BRD9 defines a novel SWI/SNF sub-complex and constitutes a specific vulnerability in

malignant rhabdoid tumors

Wang et al.

Supplementary Information

Supplementary Figure 1

A. BRD deletion significantly impairs MRT cell line TTC642 proliferation (*n*=3, *error bars: SD*)

B. BRD9 deletion has no effect on PANC-1 and EW8 cell proliferation (*n*=3);

C. Western blot showing rapid negative selection of BRD9 wildtype (unedited) G401 cells;

D. Western blot showing long-lasting BRD9 knock-out (edited) PANC-1 cells;

E. Western blot showing all singe cell clones recovered from G401 cells were BRD9 wild-type (n=16);

F. Western blot showing all singe cell clones recovered from PANC-1 cells were BRD9 knock-out (*n*=8).

Supplementary Figure 2

- A. Glycerol gradient of HCT116 (*SMARCB1*-WT) colon cancer cell line showing BRD9, BAF and PBAF complex subunits.
- B. Immuno-deletion of SWI/SNF subunits using BRD9 in G401 cells without or with SMARCB1 addback

Range 1: 1 to 546 Graphics Vext Match A Previous Match							
Score		Expect	Method	Identities	Positives	Gaps	
269 bit	ts(688)	5e-86	Compositional matrix adjust.	208/590(35%)	328/590(55%)	66/590	(11%)
BRD7	1	MGKKHKE MGKKHKE	KHKSD-KHLYEEYVEKPLKLV KHK++ + YE+Y +EKPLKLV	LKVGGNEVTELSTG LKVGG+EVTELS	SSGHDSSLFEDKN SGHDSS ++D++	IDH 55 DH	
BRD9	1	MGKKHKI	KHKAEWRSSYEDYADKPLEKPLKLV	LKVGGSEVTELS	GSGHDSSYYDDRS	SDH 58	
BRD7	56	DKHKDRN	KRKKRKKGEKQIPGEEKGRKRR	RVKEDKKKRDRDRV	ENEAEKDLQCHAF	VR 112	
BRD9	59	ERERHKE	EKKKKKKKKKSEKEKHLDDEERRKRK	EEKKRKREREHCDT	EGEAD-DFDPGKK	VE 117	
BRD7	113	LDLPPEN	KPLTSSLAKQEEVEQTPLQEALNQI	MRQLQRKDPSAFFS	FPVTDFIAPGYSM	III 172	
BRD9	118	VEPPPDF	RPVRACRTQPAENESTPIQQLLEHF	LRQLQRKDPHGFFA	FPVID IAPGIS	II 177	Due une die une in
BRD7	173	KHPMDFS	STMKEKIKNNDYQSIEELKDNFKLM	CTNAMIYNKPETIY	YKAAKKLLHSGMK	IL 232	Bromodomain
BRD9	178	KHPMDF	TMKTKI NTITSTE K TIKLM	CDNAMTYNRPDTVY	YKLAKKILHAGFN	CMM 237	
BRD7	233	SQERIQS	SLKQSIDFMADLQKTRKQKDGTDTS	QSGEDGGCWQRERE	DSGDAEAHA <mark>FKS</mark> F	292	
BRD9	238	SKQAP	ALLGNEDTAVEEPVPEVVPVQVETA	+ KKS		SR 274	
BRD7	293	ENKKKD	KDMLEDKFKSNNLEREQEQ	LDRIVKESGGKLTR	RLVNSQCEFERR	(PD 346	
BRD9	275	EVISC	MFEPEGNACSLTDSTAEEHVLAL	VEHAADEARDRINR	FLPGGKMGYLKRN	IGD 331	
BRD7	347	GTTTLGI	LHPVDPIVGEPGYCPVRLGMTTGR	LQSGVNTLQGFKED	KRNKVTPVLYLNY	GP 406	DUF3512
BRD9	332	GSLLYSV	VVNTAEPDADEEETHPVDLSSLSSK	LLPGFTTL-GFKDE	RRNKVTFLSS	A- 386	
BRD7	407	YSSYAPE	HYDSTFANISKDDSDLIYSTYGEDS	DLPSDFSIHEFLAT	CQDYPYVMADSLI	DV 466	
BRD9	387	TTALSM	2NNSVFGDLKSDEMELLYSAYGDET	GVQCALSLQEFVKD	AGSYSKKVVDDLI	DQ 446	
BRD7	467	LTKGGHS	SRTLQEMEMSLPEDEGH	TRTLDTAKEMEITE	VEPPGRLDSSTQL	RL 518	
BRD9	447	TTGGDHS	SRTLFQLKQRRNVPMKPPDEAKVGD	ALGDSSGSVLDFMS	VKSYPD	, vs 499	
BRD7	519	IALKAVI	INFGVPVEVFDSEEAEIFQKKLDET	TRLLRELQEAQNER	LSTRP 568		
BRD9	500	VDISMLS	++ G + D +++ + LDET SSLGKVKKELDPDDSHLNLDET	+LL++L EAQ ER AKLLQDLHEAQAER	GGSRP 546		

Supplementary Figure 3. Amino acid sequence comparison between BRD9 and BRD7. While the bromomodomains share high similarity, the DUF3512 domains are highly distinct.

Supplementary Figure 4. C-terminal HA tagging does not affect the formation of BRD9-SWI/SNF subcomplex

HA-tag IP in parental G401 cells and G401-BRD9-HA (C-terminus) cells and Western blot of indicated subunits, showing the formation of BRD9-SWI/SNF subcomplex.

The cumulative distribution of BRD9 and SMARCA4 peak width in different peak categories in G401 cell.

Α H3K4me3 without BRD9 H3K4me3 with BRD9 얻 9 H3K4me3–BRD9 KO H3K4me3-BRD9 KO ω ω 9 9 4 2 C 10 6 10 0 8 0 H3K4me3-Control H3K4me3-Control В H3K27Ac H3K27Ac-BRD9 KO H3K4me3 H3K4me3-BRD9 KO BRD9 RAP1GAP USP48 H3K27Ac ------H3K27Ac-BRD9 KO H3K4me3 H3K4me3-BRD9 KO BRD9 GPR4 EML2

Supplementary Figure 6.

A. Comparison of the average H3K4me3 ChIP enrichment over H3K4me3 with BRD9 and without BRD9 binding sites between H3K4me3-Control and H3K4me3-BRD9 KO cells. Loss of BRD9 leads to bidirectional changes of H3K4me3. All experiments are performed in G401 cell.
B. Representative screenshots of H3K27ac, H3K4me3, and BRD9 in G401 cell without or with BRD9 deletion (KO) showing local changes of H3K4me3 upon BRD9 deletion: increased H3K4me3 signal (upper, lower left) and decreased K27Ac signal (lower right).

Supplementary Figure 7.

A-B. Scaled TPM of BRD9 (A) activated genes (expression decreased after KD BRD9) and **(B)** repressed genes (expression increased after KD BRD9) across different time points (day1, 2, 3, and 5) in Lacz control and BRD9 KO condition in G401 cell. Each time point has two biological replicates.

C. The distribution of distances between BRD9 up-regulated (orange), down-regulated (blue), static (used as control genes, grey) genes and BRD9 binding sites. P-values were calculated by Kolmogorov–Smirnov test.

D-E. The distribution of BRD9 **(D)** activated and **(E)** repressed genes enriched GO terms in different time points. Day3day5 presents genes differentially expressed in both day3 and day5.

Treatment of BRD9 bromodomain specific inhibitors BI-7273, BI-9564 on a panel of RT cell lines showing that RTs are insensitive to BRD9 bromodomain inhibition.

Raw Western blot scans related with Figure 2E

Raw Western blot scans related with Figure 2F and Supplementary Figure 2.

Raw Western blot scans related with Figure 3B,C and E

Raw Western blot scans related with Figure 3D