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Supplementary Figure 1

Supplementary Figure 1. Superior stability of GST-ATG16L1 231-607 compared to GST-ATG16L1 320-607 upon expression in JAR cells. 
(A) Cells were transfected with mammalian expression plasmids encoding the indicated constructs (5 x 6 cm plates per construct). 36 h 
post-transfection, cells were lysed and the resulting lysates incubated with agarose-GST beads for immunoprecipitation of the fusion 
proteins. After two washes, beads were resuspended in 2x RSB and boiled. Half of the final supernatant (equivalent to 3 x 6 cm plates 
per construct) was resolved in a 10% polyacrylamide gel and stained with Coomassie solution. Shown is a picture of the stained gel 
indicating the transfected constructs in each case. (B) Domain structure of human ATG16L1 with the coiled-coil domain (CCD) and the 
N-terminal WD40 domain (WDD). T300A represents the Crohn's Disease susceptibility polymorphism. (C) Domain structure of human 
A20. The N-terminal OTU domain is essential for deubiquitinating (DUB) activity. C103 represents the catalytic cysteine residue. The C-
terminal region of A20 contains seven zinc fingers (ZnF).



Supplementary Figure 2

Supplementary Figure 2. The WDD of ATG16L1 (residues 320-607) interacts with A20 in both HEK293T and intestinal HCT116 cells. 
(A-B) A20-1-263 specifically co-precipitates with GST-WDD but not with GST-DWDD in both HEK293T cells (A) and HCT116 cells (B). The 
displayed co-immunoprecipitation assays were done as in Fig. 2.



Supplementary Figure 3

Supplementary Figure 3. (A) The Crohn’s disease risk mutation T300A does not alter the ability of ATG16L1 to co-precipitate with A20. 
(B) Individual mutation of candidate WDD-binding motifs present in A20 92-263 region does not impair the interaction between A20 1-
263 and the WDD. (C) Simultaneous mutation of the 7 candidate WDD-binding motifs (7M) prevents binding between A20 92-263 and 
the WDD. (D) Mutations A125V and F127C in A20 do not influence the interaction between A20 1-263 and the WDD. All panels show 
co-immunoprecipitation assays carried out with the indicated constructs as in Fig. 2.



Supplementary Figure 4
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Atg16L1/actin 0,144 0,204 0,436 0,401 0,198 0,448 0,476 0,355

LC3-I/actin 0,150 0,254 0,479 0,246 0,148 0,256 0,359 0,336

LC3-II/actin 0,157 0,110 0,181 0,109 0,111 0,151 0,144 0,091

Atg16L1/actin 0,091 0,076 0,106 0,091 0,127 0,226 0,214 0,191

LC3-I/actin 0,538 0,574 0,592 0,779 0,593 0,730 0,745 0,639

LC3-II/actin 0,194 0,251 0,277 0,266 0,408 0,629 0,638 0,608

Supplementary Figure 4. A20 deficiency increases Atg16L1 expression and LC3-II expression levels. (A) Immortalized MEFs were 
stimulated with 1000 IU/ml of recombinant murine TNF for indicated time points. Data representative of 5 independent experiments. 
(B) Small intestinal organoids were stimulated with 10 ng/ml recombinant TNF for indicated time points. Data representative of 3 
independent experiments. 
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Supplementary Figure 5

Supplementary Figure 5. (A-B) Increased autophagic flux in A20-deficient cells, both basally (A) and upon TNF treatment (B). Wild-
type and A20-deficient MEFs were treated with bafilomycin (Baf., 75 nM) and/or TNF (30 ng/ml) for the indicated times. Cells were then 
lysed and the resulting total cell lysates were processed for Western-blotting with the shown antibodies. (C) Expression of the WDD 
dominantly inhibits LC3 lipidation induced by TNF treatment in A20-deficient MEFs. A20-/- cells were transduced with retroviral 
constructs expressing the indicated constructs of the WDD and then subjected to TNF treatment (30 ng/ml) for the indicated times. 
Cells were lysed and the corresponding total cell lysates subjected to Western-blotting with the indicated antibodies. 



Supplementary Figure 6

Supplementary Figure 6. Transfected GST-ATG16L1 is not ubiquitinated nor stabilized by the proteasome inhibitor lactacystin. HEK-
293T cells were transfected with GST-ATG16L1 and treated with lactacystin (10 uM) for the last 12 h of culture. Cells were lysed and 
GST-ATG16L1 immunoprecipitated with agarose-GSH beads. The resulting immunoprecipitates and total lysates were processed for 
Western-blotting using the indicated antibodies.



Supplementary Figure 7. (A) Lysosomal inhibition normalizes A20 expression levels in A20/Atg16L1-double deficient MEFs restored 
with HA-A20 and different ATG16L1 constructs. The indicated cellular strains were treated with bafilomycin (Baf.; 75 nM for 8 h) or 
E64d/pepstatin (10 ug/ml each for 12 h) and lysed for Western-blotting with the shown antibodies. (B) ATG16L1 represses NF-kB 
activation in A20-deficient MEFs. The indicated cell lines were transduced with a retroviral construct harboring an NF-kB-luciferase 
reporter cassette, treated with TNF (30 ng/ml, 4 h) and lysed to measure luciferase activity. Shown are average values and the 
corresponding standard deviations of fold-induction figures obtained from triplicate experimental points (Student’s t-test; (***) p < 
0,001).

Supplementary Figure 7



Supplementary Figure 8. (A) Expression of endogenous A20 is regulated by ATG16L1. The indicated wild-type or Atg16L1-deficient 
MEFs (control (-) or reconstituted with the shown versions of ATG16L1 (full-length: FL; N-terminal domain (1-299): Nt)) were subjected 
to TNF treatment (30 ng/ml) for 1 h, as shown. Cells were then lysed and processed for Western-blotting with the indicated antibodies. 
(B) ATG16L1 regulates NF-kB activation in response to TNF. The same MEFs shown in A were transduced with a retroviral construct 
harboring an NF-kB-luciferase reporter cassette, treated with TNF (30 ng/ml, 4 h) and lysed to measure luciferase activity. Shown are 
average values and the corresponding standard deviations of fold-induction figures obtained from triplicate experimental points 
(Student’s t-test; (***) p < 0,001).

Supplementary Figure 8
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Supplementary Figure 9

Supplementary Figure 9. (A-B) Hematoxylin-eosin (H&E), AB/PAS and cleaved caspase-3 staining on sections of the proximal small 
intestinal (A) and colon (B) of three 3-4 week old control (WT) and dKO mice, showing cell death and loss of secretory cells. Scale bar, 
100 µm; 50 µm zoom-in panel. 
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Supplementary Figure 10
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Supplementary Figure 10. (A) Hematoxylin-eosin (H&E) staining of distal small intestinal sections of 20 week old control (WT), A20∆IEC, 
Atg16l1∆IEC and dKO mice (A; scale bar, 100µm). (B) Histological scoring of small intestinal sections from WT, A20∆IEC, Atg16l1∆IEC and dKO 
mice of distal small intestine. Each symbol represents one mouse. *, p < 0,05. (C) Immunofluorescent staining of distal small intestinal 
sections using an antibody recognizing lysozyme in intracellular granules of Paneth cells (green) in WT, A20∆IEC, Atg16l1∆IEC and dKO 
mice. Cell nuclei were counterstained with DAPI (blue). Scale bar, 100 µm. (D) Immunostaining for Ki67, TUNEL (red) and cleaved 
caspase 3 on sections from the distal small intestine of WT, A20∆IEC, Atg16l1∆IEC and dKO mice. Images representative of n=5 mice per 
genotype. Cell nuclei were counterstained with DAPI. Scale bars, 100 µm; inserts 50 µm. (E) Quantification of cleaved caspase 3-positive 
cells in sections from the distal small intestine of WT, A20∆IEC, Atg16l1∆IEC and dKO mice. 
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Supplementary Figure 11

Supplementary Figure 11. (A) Immunostaining for Ki67, TUNEL (red) and cleaved caspase 3 on colon sections from WT, A20∆IEC, 
Atg16l1∆IEC and dKO mice. Images representative of n=3-5 mice per genotype. Cell nuclei were counterstained with DAPI. Scale bars, 
bright-field 100µm; fluorescence 200µm; inserts 50µm (B-C) Quantification of TUNEL (B) and cleaved caspase 3-(C) positive cells in 
colon sections from WT, A20∆IEC, Atg16l1∆IEC and dKO mice. 
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Supplementary Figure 12

Supplementary Figure 12. Summarizing model demonstrating A20-Atg16L1 cross-regulation to control intestinal homeostasis. 
Induction of Atg16l1 in A20-deficient cells promotes unconventional autophagy, enhanced p62 expression and reduced NF-kB 
activation that could keep under control the increased levels of NF-kB caused by absence of A20. Conversely, A20 upregulation in cells 
lacking Atg16l1 correlates with higher levels of p62, increased NF-kB activation and protection against cell death. Combined A20 and 
Atg16l1 deficiency promotes NF-kB-dependent inflammation and cell death inducing spontaneous intestinal pathology.



Fig.2

Supplementary Figure 13. Uncropped scans of all Western blots
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Fig.4 A top panel
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Fig.4 B
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Fig.4
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Suppl. Fig. 2



Suppl. Fig. 3



Sup. Fig.4 A
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Sup. Fig.4 B
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Suppl. Fig. 5



Suppl. Fig. 6
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Suppl. Fig. 8
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