimental evidence demonstrates that nearly 70% of 
reactions in central carbon metabolism are likely to operate at enzyme saturation8 (i.e. substrate abundances 
exceeding reactions Km), a growing body of evidence advocates for a scenario where a large array of post-
translation inhibitory mechanisms can increase the apparent Km of metabolic reactions9,10. This possibility 
might shift the balance in favor of metabolic reactions to be mainly governed by substrate abundances, 
supporting the large relevance that TR-metabolite associations might have in identifying functional regulation 
of TRs on cell metabolism. 

TR regulatory activity in metabolic pathways – example associations 

Tumor suppressor TP53. p53, one of the most well-studied tumor suppressor proteins11,12, significantly 
correlates with levels of intermediates in nucleotide metabolism (q-value < 0.05), such as purine biosynthesis 
and nucleotide sugar metabolism and arginine/proline metabolism. Both associations are consistent with 
previous experimental evidence5–7  directly pointing to the well-known functional role of p53 in allocating 
metabolic resources for DNA repair, DNA replication and cell division11–13and regulation of arginine and proline 
metabolism14 (see also next section). 

Proline metabolism. In recent years, proline metabolism has received considerable attention as a source of 
NAD/NADP regeneration15, but also as a central integration point of signaling information16. While to date, only 
few cancer-related TRs have been associated to the regulation of proline metabolism, we here found TR-proline 
metabolism associations recapitulating known regulatory interactions (KEGG pathway enrichment q-value < 
0.05), such as the induction of proline catabolism by tumor suppressor p5314 (Figure 3a), as well as the 
regulation of proline metabolism by ATF4 as part of the amino acid starvation response pathway17,18. Overall, 
we found 197 TRs that can potentially impinge on proline metabolism (q-value < 0.05), such as EGR119,20 and 
EGR221, REL-family transcriptional regulators22 and ATF-family TRs23 (full list in Supplementary Data 3).  

MYC and its interactome. MYC is a global regulator that takes part in a number of growth-promoting signaling 
pathways, many of which ultimately impinge on metabolism24. Discovered many years ago and recognized for 
its frequent hyper-activation in human cancers, MYC is among the most well-studied oncogenes25,26. MYC forms 
stable dimers with the MAX protein to gain specific DNA-binding activity27. The formation of MYC/MAX dimers 
is affected by MAX-binding proteins, most prominently from the MXD family of MAX dimerization proteins28,29. 
MXD proteins are transcriptional repressors that act as MYC antagonists not only by competing for available 
MAX with MYC, but MAX/MXD and MYC/MAX dimers also compete for DNA binding sites. MXD proteins and 
other members of the dense network of TRs around MYC (the so-called MYC interactome) can hence attenuate 
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MYC-dependent gene expression by a plethora of homo- and hetero-dimerization events28,29, and affect the 
functional outcome of MYC activation/inhibition30. 
Consistent with the current working hypothesis of a MYC interactome, from which MYC activity emerges as a 
complex function of protein-protein interactions, we found that, while MYC itself exhibits rather weak 
associations with metabolic pathways (Supplementary Figure 6, panel b), metabolites associated with MAX and 
other members of the MYC interactome (MXD1, MXD4, MLX, MXI1) were overrepresented in several central 
metabolic pathways (Supplementary Figure 6, panel b). It is worth noting that the evidence provided here, 
based on direct measurements of metabolic intermediates and their associations with TR activity, is 
complementary to previous reports that were predominantly based on differential gene expression and knock-
down experiments.  

Nuclear factor kappa B (NF-κB). Nuclear factor kappa B (NF-κB) complexes act as transcriptional regulators of 
general stress responses22,31, inflammatory responses and cellular homeostasis with widespread implications 
for cancerogenesis32. The role of NF-κB dimers extends into metabolism, where NF-κB has been associated with 
p53-mediated metabolic reprogramming of energy metabolism33,34. NF-κB complexes can be homo- or 
heterodimers of different subunits, including NF-κB1/p105, NF-κB2/p10, RelA/p65 and RelB, which exhibit 
different specificity for DNA elements35,36 and can hence trigger transcription of specific sets of target genes. 
NF-κB activity is regulated by members of the inhibitor of κB (IκB) protein family that can affect NF-κB 
localization37 by masking its nuclear localization signal sequence. Our metabolome-based TR-metabolite 
associations hint at metabolic functions specific of different NF-κB complexes (Supplementary Figure 6, panel 
c). In glycolysis and pentose phosphate pathway, we found strong associations of NF-κB2 and RelA. Similarly, 
Bcl-3, a member of the IκB protein family, exhibited a strong association with pentose phosphate pathway 
(Figure 2 in the main text). These associations are consistent with the known gene targets of NF-κB1 and RelA 
(Figure 2 in the main text), while interactions of NF-κB2, RelB and Bcl-3 with central carbon metabolism were 
not annotated in the TR-gene interaction network. 

Nuclear receptor Rev-ErbA-Alpha (NR1D1). The NR1D1 gene encodes the heme-responsive nuclear receptor 
Rev-ErbAα, a sequence-specific transcription factor38. By acting predominantly as a transcriptional repressor, 
Rev-ErbA regulates a number of cellular processes, including lipid metabolism and the circadian rhythm39,40. In 
cancer, Rev-ErbA is often found co-expressed with ERBB241, encoding the Her2 oncogene, and there has been 
considerable interest in targeting Rev-ErbA and the frequent disruption of the circadian clock in cancer for 
therapeutical purposes42,43. 
Among metabolites associated with Rev-ErbA-Alpha in our TR-metabolite association network, we find 
associations to lipid metabolism and membrane biogenesis (glycerophospholipid metabolism, choline 
metabolism), as well as to one-carbon-, carbohydrate-, purine- and amino acid metabolism (histidine, 
glutamine and glutamate). A similar association to lipid metabolism has been previously suggested based on 
changes in gene expression and altered lipid metabolism phenotypes in gene knock-down experiments40. 

Mapping oncogenic TRs to in vivo metabolic reprogramming – renal, lung and colon cancer 

In the following sections, we discuss our prediction of TR drivers responsible for metabolic rearrangements in 
cohorts of patients with renal, lung or colon cancer. The predictions are based on a novel TR-metabolite 
association network established in vitro. The interplay between transcriptional regulation and metabolism is 
investigated by direct experimental measurements of intracellular metabolite levels and changes in TR activity 
across 53 cell lines from the NCI60 panel of human tumor cell lines (see main text and Methods section for full 
detail). Our integrative analysis of TR-metabolite associations and in vivo metabolic changes between cancer- 
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and healthy tissue can help to identify transcriptional regulators that directly contribute to the metabolic 
rearrangement and aid the therapeutically relevant subtyping of cancers and patients. 

Clear-cell renal cell carcinoma. Clear-cell renal cell carcinoma (ccRCC) constitutes more than 70% of all renal 
cancers44. Its genetic basis has been extensively characterized45–47, and paints a picture in which metabolism 
plays a crucial role in the development and manifestation of ccRCC48,49. Hakimi et al. reported the metabolic 
profiles of matched ccRCC/normal tissue pairs obtained from 138 patients49. After excluding metabolites with 
more than 10 missing values, we matched 134 metabolites to our metabolomics dataset, of which 77 were 
found and quantified in the patient samples. Supplementary Figure 7 (panel a) summarizes the metabolites 
and the corresponding strength of associations with the top 1% most significant transcriptional regulators in 
our analysis (see Methods section and Figure 3 in the main text). HIF-1α shows the strongest associations to 
the largest number of metabolites found in patient samples (Supplementary Figure 7, panel a). A ranking of 
the top 15 predictor metabolites (evaluated by the product of association strength and absolute metabolite 
Fold-Change) for HIF-1α and the other top 1% predicted TRs is provided in Supplementary Data Table 3. 

Lung cancer. Lung cancers are most frequently associated with mutations in TP53 (46% of cases)50, a type of 
oncogenic mutation that is shared with a wide range of cancer types.  
In the cohort of matched lung cancer/normal fibroblast cells reported by Chaudhri et al.51, we matched 209 
metabolites to our TR-metabolite association network, of which 80 were detected and quantified in the lung 
cancer cells, with mean absolute fold changes ranging from 1.005 (creatine) to 2.9 (phosphoenolpyruvate). A 
summary of the metabolites and the corresponding strength of association with the top 1% of TRs 
recapitulating the observed changes between lung cancer and normal fibroblasts in the dataset is given in 
Supplementary Figure 7, panel b. The median association strength to this set of metabolites was highest for 
NFYB, followed by YBX1, NFYC, GFI1, FOXN1, HOXC13 and AATR. Several metabolites exhibiting a high absolute 
fold change showed a consistently strong association to the seven TRs. This group of metabolites mainly 
included long-chain fatty acids such as arachidonate, eicosapentaenoate, adrenate and docosapentaenoate. A 
list of the top 15 predictive metabolites for each TR is provided in Supplementary Data Table 3. The fact that 
p53, despite being among the most frequently mutated genes in lung cancer50, is not among the top-ranking 
TRs likely indicates that there are downstream TRs which can more directly explain the observed metabolic 
reprogramming between lung cancer cells and normal fibroblasts. Notably, several of the top 1% most 
significant TRs found in our analysis are linked to p53, including GFI152,53 and AATF54. 
The top-ranked TRs NFYB and NFYC are two subunits of the heterotrimeric NF-Y complex, a regulator of cell 
cycle genes and proliferation55. NF-Y appears to act as a downstream effector of both wild-type56 and mutant 
p5357, interestingly changing its role from transcriptional repressor to a transcriptional activator in the latter 
case. Recently, NF-Y has been described in context of alterations in metabolism58, including lipid and fatty acid 
metabolism, glycolysis as well as TCA cycle, where NF-Y binding sites are particularly frequent58. Several of the 
predicted TRs have been associated with lung cancers, including YBX1 (YB-1)59, GFI160 and HOXC1361. 

Colon cancer. Human colorectal cancers are frequently associated with mutations in APC, TP53 and SMAD4, 
implying among others an involvement of the Wnt signaling pathway62,63. Advanced and aggressive colon 
cancers frequently show enhanced chromosome instability, mutations in p53 and defective DNA damage 
response64.  
Hu et al. compared the concentrations of five TCA cycle intermediates in a cohort of 10 patients with colon 
cancer, analyzing 10 matched pairs of cancer/normal tissue samples65. The five reported metabolites exhibited 
mean absolute fold changes ranging from 1.2 (pyruvate) to 6.6 (citrate) (Supplementary Figure 7, panel c). 
Among the top 7 predicted TRs (Figure 3 in the main text) that explain the observed metabolic rearrangements 
in the colon cancer cohort, RELB showed the strongest association to the five metabolites, followed by CBX7, 
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ZNF217, MLLT10 and HNF4G (Supplementary Figure 7, panel c). CEBPE and POU2F2 showed minor associations 
to only 2 metabolites each. Clearly, given the small number of metabolites quantified in the colon cancer 
samples, our prediction of an involvement of these TRs would have to be substantiated with additional data 
(i.e. more quantified metabolites). 
Here, we predict an involvement of RELB, a subunit of the NF-κB complex that is involved in inflammation and 
plays a critical role in malignant transformation and cancer progression66, with particular relevance in colitis-
associated cancers67,68. Notably, several of the predicted TRs have previously been associated with signaling 
pathways that are de-regulated in colon cancer (e.g. Wnt62,63 and SMAD69 signaling), including CBX770,71, 
MLLT1072 and ZNF21773,74.  

Metabolite and/or kinase effectors of TR activity – example predictions 

In the following sections, we provide selected examples for regulatory interactions affecting TR activity, as 
predicted in silico using non-linear model analysis to integrate cellular information across three layers, i.e. 
metabolome, proteome and transcriptome (see main text and Methods section).  

Choline. Among the most highly connected metabolites predicted by our model-based fitting analysis is choline 
(118 interactions with 36 TRs), substrate of the first step in the biosynthesis of phosphatidylcholine, a key 
component of eukaryotic cellular membranes. Recent studies have revealed a deep interplay between 
oncogenic signaling and choline metabolism, such that altered choline levels have become a metabolic 
hallmark of malignant transformation75. Our results support this key role, suggesting that choline availability 
could trigger pleiotropic transcriptional changes. 

EIF2AK2/PKR activation by oxidative stress. Eukaryotic Translation Initiation Factor 2 Alpha Kinase 2 (EIF2AK2, 
also known as PKR) is a regulatory protein acting on eukaryotic initiation factors (eIFs) that mediate the 
initiation of protein synthesis76. In response to various stress signals77 such as oxidative stress78,79, EIF2AK2/PKR 
phosphorylates the subunit α of eIF2. This prevents the assembly of the translation initiation complex, which 
effectively inhibits mRNA translation76. Furthermore, EIF2AK2 acts as part of a signaling pathway that can 
activate NF-κB80,81, an important stress response mediator, and inflammation82. 
Here, we predict an interaction between EIF2AK2 and oxidized glutathione (GSSG), which is part of the 
intracellular redox buffer GSH/GSSG, in combination with several different kinases (Supplementary Data 5). As 
cells face oxidative stress, excess reactive oxygen species (ROS) are neutralized in part through oxidation of 
reduced glutathione (GSH), leading to the accumulation of GSSG while the GSH pool is depleted. Serving as a 
signal for oxidative stress, the predicted interaction may hence represent a mechanism underlying the 
oxidative stress-mediated activation of EIF2AK2/PKR. The only other interactions predicted for EIF2AK2 are 
with choline and N-acetylserotonin, in combination with CKB and CKM kinase, respectively. 

Effectors of tumor suppressor/oncogene p53. The extensively studied tumor suppressor p5311,83 has been 
associated with a plethora of cellular processes, from apoptosis induction84 and the DNA damage response85,86 
to metabolism87,88. Here, our model fitting-based analysis indicates an influence of ATP and fatty acid 
metabolites such as lipoic acid and myristic acid, as well as the polyamine intermediate N-acetylspermine and 
the cholesterol metabolite hydroxycholesterol on p53 activity (Supplementary Data 5).  
ATP was previously found to directly bind and stabilize p53-DNA complexes89. Interestingly, the interaction 
with p53 was one of only two interactions we predicted for ATP, the second one being with interleukin 
enhancer-binding factor 2 (Ilf2). Lipoic acid has been attributed a potential involvement in preventing p53 
protein degradation90, while myristic acid, as a representative of saturated fatty acids, can act as a negative 
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regulator of the DNA damage response91 to promote cell proliferation. N-acetylspermine is an intermediate in 
the conversion of spermine to putrescine, catalyzed by spermidine/spermine N(1)-acetyltransferase (SAT1). 
The polyamines spermine, spermidine and putrescine are required for cell growth92, and have been suggested 
to engage in regulatory interplay with p5393,94. Hydroxycholesterol is an oxygenation product of cholesterol95, 
which has been suggested to act on p53 activity through modulation of the estrogen receptor in breast 
cancer96. 
Taken together, we predict several small-molecule compounds that could potentially affect p53 activity. Given 
the drastically different roles of p53 in a wild-type versus mutant p53 setting97, the therapeutic relevance of 
these interactions remains to be elucidated. Searching for drug molecules chemically similar to predicted 
effectors of p53, we found palm oil to potentially interfere with p53 activity, an effect already suggested in the 
literature98,99. 

Regulation of diverse cellular processes by hydroxycholesterol. Cholesterol is an important structural 
component of mammalian cells100, while its oxygenated derivatives, including 24-, 25- and 27-
hydroxycholesterol, exert important biological functions101 such as the modulation of cell permeability102 and 
signalling pathways103. As a result of pathological alterations in hydroxycholesterol abundance and/or 
localization, their roles extend into tumorigenesis and cancer development95,104. 
Here, we predict interactions involving hydroxycholesterol with 13 TRs, including important regulators of 
proliferation, differentiation, inflammation and metabolism: CEBPB, CNBP, DNMT1, HMGN1, ILF2, PAWR, PGR, 
RBBP7, RELA, STAT1, STAT6, TP53 and USF2 (Supplementary Data 5). U2F2 is a member of the sterol regulatory 
element-binding proteins (SREBPs)105,106 that sense and respond to sterol levels, while several others have 
previously been linked to cholesterol homeostasis: CEBPB107, CNBP108, HMGN1109, STAT1110,111, and TP5396 (see 
also the above example, section 2.4.2). 

Sedoheptulose 7-phosphate. The metabolite sedoheptulose 7-phosphate (S7P), is an intermediate of the non-
oxidative PPP that can fuel glycolysis (via glyceraldehyde 3-phosphate) and nucleotide synthesis (via ribose 5-
phosphate). In our interaction map, we predict two interactions with S7P: (1) with STAT3, which has been 
linked to rewired energy metabolism in cancer112,113, and (2) with UHRF1, a prominent regulator of DNA 
methylation and mediator of DNA damage repair114,115. 
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Supplementary Note 

Image analysis: cell number quantification from bright-field images of adherent cells 

Cell concentration and viability information can be used for monitoring proliferation rates, optimizing growth 
conditions and normalizing cell data, like in our case metabolomics data. Here, we describe the procedure used 
for processing time-lapse bright-field microscopy images of adherent cells during time-course growth 
experiments. With the proposed protocol, we aim at a rapid quantification of cell numbers in images of live 
adherent cell cultures. The procedure has been optimized to scale with the number of images collected during 
long-term time lapse microscopy experiments, consisting of typically thousands of frames, and to generalize 
to cell types with radically different morphologies, without customization from the operator. 

Currently, multiple platforms are routinely used for cell number quantification. Several methods are 
destructive and require enzymatic cell detachment using trypsin, adding increased cost to researchers and 
limiting flexibility as well as throughput. Identifying cells directly from microscopy images (cell segmentation) 
is an attractive alternative, and several image processing analysis tool are now routinely used for quantitative 
single-cell biology116–120. However, most methods use fluorescence microscopy, can be computationally 
demanding and poorly scale with the number of images. Here we propose a label-free and non-destructive 
approach based on bright-field microscopy imaging.  

The detection and segmentation of adherent cells from bright-field microscopy images represents a 
challenging task. This is because (i) intensity of the background is often similar to the intensity of the cells, (ii) 
illumination is uneven and cells often have a surrounding bright white area (i.e. halo), (iii) contrast is poor and 
makes cell boundaries poorly defined, especially among sets of spatially close cells.  

Here we acquired and processed bright-field images using a TECAN Spark 10M plate reader. For each well, 25 
images were acquired and then stitched together, with a spatial resolution of 1.3 µm per pixel (panel a in 
Supplementary Figure 9). The subsequent steps of image analysis are described in detail below.  

Our automatic procedure consists of 3 main steps:  

(i) The image is preprocessed to improve contrast of cell borders (panels b-c in Supplementary Figure 9) using 
a series of filter masks in Matlab (e.g. imopen, imsharpen and imfilter). 

(ii) Then we combined two techniques to perform cell segmentation. The first one is an empirically derived 
image gradient threshold selection method named Empirical Gradient Threshold (EGT) from117. 
Subsequently, we refined the segmentation using the Maximally Stable Extremal Regions (MSER) 
approach121,122 using a previously developed code123. To speed up image acquisition by the plate reader, 
only the center of the well is used during the auto-focus procedure. Hence, image quality is higher in the 
central area, while images become more blurry (and hence difficult to segment) further away from the 
center of the well (panels a and d in Supplementary Figure 9Error! Reference source not found.). 
Therefore, to reduce the computational complexity and improve the quality of the segmentation, we 
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restricted the area of the image that is segmented to the central round area of each well (0.05 cm from 
the center of the well). 

(iii) In the last step, we aim at estimating the characteristic size of adherent cells. Given the poor contrast of 
cell borders, segmentation of dense clusters of cells can fail to accurately separate individual cells. This 
often results in few, but large, unified blobs of cells. Other typical segmentation artefacts are associated 
to false identification of cells in the halo region. Such errors are more frequent, and typically associate 
with small segmented areas. While these wrongly segmented cells are typically a minor fraction with 
respect to correctly segmented cells, they can significantly bias the number of estimated cells. Hence, to 
cope with these classical segmentation errors, instead of directly counting segmented cells, we estimated 
the most characteristic cell size area based on the distribution of observed cell sizes, and use this estimate 
to compute total cell number as follows.  
After cell segmentation, the distribution of cell sizes is computed by grouping cells into bins of equal size. 
The frequency associated to each bin is normalized by the maximum theoretical number of cells with the 
same size in the segmented well area. The most probable characteristic cell size area is then selected (red 
dashed line in panel e in Supplementary Figure 9). To account for the variability in cell sizes we performed 
different binning, adapted to the number of segmented cells. For each binning, we estimated the most 
frequent cell size, and calculated mean and standard deviation (Supplementary Figure 1e). The total cell 
number is then computed by dividing confluence (measured from the entire well) by the estimated 
characteristic cell size. 

 

To test the performance and validity of our approach, we selected 24 images from different adherent cells 
types, at different confluency (images can be found at http://www.imsb.ethz.ch/research/zampieri-
group/resources.html). For each image, cells were manually counted (panel f in Supplementary Figure 9), and 
compared to the number of cells predicted from our automatic image analysis method. The comparison from 
manually counted and automatically predicted cell numbers demonstrate excellent correlation (Pearson 
correlation = 0.95) (Supplementary Figure 1e), and an average coefficient of variance (CV = 16.1%) in line with 
traditionally accepted analysis methods124. 

While there are several freely available image analysis tools to perform cell segmentation analysis, most 
methods are optimized for phase contrast microscopy images125, are computationally demanding123 or 
necessitate parameter optimization based on the cell type imaged. The performance data presented here 
confirm that our methodology is capable of quantitatively estimating characteristic cell size and cell 
concentration across several adherent cell lines, without customization. Overall, our approach offers a rapid 
coarse-grained segmentation analysis, from which we can derive a rapid and accurate estimate of characteristic 
cell size area and cell number. It is worth noting that our image analysis tool can be easily adapted to other 
similar plate readers or similar microcopy setups. The code is implemented in Matlab and is available for 
download at http://www.imsb.ethz.ch/research/zampieri-group/resources.html. 

 

  

http://www.imsb.ethz.ch/research/zampieri-group/resources.html
http://www.imsb.ethz.ch/research/zampieri-group/resources.html
http://www.imsb.ethz.ch/research/zampieri-group/resources.html
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Supplementary Figures 

 

Supplementary Figure 1: Overview of the experimental workflow for high-throughput metabolome profiling in 
diverse adherent cell lines. The experimental workflow consists of a parallel extraction and cell number 
quantification of cell cultures grown in 96-well plates. (a) A TECAN Spark 10M plate reader is used to monitor cell 
growth by automatically acquiring bright-field images of a 96-well cell culture plate seeded with multiple adherent 
cell lines in triplicates. Confluence is estimated on-line by segmenting the percentage area of the well covered by 
cells (i.e. green area), using a manufacturer-proprietary algorithm, while cell numbers are estimated using an in-
house software (see Supplementary Note and panels d-e). (b) Growth is continuously monitored on one replicate 
cell culture plate using time-lapse microscopy in a TECAN Spark 10M plate reader (37°C, 5% CO2, see also panel a) 
to establish cell line- and condition-specific growth curves. (c) Sampling procedure. Two replicate culture plates are 
processed at each sampling time-point to collect cell extracts and to measure the extracted cell number for 
subsequent normalization of measured metabolite intensities. For metabolite extraction (left branch), the medium 
is aspirated from each well using a multi-channel aspirator, and the adherent cells are washed once with ammonium 
carbonate (37°C, 5% CO2) to remove residual medium components. After aspiration, ice-cold extraction solvent 
(40:40:20 methanol:acetonitrile:water and 25 µM phenyl hydrazine, -20°C) is added to each well. The plate is 
immediately sealed, placed at -20°C for 1 hour, and subsequently stored at -80°C until analysis. Metabolome profiles 
are generated using a non-targeted mass spectrometry platform based on flow-injection time-of-flight mass 
spectrometry (FIA-TOFMS). The second plate (right branch) is processed identically, but is filled with warm 
phosphate-buffered saline (PBS, 37°C) and immediately subjected to cell confluence measurement to determine the 
number of cells extracted in each well. (d) Estimating adherent cell size from bright-field microscopy images acquired 
using a TECAN Spark 10M multi-well microplate reader. The algorithm is described in detail in the Supplementary 



14 
 

Note. The plot shows the dependence of cell size on cell confluence in three biological replicates (plotted in red, 
green and blue, respectively) of four representative cell lines from the NCI-60 panel of cancer cell lines. Cell size 
estimates in each time-lapse frame are plotted against cell confluence at the time of acquisition. Above 80% 
confluence, cells become difficult to segment, resulting in higher variation in cell sizes and a slight cell shrinkage. (e) 
Comparison of manually counted cell numbers with automatically determined cell counts derived by dividing the 
total area of the well covered by cells (i.e. well surface area multiplied by cell confluence in %) by the average 
adherent cell size (see panel d and Supplementary Note). Results are shown for twenty-four bright-field images from 
21 different NCI-60 cell lines. The selected cell lines exhibit radically different morphologies, and images were taken 
at different levels of confluence. The images used for validation can be downloaded alongside with Matlab code 
from http://www.imsb.ethz.ch/research/zampieri-group/resources.html. It is worth noting that the detection and 
segmentation of adherent cells from bright-field microscopy images represents a challenging task. Most 
methodologies currently available are computationally time-consuming and require the user to optimize a set of 
unintuitive parameters to improve the segmentation of one specific cell line/condition. Our methodology aims at 
finding the best compromise to avoid any optimization of parameters and still achieve good performance in the 
estimates of cell numbers. The performance of our algorithm could be slightly improved if parameters were tuned 
on each cell line independently. However, this would require the user to perform a tedious and not always simple 
parameter tuning for each cell line/image, making such approach unsuitable for the analysis of a large number of 
images and cell lines. Here, we provide the community with a simple and intuitive tool to perform segmentation of 
large numbers of bright-field microscopy images of adherent cell lines without the need for customization. 

  

http://www.imsb.ethz.ch/research/zampieri-group/resources.html
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Supplementary Figure 2. Normalization of metabolomics data. (a) Bright-field microscopy images of adherent 
cultures of COLO205 colon, as well as M14 and SKMEL28 melanoma cells. These representative examples 
demonstrate the large differences in morphology and size that can be observed among cell lines from different and 
even similar tissue types. Images were acquired in a TECAN Spark 10M plate reader (37°C, 5% CO2). (b) While there 
is a general dependency of protein content on the cell volume, cells with the same volume can exhibit up to 3-fold 
differences in protein content, making cellular protein content an inaccurate proxy of cell volume. (c) Minimum and 
maximum number of extracted cells in samples used for FIA-TOFMS analysis. Owing to the platform’s high 
sensitivity, cell numbers ranging from as little as 10 000 cells to 200,000 cells per well can be used for metabolome 
profiling.  Cell numbers were calculated from cell confluence divided by the characteristic adherent cell size. 
Characteristic areas covered on average by a single adherent cell were estimated for each cell line using the herein-
presented image analysis tool (see Supplementary Note). The variation in extracted cell number between cell lines 
reflects considerable differences in cell sizes that are corrected during data normalization, as described in detail in 
the Methods section. (d) Variation in raw MS intensity data, shown for two representative cell lines from the NCI-
60 panel of human tumor cell lines. Each plot shows the coefficients of variation (CV, in %) of 2181 ions per cell line, 
calculated across three replicate samples at the same time-point. Across all cell lines, the median variation of raw 
MS ion intensities is 13% (CV). The data shown represent raw MS intensities prior to any normalization, exhibiting 
the combined variance arising from differences in cell numbers (panel c) as well as fluctuations in MS signal 
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acquisition (instrumental noise). Of note, the degree of variance observed within each cell line overlaps with the 
observed variation in cell confluence between the same three biological replicates (panel b). Since we collected 
samples at different time points during growth, the number of extracted cells has a major contribution in MS-signal 
intensity and will play a crucial role in the subsequent normalization of raw MS data (see Figure 1 in the main text). 
(e) Variation in cell confluence across three biological replicates of 54 cell lines from the NCI-60 panel of human 
tumor cell lines. Coefficients of variation (CV, in %) were calculated across three biological replicate wells of the 
same cell line. The observed variance contains contributions from variations in initial cell seeding as well as in cell 
confluence measurements using bright-field microscopy imaging (using a TECAN Spark 10M plate reader) and image 
segmentation. The overall low degree of variation reflects the accuracy of cell confluence measurements. (f) Only 
ions with a significant (p-value ≤ 3.4e-7) linear dependency with cell number (function fitlm in Matlab) in more than 
80% of cell lines were retained. (g) Distribution of relative standard errors of cell line-specific α-values, calculated 
from the standard error of the regression model (see Equation 2 in the main text). The data shown include α 
estimates for 2181 putatively annotated metabolites in cell lines where a significant dependency with the extracted 
cell number was detected (p ≤ 3.4e-7, see Figure 1b in the main text). A median CV of 11% demonstrates the 
robustness of this normalization approach. (h-m) Resolving cell volume differences in metabolomics data using 
Principal Component analysis (PCA). (h) PCA of the cell number-normalized dataset across 54 cell lines revealed a 
prominent pattern corresponding to almost 60% of total variance (PC1). (j) Correlation of PC1 scores with the cell 
volume calculated from previously published measurements of cell diameters when in suspension126, and with the 
characteristic adherent cell size area that we determined from bright-field microscopy images. (j) Distribution of 
relative errors in cell volumes and adherent cell size area among 54 cell lines, showing that the directly measured 
adherent cell sizes have a smaller error than estimates of cell volumes. Cell volume errors were derived from error 
propagation of the measurement error in cell diameter as reported in 126, while errors in cell size area are derived 
directly from the distribution of  segmented cells across images acquired between a confluence of 20 and 80% (see 
Supplementary Figure 1 and Supplementary Note). (k) Histogram of annotated metabolites correlating with PC1 
scores. A subset of 987 metabolites that significantly correlate with PC1 (and consequently with cell size) are 
highlighted (i.e. Pearson correlation > 0.8 and p < 0.05) (see panel a). (l) KEGG pathway enrichment analysis revealed 
a strong over-representation of PC1-correlated metabolites in fatty acid metabolism. (m) Correlation of the 
calculated cell volume correction factors (based on 987 PC 1-associated annotated metabolites), with the adherent 
cell size area determined from bright-field image analysis. Error bars reflect the standard deviation of the adherent 
cell size area. 
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Supplementary Figure 3. Comparison of NCI-60 metabolome profiles with other metabolome resources. (a-e) 
Here we compare the metabolic profiles measured using our approach and previous metabolic profiles 
measured by the Metabolon company and available at the NCI DTP Molecular Target Program 
(https://wiki.nci.nih.gov/display/ncidtpdata/molecular+target+data). We detected 45 metabolites annotated 
to KEGG identifiers common between the Metabolon and our dataset. (a) Distribution of Spearman correlation 
between individual metabolite profiles across 53 NCI-60 cell lines. While most metabolites exhibit a positive 
correlation between the two datasets, overall we found a poor similarity between the metabolic profiles 
(Spearman correlation: 0.144 and p-value: 3.6e-12). (b) Glutamate relative metabolic profiles in the Metabolon 
and our dataset. Measurements from both datasets were used as Z-scores across 53 cell lines. While glutamate 
is one of the most abundant metabolite in the cell8 and hence it represents a good term of comparison, it 
exhibits only poor correlation. A major difference between the two datasets is that we identify on average 
larger relative concentration of glutamate in central nervous systems cell lines (i.e. CNS), possibly reflecting the 
key role of glutamate as a neurotransmitter in the mammalian central nervous system. This observation is 
supported by independent data on mouse tissues (see panel f).  (c) PCA analysis on the Metabolon dataset. We 
found two major Principal Components (PCs) that account for ~40% of the total variance. (d) First component 
(PC1) scores are plotted against the average metabolite levels for each cell line. This comparison shows that 
most metabolites exhibit similar patterns across cell lines. (e) The second component is plotted against cell 
size. The significant (p-value<0.05) correlation with cell size suggest that these data are not normalized to take 
into account differences in cell size. (f) Here we compare our metabolome dataset with a previously published 
metabolomics dataset127 measuring the concentrations of 296 metabolites in 11 different tissue types of 
mouse: testis, pancreas, plasma, heart, kidney, liver, lung, spleen, thymus, cerebella, cerebra. Three tissue 
types: kidney, lung and cerebra, are in common with renal, lung and CNS tissues of origin in the NCI-60 cell 
lines. Since metabolite concentrations in 127 are given in absolute amounts per gram tissue, and not per cell 
volume, we used our data before cell volume correction (i.e. relative abundance per cell) for the comparison. 
To compare the relative values across tissues, we first take the mean values of metabolite intensities in NCI-60 
cell lines of the same tissue types. Next, we calculate the median Pearson correlation for the 153 metabolites 
in common between the two datasets. Expected correlation values were estimated by randomly selecting 
mouse tissue types and average and standard deviation across 1000 permutations are reported (red line). To 
avoid artefacts related to sensitivity, we repeated this calculation for metabolites with an increasing minimum 

https://wiki.nci.nih.gov/display/ncidtpdata/molecular+target+data
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absolute concentration (nmol/g) as measured in ref. 127. We found that for metabolites with a concentration 
in at least one tissue type above 260 nmol/g, the median correlation with our data is above 0.5 and was larger 
than random. (g) Here we compare the results of our quantitative measurements of glucose uptake- and 
lactate secretion rates (y-axis) with measurements obtained for 53 cell lines in the work of Jain and colleagues4 
(x-axis). Two are the main differences between the two datasets: Firstly, instead of measuring only end-point 
concentrations of glucose and lactate in the spent medium, we measured changes in concentrations every 24 
hours for approximately 5 days of cell growth. A linear model relating ion intensity to growth-normalized time 
(cell number divided by growth rate) were fitted, allowing for a more robust and quantitative assessment of 
uptake- and secretion rates. Secondly, instead of reporting the flux per cell, as in ref. 4, we correct for 
differences in cell volumes using the correction factor derived in our metabolomics approach (Supplementary 
Figure 2). Hence, we derive a relative measure of rates for both glucose uptake and lactate secretion expressed 
in fmol/h/volume (AU). 
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Supplementary Figure 4. Comparison of metabolic heterogeneity across cell lines and different layers of cell 
biological information. (a) Four examples for metabolites exhibiting tissue-dependent abundances (ANOVA q-value 
< 0.05, corrected for multiple tests). Relative metabolite abundances (y-axis) are given as Z-scores across the 54 cell 
lines, with error bars reflecting the standard deviation across 3 biological replicates. (b) Correlation of doubling times 
with relative metabolite abundances across the 54 adherent cell lines from the NCI-60 panel. Metabolites were 
ranked by the Spearman correlation coefficient (Supplementary Data 1). Metabolites that exhibit the largest 
correlation with growth rate across cell lines were tested for an overrepresentation in KEGG pathways, and were 
significantly enriched (q-value < 0.01) for intermediates in amino acids biosynthetic pathways (Supplementary Figure 
3), possibly reflecting essential biochemical requirements for rapid cancer cell proliferation4,128,129. Only pathways 
with a q-value (corrected for multiple tests) below 0.05 are shown in the table. (c) Major trends in transcriptome, 
proteome, metabolome and drug sensitivity profiles and the corresponding fraction of explained variance were 
extracted using principal component analysis (PCA) of, as well as uptake/secretion profiles of 140 major 
substrates/by-products4. A high number of distinct trends (principal components) to explain most of the observed 
variance (e.g. 90%) in the data set indicates complex underlying patterns and high heterogeneity among cell lines. 
(d) The two main trends (principal components, PCs) in metabolic profiles across the 54 cell lines (≥ 10% explained 
variance each, see also panel e) correlate with major changes in gene expression levels (PCs 1, 2 and 3). Percentages 
represent the fraction of the total variance in the dataset explained by individual PCs. Spearman correlations were 
calculated between pairs of metabolome and transcriptome PCs (PC scores across cell lines). Box color corresponds 
to the correlation p-value, numbers in boxes show the absolute Spearman correlation coefficient for significant 
correlations (p-value < 0.05). n.s.: not significant (p-value > 0.05). (e) The strongest trend in metabolome profiles 
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(PC1, 23% variance explained) corresponds to differences in the abundance of several metabolites involved in fatty 
acid metabolism and degradation. The second-largest principal component (PC2, 15% explained variance) consists 
of metabolites in nucleotide metabolism and signaling pathways involved in cell proliferation and adaptation, such 
as Ras, HIF-1 and AMPK. (f) The three strongest trends in transcriptomic profiles are related to cell-cell interactions 
and cell adhesion (adherens- and tight junctions, Rap1 signaling, ErbB-, Hippo-, VEGF signaling), sphingolipid 
metabolism and several signal transduction pathways involved in cancer metabolism, such as HIF-1, PI3K-Akt, Ras 
and FoxO. 
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Supplementary Figure 5. Estimating TR activity in silico from target gene expression levels and known gene 
regulatory networks. (a) Correlation of calculated TR activity with gene expression levels (measured for 696 TRs) 
and protein abundance (measured for 100 TRs) across 53 adherent cell lines in the NCI-60 panel, showing that for 
the vast majority of TRs neither transcript nor protein abundance is an adequate predictor of TR activity. (b) The 
major trend in the transcript-omics data set used for NCA (12% explained variance) shows a strong correlation with 
cell line doubling time, reflecting a pleiotropic effect of growth rate on gene expression levels130. (c-d) Connectivity 
in the TR-gene network used in Network Component Analysis (NCA), including 728 TRs and 2209 unique target 
genes. Only 25 TRs (3.4%) have more than 50 gene targets, including Sp1, NF-κB, TP53, Jun and Myc. Each gene is 
on average controlled by three TRs (median: 2), while 13.7% of genes are connected to more than five TRs. (e-h) 
Example TR activity profiles across 53 cell lines calculated using NCA. Our implementation of NCA delivers median 
and standard deviation of a relative (i.e. within an unknown scaling factor) measure of TR activity between -1 and 1 
(see Methods section for full detail). (i-j) Connectivity in the TR-metabolite association network (FDR ≤ 0.1%) 
generated by correlating metabolite abundances and calculated TR activity across 53 cell lines. The average degree 
(i.e. number of interaction partners) is 2.7 and 8.0 for metabolites (panel i) and transcriptional regulators (panel j), 
respectively. (k) Number of network links retained in the TR-metabolite association network at different false-
discovery rates. Of note, no threshold was applied to the correlation-based network provided in Supplementary 
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Data 3. Upper ends of 99.5 and 99.9% confidence intervals were calculated using a bootstrapping approach. The cell 
lines in the metabolome data set were randomized by resampling 100 times with replacement, and Spearman 
correlation coefficients were calculated for each randomized data set. Correlation coefficients exceeding the 
maximum value among 99.5 and 99.9% (0.5 and 0.1% FDR, respectively) lowest correlation coefficients were 
obtained from the pooled list of absolute correlation coefficients. (l) Analysis of correlations between metabolite 
levels and TR activity profiles in relation to their distance between TR and enzyme targets in the stoichiometric 
network131. Only TR-target genes interactions listed in the TRRUST interaction database132 were considered. The 
black line represents the average pairwise TR-metabolite distance (y-axis) at different levels of correlation between 
metabolite abundance and TR activity (x-axis). The blue line represents the average TR-metabolite distance in 10.000 
randomized stoichiometric networks. Data points are color-coded to reflect the significance (q-value, corrected for 
multiple tests) of TR-metabolite proximity in the stoichiometric network as compared to the randomized networks.  
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Supplementary Figure 6. Mapping TR activity to metabolic phenotypes. (a) Toy model in which a TR can directly 
modulate the flux (v) of a metabolic pathway. The pathway consists of 4 metabolic intermediates (M) and five 
enzymatic reactions governed by Michaelis-Menten kinetics. (b) Top 5% of metabolites whose abundance correlated 
with glycolytic flux (i.e. glucose uptake and lactate secretion, see main text Figure 2e) were tested for a significant 
(q-value, corrected for multiple tests) enrichment in KEGG metabolic pathways, separately for positively and 
negatively correlated metabolites (yellow to red and purple to blue color ranges, respectively). (c) Correlation of 
expression levels of SRCAP-regulated phosphoenolpyruvate carboxykinase 2 (PCK2) with more than 20.000 genes 
across cell lines in the CCLE. (d) Number of TRs whose associated metabolites show an over-representation in KEGG 
metabolic pathways. Only pathways with at least one associated TR are shown. The bar length corresponds to the 
number of TRs that show an overrepresentation (q-value < 0.05) of associated metabolites in the pathway. Cancer-
related TRs (158 TRs) were defined based on the COSMIC cancer gene census133. Enrichment analysis highlights 
metabolic pathways where a significant number of metabolic intermediates exhibit coordinated changes the given 
TR’s activity (see also main text Figure 3a). (e-f) Examples for TR-pathway associations: MYC and related proteins 
(panel e, the “MYC interactome”), and subunits of the NF-κB transcription factor complex (panel f) to KEGG 
metabolic pathways. These specific examples are further discussed in the Supplementary Discussion. Only pathways 
showing a significant overrepresentation (q-value < 0.05, corrected for multiple hypothesis testing) among 
metabolites associated with at least one of the TRs are shown in each panel. Colored boxes in shades of red reflect 
q-value significance, while blue squares correspond to non-significant links (no overrepresentation among 
associated metabolites, q-value > 0.05). 
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Supplementary Figure 7. Reverse-engineering of altered TR activity from metabolic profiles. (a) To test the ability 
of our TR-metabolite association network to resolve altered TR activity, we perturbed HIF-1A mRNA levels in IGROV1 
ovarian cancer cells using RNAi. To that end, we transfected IGROV1 cells with three different siRNA concentrations 
(10, 25 and 50 nM). Control cultures were transfected with a non-targeting siRNA. Cell growth (i.e. cell confluence, 
y-axis) was monitored continuously using a TECAN Spark 10M plate reader for automated time-lapse microscopy 
(37°C, 5% CO2). (b) Replicate IGROV1 cultures were transfected with a red fluorescent siRNA (see Supplementary 
Methods) to monitor cationic lipid-mediated transfection throughout the experiment using a Nikon Ti-E inverted 
fluorescence microscope. Cells were imaged directly in the 96-well plate without fixation. The image shows a 
representative section at 87 hours post-transfection in an overlay of a phase contrast and a fluorescence image. Red 
cells contain the fluorescent control siRNA, indicating successful transfection of IGROV1 cells (transfection 
efficiency: 92%). (c) Twelve TRs yielding a higher prediction score than HIF-1A share a strong association with fatty 
acid metabolism and may reflect effects of lipid transfection. The association to TCA cycle, however, is confined to 
HIF-1A and only two other TRs with a higher score than HIF-1A, CTBP1 and CTNNBIP1. (d-f) Inferring TR drivers of 
metabolic rearrangement observed in patient cohorts (matched tumor- and adjacent normal tissue pairs) from clear-
cell renal cell carcinoma49 (panel d, 138 patients), lung cancer51 (panel e, 21 patients), and colon cancer65 (panel f, 
10 patients). A detailed description is provided in the Supplementary Discussion. The strength of TR-metabolite 
associations (product of correlation coefficient and –log10 p-value) is plotted for each quantified metabolite in the 
datasets (x-axis) for the seven most significant TR drivers identified (see Methods section and Figure 4 in the main 
text). Metabolites are sorted by the median absolute fold-change between tumor and adjacent normal tissue across 
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patients. The size of grey dots reflects the magnitude of the fold-change in log2-scale. The numbers listed above the 
grey dots reflect the median association to the metabolite in our TR-metabolite association network, i.e. a small 
number indicates that the majority of TRs shows weak association to the metabolite, while the identified top-ranking 
TRs show stronger associations. 
 
 
 
 
 
 
 
 
 
 

 
Supplementary Figure 8. A network of predicted interactions implying metabolites and kinases as potential 
effectors of TR activity. The different panels show the connectivity (number of interactions) of metabolites (panel 
a), kinases (panel b) and transcriptional regulators (panel c) in the predicted regulatory interaction network (Figure 
4 in the main text). On average, each metabolite engaged in 8 interactions (median: 3), while kinases on the other 
hand were predicted to be more ubiquitous effectors (13-125 interactions per kinase). Network links were calculated 
based on non-linear model fitting analysis (see Methods section for full detail), where variance in TR activity across 
53 cell lines was modeled as a function of the protein abundance of a given TR, and the additional activating or 
inhibiting action of a metabolite and/or a kinase, alone or in combinations. In total, we considered 100 TRs and 64 
kinases/phosphatases for which protein abundance data was available, and 230 metabolites exhibiting largest 
variation across the 53 cell lines, resulting in 6,753,600 models. We tested for each model whether the interaction 
significantly improves the explained variance in TR activity across the 53 cell lines, and retained 1,888 network links 
(FDR ≤ 0.1%). (d) Probability density function (pdf) of the number of interactions reported for the metabolites in the 
predicted regulatory interaction network, as compared to all metabolites for which at least one allosteric interaction 
has been reported9. P-values report on the significance of the difference in interaction frequencies (Kolmogorov-
Smirnov test) between the two groups of metabolites. 
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Supplementary Figure 9. Image analysis for cell number quantification from bright-field images of adherent 
cells. The software (Matlab code) is available for download at http://www.imsb.ethz.ch/research/zampieri-
group/resources.html. (a) Example of raw bright field image of well bottom acquired with the TECAN Spark 
10M plate reader. (b-c) Example of image sharpening. Raw image (panel b). Same image after the noise 
reduction and sharpening to improve the contrast and facilitate cell segmentation (panel c). (d-e) Example 
from segmentation analysis. Panel d shows the detected cells in green, and cell borders in red. In panel e, the 
histogram represents the normalized frequencies of cell sizes. The red dashed line indicates the cell size that is 
selected as the average cell size in this image. (f) Example from one of the image used for method validation. 
Manually counted cells are marked by a red cross. 
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