Aranjuez et al. 2019 SUPPLEMENTAL MATERIALS

Figure S1. Targeted deletion mutants have similar *in vitro* growth curve kinetics as wild type *B. burgdorferi*. Triplicate cultures of WT, $\Delta bbk09$, $\Delta bbk13$, $\Delta bbk40$, and $\Delta bbk41$ were inoculated at 10⁵ spirochetes/ml. Culture densities were determined using Petroff Hausser counting chambers every 24 hrs over a 144 hr period. Symbols and error bars represent the mean ± SEM.

Figure S2. Spirochete loads in the skin inoculation site demonstrate a dramatic *bbk13*-independent reduction following 1 week post-inoculation. Spirochete load kinetics at the skin inoculation site were determined by qPCR at different time points post intradermal inoculation of groups of 6 C3H/HeN mice with10⁴ WT, $\Delta bbk13$, or $\Delta bbk13/bbk13$ + *B. burgdorferi*, as described in Figure 2. The data are presented as *flaB*/10⁶ *nid* copies. Late kinetics were determined by quantitating spirochete loads in the skin inoculation sites at week 1, 2, 3 and 4 post inoculation. Symbols and error bars represent the mean ± standard deviation. For samples sets in which the spirochete loads in some or all of the tissues from the groups of 6 mice were below the level of detection, the number of tissues out of 6 with detectable loads are indicated. Two-way ANOVA and Tukey's multiple comparisons was used to test for statistical significance compared to WT (***, p<0.0001).

Primer	Designation	
or probe	Designation	Sequence (5-3')
1255	flaBpaadA F	TGTCTGTCGCCTCTTGTG
1256	flaBpaadA R	TTATTTGCCGACTACCTTGGTG
1987	bbk09 left homology fwd	GGAGTATCCTTTACTTCTA
1988	bbk09 left homology rev	CGGAAGCCACAAGAGGCGACAGACAGTTAAAAATCAAAATAGTTG
1989	bbk09 right homology fwd	GGCGAGATCACCAAGGTAGTCGGCAAATAATAGGCATTTATGAGATTTTT
1990	bbk09 right homology rev	TTGACAACATTAATTCGTAG
1971	bbk13 left homology fwd	CCACAGGCCTAAGTTC
1972	bbk13 left homology rev	GGCGAGATCACCAAGGTAGTCGGCAAATAATATTTGGCGAACTATTTT
1973	bbk13 right homology fwd	CGGAAGCCACAAGAGGCGACAGACAAGATTGACCTCCTAAAAGC
1974	bbk13 right homology rev	AAAAGTTCATTCTTTCTCC
1991	bbk40 left homology fwd	GTGTGATATAACAGAAGCAT
1992	bbk40 left homology rev	CGGAAGCCACAAGAGGCGACAGACATAACCCTCCTTTACTGC
1993	bbk40 right homology fwd	GGCGAGATCACCAAGGTAGTCGGCAAATAATGTAAGTGTACTTATCCAT
1994	bbk40 right homology rev	CACACTAAACCAATCTCTTA
1983	bbk41 left homology fwd	GATGAGTTTAGAAGTGGAAT
1984	bbk41 left homology rev	GGCGAGATCACCAAGGTAGTCGGCAAATAACTAGCACAACAATATCTTC
1985	bbk41 right homology fwd	CGGAAGCCACAAGAGGCGACAGACAATTGTGCTTTAATCTTATCAA
1986	bbk41 right homology rev	AGCAATTATGCTCCTTTATT
2156	K13 ORF fwd	GTTGTTGTCGACTCAATCCAAATAATAAGAAACGG
2157	K13 promoter rev	GTTGTTGTCGACGAAATGTTAAATAATTATGTGC
2335	k13 out Sacl pET28A fwd	GTTGTTGAGCTCTCAATCCAAATAATAAGAAACGG
2336	k13 out BamHI pET28A rev	GTTGTTGGATCCGGAATAAAAAACATTGGCACC
2416	K13 qPCR fwd 2	TCGCCCAAGCTTCTATCAAT
2417	K13 qPCR rev 2	TGAGAAAATGGAAGCAGCAG
1123	recA F	AATAAGGATGAGGATTGGTG
1124	recA R	GAACCTCAAGTCTAAGAGATG
1137	flaB-taqman-FWD	TCTTTTCTCTGGTGAGGGAGCT
1138	flaB-taqman-REV	TCCTTCCTGTTGAACACCCTCT
1140	Nid-taqman-FWD	CACCCAGCTTCGGCTCAGTA
1141	Nid-taqman-REV	TCCCCAGGCCATCGGT
1139	flaB-taqman-Probe	6-FAM-AAACTGCTCAGGCTGCACCGGTTC-TAMRA
1142	Nid-taqman-Probe	6-FAMCGCCTTTCCTGGCTGACTTGGACA-TAMRA

Table S1. Primers and probes used this in study.