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Supplementary Methods 

Phase-Field Model of Electrical-Thermal-Mechanical Breakdown  

In the phase-field model, a continuous phase-field variable (r,t) is introduced to describe the spatial 

and temporal evolution of the breakdown phase: (r,t)1 represents the breakdown phase, (r,t)0 

represents the non-breakdown phase, and the diffuse transitional region represents the interface area, 

respectively. Considering that the breakdown may arise from the electric stimuli, the mechanical stimuli, and 

the thermal stimuli, herein we combine the electric, thermal, and mechanical stimuli together to investigate 

their effects on the breakdown process. Three materials features including the dielectric constant, electrical 

conductivity and Young’s modulus, are parameterized in this model to calculate different energies. The 

dielectric constant inhomogeneity of the nanocomposite is defined according to the different dielectric 

constants of the polymer phase, filler phase, and the breakdown phase. This also applies to the electrical 

conductivity and Young’s modulus inhomogeneities. 

The free energy considering synergistic contributions from the phase separation, the interface, the 

temperature and the electric field in a dielectric inhomogeneous system is written as 

           sep grad elec Joule strain

V

F f f f f f dV        r r r r r ,   (1) 

where the first term in the integral represents the free energy density of mixing that drives the phase 

separation, the second term is the gradient energy density with  the gradient energy coefficient in isotropic 

approximation, the third term is the electric energy density, the fourth term is the Joule heat energy density, 

and the last term is the strain energy density. 

The gradient energy density gradf  is described by 

 
2

grad

1

2
f     r ,       (2) 
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A double-well function is used to describe the phase separation energy,  

    
22

sep = 1f   r ,        (3) 

with  a positive coefficient defining the energy barrier of the phase separation. 

 The electric energy density elecf  can be written as  

         S
elec 0

1 1
=  ,

2 2
ij i j i if E E E P  r r r r r      (4) 

where  ij r  is the spatially dependent relative dielectric constant tensor,  iE r  is the total electric field 

component, and  S
iP r  is the spontaneous polarization which is not zero if the local material component 

is ferroelectric. 

The Joule heat energy density Joulef  is expressed by  

     Joule ,ij i jf T E E dt r r r        (5) 

where  ,ij T r  is the spatially and temperature dependent electrical conductivity tensor, and dt is the 

operating time of applied electric field.  

According to the filamentary electromechanical breakdown mechanism, the effect of the electric field 

in inducing mechanical stress is also considered in this model. Here, the mechanical compressive stress 

induced by an electric field is 
2

m 0

1
=

2
rE   1. So, the strain energy density stainf  can be written as 

 
 

     
 

2 2 2 22
0 ijm

strain = =
2 8

i jE E
f

Y Y

  r r r

r r
 ,     (6) 

where  Y r  represents the Young’s modulus.  

A modified Allen-Cahn equation is employed to describe the breakdown phase evolution, 

 
 

 
 

 
 

 
 

 
 

 
 

sep grad

0 elec Joule strain critical

elec Joule strain

, ,,
+ +

, , ,

f f

t tt
L H f f f f

t f f f

t t t



 

  

  
  

     
    

  
    

r

r rr

r r r

r r r

, (7) 
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where L0 is the kinetic coefficient relating to the interface mobility with a value of 1.0 m2 s1 N1, 

H(felec+fJoule+fstrainfcritical) is the Heaviside unit step function (H((felec+fJoule+fstrain)<fcritical)0 and 

H((felec+fJoule+fstrain)>fcritical) =1), and fcritical is a position-dependent material constant relating to the maximal 

energy density of each component in the nanocomposite. The purpose of introducing the Heaviside function 

into the Allen-Cahn equation is to assure that the breakdown phase can grow only if the electrostatic and 

Joule heat and strain energy of a local point is greater than its maximal energy endurance. In order to solve 

Eq. (7) more efficiently in Fourier space, it can be rewritten as following: 

   
 
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   

   

     
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             + , , .
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 

   

 
 

         
   
 
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 
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(8) 

Performing Fourier transformation on both sides of Eq. (8) and making rearrangement, we have 

   
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  (9) 

where  
q

 and  
r

 indicate the forward and inverse Fourier transforms, respectively, and q2qq is 

the module square of the wave vector in Fourier space.  

The driving force of the order parameter evolution from the phase separation term in Eq. (7) is given by 

 
 

  sep =2 1 1 2 .
,

f

t


  




 

 r
      (10) 

In order to describe the matrix and the fillers in the nanocomposite, a non-evolving field variable   r  

is introduced, which is equal to 1 in the fillers and equal to 0 in the matrix. With this definition, the spatially 
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dependent relative dielectric constant during the microstructure evolution process takes the form: 

     

    

3 2 B 3 2

3 2 F 3 2 M

= 10 15 6 1 10 15 6
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ij ij

ij ij

       

       

        

       

r
   (11) 

where B
ij , F

ij , and M
ij  indicate the relative dielectric constant of the breakdown phase, the filler, and the 

matrix, respectively. With the definition of the relative dielectric constant in Eq. (11), the driving force of 

the order parameter evolution from the electric term in Eq. (7) can be calculated as follows 

 
     

     

22elec
0
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,

               10 15 6 1 10 15 6  .
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
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
 



        

r r
r

  (12) 

Similarly, the spatially dependent electrical conductivity and the driving force of the order parameter 

evolution from the Joule heat in Eq. (7) can be expressed respectively by  

     

    
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ij ij

ij ij

       

       
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       

r
,   (13) 
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,  (14) 

where the B
ij , F

ij , and M
ij  indicate the electrical conductivity of the breakdown phase, the filler, and the 

matrix, respectively. 

In a similar way, the Young’s modulus and driving force of strain energy in Eq. (7) can be written 

respectively by, 
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where the YB, YF, and YM indicate the Young’s modulus of the breakdown phase, the filler, and the matrix, 

respectively. 

 In order to obtain the electric field distribution during the microstructure evolution process, the spectral 

iterative perturbation method is employed with the iterative equation in real space as following,  

 
 

2
ref ext  

n

ij ij j

i j i

E
r r r


 

 
     

r
r     (17) 

with ref
ij a homogeneous reference of the electrical conductivity, and     0=ij ij ij   r r  the 

inhomogeneous perturbation. With Eq. (9) being evolved by a single step, Eq. (17) is iterated to a quasi-

stationary solution with a relative error between two steps smaller than 104.  

In the phase-field simulation, the characteristic length scale 0 /d    and the characteristic time 

scale t0=1/(L0) can be defined in terms of the material parameters ,  and L0. The L0 is assigned a value of 

1.0 m2 s1 N1 due to the lack of experimental data. A grid size of Nxx×Nyx×1with grid space of x=d0 is 

employed in all simulations. For all 2-dimensional simulations, Nx=Ny=256, Nz=1. A time interval t=0.01t0 

is used to numerically evolve Eq. (8). As an example, the parameters of pure P(VDF-HFP) polymer: 

dielectric constant, electrical conductivity, Young’s modulus and breakdown strength, are obtained from 

experiments2,3, as shown in Supplementary Table 1. The relative dielectric constant B and the electrical 

conductivity σB of the breakdown phase are considered to be isotropic and to have a value of 103 and 1×10-

5 S m-1 to reflect its abundant space charges in the breakdown region, while Young’s modulus of the 

breakdown phase is regarded stable in this model. The critical energy of each component in the 

nanocomposite is calculated by 
2 2 4

2 2 0 r b1
2critical 0 r b b +

8

E
f E E dt

Y

 
    . The breakdown strength of 
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P(VDF-HFP) polymer is temperature dependent due to low tolerance to high temperature of polymer, as 

shown in Supplementary Table 1. Due to the lack of experimental data on the intrinsic breakdown strength 

of P(VDF-HFP), a thermochemical description of the ultimate breakdown strength 

 0.64 -1
b 35 MV mE    is used to calculated the theoretical breakdown value4. The coefficient  in the 

separation energy term is given a value of 108 J m-3 to represent the barrier of the breakdown phase and the 

non-breakdown phase. A value of 10-10 J m-1 is used for the gradient energy coefficient  to specify d0 1 nm 

in the modeling5.  

 

Supplementary Table 1 The parameters of P(VDF-HFP) used in the phase-field simulation 

Temperature 

(K) 

Dielectric 

constant 

Electrical 

conductivity 

(S m-1) 

Young’s modulus 

(MPa) 

Intrinsic breakdown 

strength  

(kV mm-1) 

295 13.5 2.12e-10 982 692 

619 

580 

494 

507 

450 

313 15 / 669 

323 16 / 537 

333 16.3 5.1e-9 426 

343 15.9 / 336 

353 15.4 / 275 

363 15.2 5e-8 214 429 
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Regression Analysis  

A detailed workflow of regression analysis of the breakdown strength is shown in Supplementary Figure 

1. Here, we fix the matrix of P(VDF-HFP) polymer and take the material parameters of filler as variables. 

As the first step, based on the phase-field model, 343 breakdown strength values of different nanocomposites 

are calculated as the training set. Three features including the dielectric constant, electrical conductivity and 

Young’s modulus are chosen as the fingerprints to represent different fillers, and 12 prototypical functions 

are combined with one, two or three fingerprints to form new compound descriptors. For example, a type of 

the compound descriptors with three fingerprints can be permutation and combination of any three 

prototypical functions. As shown in Supplementary Figure 1, 1st screening is performed by ranking the 

coefficient of determination R2 by Least Squares Regression (LSR) to find the best combination of each 

fingerprint with one function. 

 

Supplementary Figure 1 Detailed workflow of regression analysis.  

Supplementary Table 2 shows the regression results of combinations of each fingerprint with one 

function in 1st screening. It is found that all regression results of one fingerprint combined with only one 
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prototypical function exhibit low R2, of which ln(x) function can lead to better R2=0.02306 and R2=0.6225 

for dielectric constant ε and electrical conductivity σ than other functions. The Young’s modulus Y shows a 

best R2=0.2443 with x-1/2 function. What’s more, the breakdown strength is more dependent on electrical 

conductivity and Young’s modulus. Based on the 1st screening, top three functions for each fingerprint are 

selected to compose the compound descriptors with two and three dependent fingerprints in 2nd round 

regression and screening. The regression results are shown in Supplementary Tables 3 and 4. For two 

fingerprints, electrical conductivity σ with ln(x) function and Young’s Modulus Y with x-1/2 function can 

result in a better R2=0.8668. Furthermore, three fingerprints with three best prototypical functions are 

performed to find the best predictive expression. As shown in Supplementary Table 4, ε & σ &T with orderly 

ln(x) & ln(x) & x-1/2 functions exhibits the best R2=0.8899. 

 

Supplementary Table 2. The coefficient of determination R2 in 1st round of least square regressions with only 

one fingerprint and one of the 12 prototypical functions. 

Descriptor R 2  (only ε) R 2  (only σ) R 2  (only Y ) 

x 0.0146 0.4111 0.04036 

x-1 0.01204 0.2139 0.1968 

x1/2 0.01788 0.5176 0.06830 

x-1/2 0.01523 0.3059 0.2443 

x2 0.01323 0.3670 0.03278 

x-2 0.01082 0.1834 0.1755 

x3 0.01310 0.3627 0.03212 

x-3 0.01070 0.1805 0.1734 

ln(x) 0.02306 0.6225 0.2312 

ln(x)-1 / / / 

ex / / / 

e-x 0.01681 0.4924 0.2176 

 

Supplementary Table 3. The coefficient of determination R2 in 2nd round of least square regressions with two 

fingerprint and corresponding three best prototypical functions selected from Supplementary Table 2. 

Descriptor R 2 (ε & σ) Descriptor R 2(σ &Y ) Descriptor R 2(ε&Y ) 

ln(x)&ln(x) 0.6456 ln(x)&ln(x) 0.8537 ln(x)&ln(x) 0.2543 

ln(x)&e-x 0.5155 ln(x)&e-x 0.8401 ln(x)&e-x 0.2407 

ln(x)&x1/2 0.5407 ln(x)&x-1/2 0.8668 ln(x)&x-1/2 0.2674 
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e-x&ln(x) 0.6393 e-x&ln(x) 0.7236 e-x&ln(x) 0.248 

e-x&e-x 0.5092 e-x&e-x 0.7100 e-x&e-x 0.2344 

e-x&x1/2 0.5344 e-x&x-1/2 0.7367 e-x&x-1/2 0.2611 

x1/2&ln(x) 0.6404 x1/2&ln(x) 0.7488 x1/2&ln(x) 0.2491 

x1/2&e-x 0.5103 x1/2&e-x 0.7352 x1/2&e-x 0.2355 

x1/2&x1/2 0.5355 x1/2&x-1/2 0.7619 x1/2&x-1/2 0.2622 

 

Supplementary Table 4. The coefficient of determination R2 in 2nd round of least square regressions with 

three fingerprint and corresponding three best prototypical functions selected from Supplementary Table 2. 

Descriptor   R2 Descriptor   R2 Descriptor R2 

ln(x)&ln(x)&ln(x) 0.8768 e-x&ln(x)&ln(x) 0.8706 x1/2&ln(x) & ln(x) 0.8716 

ln(x)&ln(x) & e-x 0.8632 e-x&ln(x)&e-x 0.8570 x1/2&ln(x) & e-x 0.858 

ln(x)&ln(x) & x-1/2 0.8899 e-x &ln(x)&x-1/2 0.8837 x1/2&ln(x) & x-1/2 0.8847 

ln(x)&e-x&ln(x) 0.7467 e-x &e-x&ln(x) 0.7404 x1/2&e-x& ln(x) 0.7415 

ln(x)&e-x&e-x 0.7331 e-x &e-x&e-x 0.7268 x1/2&e-x&e-x 0.7279 

ln(x)&e-x&x-1/2 0.7598 e-x &e-x&x-1/2 0.7535 x1/2&e-x & x-1/2 0.7546 

ln(x)&x1/2&ln(x) 0.7719 e-x &x1/2&ln(x) 0.7656 x1/2&x1/2& ln(x) 0.7667 

ln(x)&x1/2&e-x 0.7583 e-x &x1/2&e-x 0.752 x1/2&x1/2&e-x 0.7531 

ln(x)&x1/2&x-1/2 0.7850 e-x &x1/2&x-1/2 0.7787 x1/2&x1/2&x-1/2 0.7798 

 

Taking ln(x) function and three fingerprints as the example, some details of LSR are provided in the 

following. Here, we normalize the three parameters by taking the ratio of the filler and the matrix. So x1, x2, 

and x3 represent the normalized value of dielectric constant, electrical conductivity, Young’s modulus and 

breakdown strength, as shown below: 

1 filler matrix 2 filler matrix 3 filler matrixx x x Y Y     ， ，      

Similarly, y denotes the ratio of the breakdown strength of the nanocomposite and the pure polymer, as 

written by  

composite matrix
b by E E  

Therefore, we use  1ln x ,  2ln x , and  3ln x  as fingerprints to make least square regressions. The 

dependence and residual case order plot are shown in Supplementary Figures 2 and 3 
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Supplementary Figure 2 Dependences of y on  1ln x ,  2ln x , and  3ln x . 

 

 

Supplementary Figure 3 The residual case order plot. 

 

Next, the interactions among fingerprints with corresponding best prototypical function are considered based 

on the results of the 2nd round of regressions, and the results are shown in Supplementary Table 5. When 

considering all interactions, the regression shows a best R2=0.9099. The interaction between σ and Y has a 

close significant dependence with R2=0.9093 with a coefficient of 0.001 for ln(x) & x-1/2 term. Therefore, we 

choose the latter one for simplicity with the expression given by: 

composite
filler filler

matrix
matrix matrix

1/2 1/2

filler filler filler

matrix matrix matrix

=0.9058 0.01175ln 0.06767ln

             0.01640 0.001 ln

b

b

E

E

Y Y

Y Y

 

 





 

 

   
    

   
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Then, we use additional phase-field simulations and experimental measurements to verify the machine 

learning results. The material parameters used in the additional phase-field simulations are listed in 

Supplementary Table 6. The experimental fabrication process of Al2O3/P(VDF-HFP) nanocomposite in this 

work is shown below. 

 

Supplementary Table 5. The coefficient of determination R2 in the 3rd round least square regressions with 

consideration of interactions among descriptors. The total analytical function is 

-1/2
0 1 1 2 2 3 3 4 1 2

-1/2 -1/2 -1/2
5 1 3 6 2 3 7 1 2 3

ln( ) ln( ) ( ) ln( )ln( )

ln( )( ) ln( )( ) ln( ) ln( )( )

y x x x x x

x x x x x x x

    

  

     

 
 

 None ε & σ ε & Y σ & Y ε & σ &Y All 

R2 0.8899 0.8899 0.8900 0.9093 0.8900 0.9099 

β0 0.9058 0.9058 0.9058 0.9058 0.9058 0.9058 

β1 -0.01175 -0.01175 -0.01085 -0.01175 -0.01175 -0.01085 

β2 -0.06104 -0.06103 -0.06103 -0.06767 -0.06103 -0.06767 

β3 -0.0164 -0.0164 -0.0164 -0.0164 -0.0164 -0.0164 

β4 / 0.000003 / / / 0.00002 

β5 / / 0.00013 / / -0.00014 

β6 / / / 0.001 / -0.00013 

β7 / / / / 0.000016 0.001 

 

 

 

 

Supplementary Table 6. Material parameters of nanofillers6-10 used in additional phase-field simulations for 

verifying the machine learning results. 

 Dielectric 

constant 

Electrical 

conductivity 

Young’s 

modulus 

composite polymer
b bE E  

 / (S m-1) (GPa) Phase-field 

method 

Machine 

learning  

Experimental 

Results 

P(VDF-HFP) 13.5 2.12e-10 0.982 1 0.8 / 

Al2O3/P(VDF-HFP) 10 1.0e-12 300 1.428 1.338 1.15 

TiO2/P(VDF-HFP) 48 1e-10 230 1.01 1.029 / 
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SiO2/P(VDF-HFP) 4 1e-13 280 1.40 1.484 / 

BaTiO3/P(VDF-HFP) 300 1e-8 70 0.64 0.684 0.68611 

SrTiO3/P(VDF-HFP) 200 1e-9 70 0.86 0.83 / 

MgO/P(VDF-HFP) 9.7 5e-15 100 1.52 1.62 1.5812 

BCZT/P(VDF-HFP) 400 5e-7 70 0.62 0.583 0.66713 
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Supplementary Discussion  

The Local Distributions of Energy Densities 

More energy distributions corresponding to the breakdown states in Supplementary Figure 1 are displayed 

in Supplementary Figures 4, 5 and 6. The distributions of strain induced by the electric force are shown in 

Supplementary Figure 7. 

 

Supplementary Figure 4 Energy density distributions during breakdown at 295K (a), (b), (c) The local 

distributions of electric energy density, (d), (e), (f) Joule heat energy density, (g), (h), (i) strain energy density 

(g)-(i) at 295K, corresponding to the states in Figs. 1(a),1(b) and 1(c). 
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Supplementary Figure 5 Energy density distributions during breakdown at 323K (a), (b), (c) The local 

distributions of electric energy density, (d), (e), (f) Joule heat energy density, (g), (h), (i) strain energy density 

(g)-(i) at 323K, corresponding to the states in Figs. 1(d),1(e) and 1(f). 
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Supplementary Figure 6 Energy density distributions during breakdown at 363K (a), (b), (c) The local 

distributions of electric energy density, (d), (e), (f) Joule heat energy density, (g), (h), (i) strain energy density 

(g)-(i) at 363K, corresponding to the states in Figs. 1(g), 1(h) and 1(i). 
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Supplementary Figure 7 Electromechanical strain distributions during breakdown at different temperatures. 

The local distributions of strain at (a), (b), (c) 295K, at (d), (e), (f) 323K, at (g), (h), (i) 363K, corresponding 

to the states in Figs. 1(a)-1(i). 

  



18 
 

Experimental Results of Al2O3/P(VDF-HFP) Nanocomposite 

In this work, Al2O3/P(VDF-HFP) nanocomposites were experimentally fabricated using our previous 

fabrication method11,14. Chemicals were obtained from the following commercial sources and used without 

further purification: Al2O3 (China National Chemicals Corporation Ltd.), poly(vinylidene fluoride-co-

hexafluoropropylene) (P(VDF-HFP), Arkema, France, Kynar Flex 2801 with 10 wt %HFP). P(VDF-HFP) 

powder was thoroughly dissolved in a mixed solvent of N,N-dimethylformamide (DMF) and acetone. With 

the aid of ultrasonic treatment, Al2O3 nanoparticles were then dispersed into the P(VDF-HFP) solution with 

a volume fraction 5%. Then, electrospinning and hot pressing process were performed. Finally, a ~15μm 

thick Al2O3/P(VDF-HFP) nanocomposite was obtained. More details of fabrication are same to our previous 

works11,14. The SEM image was shown in Supplementary Figure 8(a). The measured breakdown strengths 

of the prepared P(VDF-HFP) pure polymer and Al2O3/P(VDF-HFP) nanocomposites were plotted in a 

Weibull distribution diagram, which indicates breakdown strengths of 561.2 V mm-1 and 647.6 kV mm-1 for 

the pure P(VDF-HFP) polymer and Al2O3/P(VDF-HFP) nanocomposites, respectively (Supplementary 

Figure 8(b)). 

 

 

Supplementary Figure 8 Experimental results of Al2O3/P(VDF-HFP). (a) SEM image of Al2O3/P(VDF-HFP) 

nanocomposite with 5vol % fillers. (b) Weibull distributions of breakdown strengths of pure P(VDF-HFP) 

and Al2O3/P(VDF-HFP) nanocomposites. 
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Back-propagation neural network (BPNN) approach 

The back-propagation neural network (BPNN) approach is performed based on gradient descent algorithm. 

The data calculated by phase-field simulations are used as inputs and are divided into training set, validation 

set and test set with the proportion of 75%, 15% and 15%, respectively. The transfer functions of 10 hidden 

layers and 1 output layer in this framework are sigmoidal function and linear function, respectively. 

Supplementary Figures 9 and 10 give the assessment results of the accuracy and reliability of this machine 

learning method. It can be seen that the training process meet the requirement of error after 82 epochs. 

Correlation coefficients shown in Supplementary Figure 10 indicate that the prediction results from BPNN 

machine learning are reliable, with almost all R>0.99. We present the comparison results of breakdown 

strengths calculated by the phase-field model and predicted by BPNN in Supplementary Figure 11, which 

show a higher coefficient of determination R2 = 0.983 than that of LSR in Fig. 6b. 

 

Supplementary Figure 9 The changes of mean squared error (MSE) of different sets. 
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Supplementary Figure 10 Regression plots of different sets of outputs and targets: (a) training set (b) 

validation set (c) testing set and (d) all data. Here, Target in x axis denotes the original data (phased-field 

simulation results) and Output in y axis represents the predicted results by BPNN. Correlation coefficient R 

explains the degree of correlation between the target and output.  

 

 

 

Supplementary Figure 11 Comparisons of breakdown strengths between the phase-field calculated results 

and the predicted results by back-propagation neural network approach. 
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