Supplementary Information

Spatial and temporal localization of immune transcripts defines hallmarks and diversity in the tuberculosis granuloma

Carow et al.

Histological features of analyzed tissue sections

H&E stained sections from lung lobes from C57Bl6 mice at 3 (A), 8 (B), 12 (C) wpi. In D, a section from C3HeB/FeJ mice 10 weeks after infection are shown. Areas that are marked were found and analyzed thoughout the paper for all three consecutive sections. The areas occupied by lesions are marked and numbered in black. Unaffected

areas for all lungs are marked in green. In B and C, the lymphoid rich areas are marked in red and epitheloid areas shaded in yellow.

In D encapsulated granulomas and non-encapsulated lesions can be observed in three regions of a C3HeB/FeJ lung. U: unaffected area; GC: granuloma center; GO: granuloma outline; NOG: non-organized granuloma and SG: small necrotic granuloma. Scale bar: 1000 µm.

Specificity and reproducibility of the in situ sequencing

- A. The density of all barcoded sequences in relation to unexpected and homomers (unspecific) reads in each area at different signal intensity thresholds are depicted. The unexpected barcodes showed lower scores than true expected barcodes, and could thus be excluded from further analysis by setting a cut-off at a fixed threshold (0.45).
- B. The mean ± SEM of the total number of amplified sequences per section in the different sections analysed are shown.
- C. Raw data showing the location of all decoded sequences in paraformaldehyde-fixed lung sections from *M. tuberculosis* infected mice obtained at the indicated time points after infection. Each dot represents one decoded sequence. The sequences are aligned against a DAPI staining. Note the differential localization of sequences. Scale bar: 1000 μm.
- D. Raw data showing the location of *Cc10* and *Inos* decoded transcripts called from two consecutive lung sections from a *M. tuberculosis*-infected mouse obtained at the indicated time points after infection. Each dot represents one decoded sequence. The sequences are aligned against a DAPI staining. Note the differential localization of both sequences and the similarity of consecutive images. Scale bar: 1000 μm
- E. The relative fold increase in the density of individual sequences in granuloma vs unaffected lung areas from consecutive lung sections at 3 wpi are shown. A dotted line indicates the mean relative density of *Actb* mRNA. We have excluded from this graph transcripts showing either no signals in the unaffected areas or those in which more than 2 different areas showed no signals. Source data are provided as a Source Data file.

Supplementary Figure 3

Spatial distribution of myeloid transcripts in lungs from M. tuberculosis-infected mice

- A. The raw signals for *Tnf, Inos, Il12* and *Cd68* (A) mRNAs in lungs from *M. tuberculosis* infected mice. Note in A that while *Inos* and *Cd68* sequences overlap, this is not the case for *Cd68* and *Il12* transcripts which locate in different areas of the granuloma, better shown in the zoomed area. Scale: 1000 μm
- B. Double immunolabelling for CD3 and CD68 in DAPI stained C57BL/6 lung section
 12 wpi with *M. tuberculosis*. A representative micrograph from 3 independent samples is shown. Scale: 100 μm

Spatial distribution of lymphoid transcripts in lungs from M. tuberculosis-infected mice

- A. Pseudocolor log2 density plots of *Cd3e*, *Cd8b* and *Ifng* mRNA for one representative lung at 8 wpi. Scale: 1000 μm
- B. Density plot of *Cxcr3* and *Ccr4* sequences in lungs at 8 and 12 wpi. Scale bar: 1000 μm.

Supplementary Figure 5

Identification of sequences expressed at different distances from M. tuberculosis in the

lung

- A. The transcript counts for each sequence located at $<10 \ \mu m$ from *M. tuberculosis*.
- B. The transcript counts for each sequence in the whole area of the section in (A) are depicted.
- C. The frequency of selected transcripts located at <10, 30 or 100 μ m from *M*. *tuberculosis* bacteria in relation to the total sequence count for each distance was determined. The fold increase of such frequencies was compared to the

frequencies of each sequence in the whole section. The mean fold increase at each distance vs the whole section of 7 selected transcripts \pm SEM of in 3 consecutive sections is depicted. Source data are provided as a Source Data file.

In situ sequencing of the encapsulated granulomas

A-B. Micrograph showing the rim area from a necrotic encapsulated granuloma, showing the presence of a capsule, surrounding a layer of epitheloid and foamy cells and delineating compressed lung parenchyma and epitheloid and lymphoid cells (A). Area showing a perivascular lesion with numerous lymphocytes and epitheloid cells in the same H& E stained section from a C3HeB/FeJ lung (B). Scale bar: 500 μm.

- C-D. Auramine-Rhodamine staining of C3HeB/FeJ encapsulated (C) and nonencapsulated lesions (D). Note bacteria localizes in the rim of the encapsulated lesion. Scale bar: 500 µm.
- E-F. The networks of co-expressed transcripts in an encapsulated granuloma (E) and non-encapsulated cellular granuloma (F) are shown.

Supplementary tables

Supplementary Table 1

Counts and statistical analysis of paired sequence combinations

Sequences	R1L count- section 1	p value R1L section 1	R1L count section 2	p value R1L section 2
Ccr6-Cd19	105	0	302	0
Ccr6-Cd3e	61	0	126	0
Ccr6-Cd68	45	8,63E-05	99	2,36E-07
Ccr6-Cxcr3	16	5,46E-05	30	1,11E-16
Ccr6-IL10	9	1,89E-09	43	0
Ccr6-Il12	14	8,88E-16	22	0
Ccr6-RorgT	20	3,65E-08	56	5,77E-15
Cd19-Cd3e	130	0	323	0
Cd19-Cd68	81	3,26E-05	229	0
Cd19-Cd8b1	25	2,35E-12	37	0
Cd19-Cxcr3	31	1,34E-07	70	0
Cd19-Il12	18	5,74E-11	67	0
Cd19-RorgT	43	0	106	0
Cd19-Socs3	12	9,06E-08	21	0
Cd19-Tnf	27	3,84E-05	140	0
Cd3e-Cd68	100	4,33E-05	221	1,22E-15
Cd3e-Il12	25	5,55E-16	32	0
Cd68-iNos2	146	2,33E-09	286	0
Ifng-iNos2	16	3,07E-07	22	0

Example of the counts and p values of statistically significant sequence pairs (χ^2 test) at 10 µm in 1 lymphoid region (R1L see Supplementary Figure 1) of 2 consecutive lung tissue sections at 12 wpi are here shown.

Supplementary Table 2

cDNA primers

name	sequence
mSocs3_prim_2	CTGGAACTGCCCGGCCGGTC
mSocs3_prim_3_AP2	CTCTCTTGGGGGGTACTCCCG
mSocs3_prim_4_AP3	TGGGCTCCAAGATGGCTCAT
mMpo_prim_2	GTGTTGGTTAAACTGAGTG
mMpo_prim_3	AGTTGAGGCCAGTGAAGAAG
mMpo_prim_4	GTGCCAACTCCAGGTTCTTC
mIl10_prim_2	AGTGCTGAGCCAGGCATGAT
mIl10_prim_3	TCAAATTCATTCATGGCCTT
mIl10_prim_4	AAGACCCATGAGTTTCTTCA
mIfng_prim_2	AGGAGGAGAAGCCCAGAACT
mIfng_prim_3	TCCGGCAACAGCTGGTGGAC
mIfng_prim_4	CTCTTGAGACACTGCTTTCT
mFoxp3_prim_2	CATATACCAGGCACAGTGCC
mFoxp3_prim_3	GACCAGGCCGGGAGCACACT
mFoxp3_prim_4	GGCATTGCTTGAGGCTGCGT
mCxcr3_prim_2	CAGGGCGGGGGGGGGGGGGGAGTCAGAGAA
mCxcr3_prim_3	GGGGTCCCTGCGGTAGATCT
mCxcr3_prim_4	TGGTCAGAGCGGCCCAGGCG
mCd80_prim_2	AAATGGAACAGAGTGTCTTT
mCd80_prim_3	ATATAAAGTCCGGTTCTTAT
mCd80_prim_4	GACGACGACTGTTATTACTG
mCd19_prim_2	CAGGAAGGGTGTTGACTGGT
mCd19_prim_3	CCCGAGGGAGGCGTCACTTT
mCd19_prim_4	CCCTTGTGGGACACCATGGA
mCcr6_prim_2	AGAACTGTGAAGTTGTTCAC
mCcr6_prim_3	ACTGCCACACAGATGACCTT
mCcr6_prim_4	AGATGTAGCTTTCCGAGTAA
mCcr4_prim_2	CTCCGGGTACCAGCAGGAGA
mCcr4_prim_3	GAAGAGTTGGGTGATGTACT
mCcr4_prim_4	ACTCCTGCCTCTGCCTCCAC
mCd11b_prim_2	GCCAGGTCCATCAAGCCATC

mCd11b_prim_3	CCAGCATCCTTGTTTTTAA
mCd11b_prim_4	TGTTTCACATTTCTGCATCA
mCd3e_prim_2	CAGGATGCCCCAGAAAGTGT
mCd3e_prim_3	AGTCTGGGTTGGGAACAGGT
mCd3e_prim_4	AGGAGGTATGGGGTGTGTAA
mF4/80_prim_2	AAGAGGAGCAGCCAAAAGCC
mF4/80_prim_3	GAGCCTGGTACATTGGTGCA
mF4/80_prim_4	ACAGCAGGAAGGTGGCTATG
mCd4_prim_2	CTCGAGACTTTGCAAACAGG
mCd4_prim_3	GTATCTTGAGGGTGAGTGGG
mCd4_prim_4	TCTTGCAAATTCAAAAGAGA
mCd8b1_prim_2	CATCTTGGCGCTTTTGGGGGA
mCd8b1_prim_3	CTGGGTCTCTGGGTGGGGGA
mCd8b1_prim_4	TCCAGGGTCCCGGCTAGCTC
mCd8a_prim_2	TGGGGGAGGCGTGTAGGGTC
mCd8a_prim_3	CTAGCTCTGGTGTTACAGTC
mCd8a_prim_4	CAGAAAGAGCCTGGGAATCT
mCd11c_prim_2	CCAGGTACAGCTCATGACTG
mCd11c_prim_3	CTGATTCTCAATATCCTTCA
mCd11c_prim_4	TAGTTGGGTCTTGGGGGCTTT
mCd127_prim_2	TATAGCGAAAGCTCTACCCA
mCd127_prim_3	TGAATCTGGCAGTCCAGGAA
mCd127_prim_4	GACAGGTTCATGGCAAGAGA
mIl17a_prim_2	CAGATGAAGCTCTCCCTGGA
mIl17a_prim_3	TGGGGGTTTCTTAGGGGTCA
mIl17a_prim_4	AACATAAAACTAAGTTTGGT
miNos2_prim_2	ATCTCTCCACTGCCCCAGTT
miNos2_prim_3	TCCAGGATGTTGTAGCGCTG
miNos2_prim_4	GTCTAAAGGCTCCGGGGCTCT
mTcrg_prim_2	GCAGGAAGTGCTCTGCAGGC
mTcrg_prim_3	ATGACATCGGGAAAGAACTT
mTcrg_prim_4	TTATGGCAGTGAGGATGAAA
mRorgT_prim_2	AGCTCCCGAGATGTCCGGTG
mRorgT_prim_3	ACTTCCTCTGGTAGCTGGTC
mRorgT_prim_4	TGTCAGTCTGTTTTTTATTT

mTcrb_prim_2	GGGTGCCTGCCGCAAAGTAG
mTcrb_prim_3	TCCAGGGTCCCGGCTAGCTC
mTcrb_prim_4	CTGGGTCTCTGGGTGGGGGA
mIl6_prim_3	TCGTTCTTGGTGGGCTCCAG
mIl6_prim_4	TTGTTCTTCATGTACTCCAG
mIl6_prim_5	ACTTATACATTCCAAGAAAC
mIl12_prim_3	GCAAGGGTGGCCAAAAAGAG
mIl12_prim_4	TTGTCTAGAATGATCTGCTG
mIl12_prim_5	GAGAGAAGCGATGGAGGGGA
mCd68_prim_3	TGCCTTCTCTTGGAAGAGGA
mCd68_prim_4	AGGATTCGGATTTGAATTTG
mCd68_prim_5	AGTGGACTGGGGCAGATGCT
mTnf_prim_4	TTTCTGTTCTCCCTCCTGGC
mTnf_prim_5	AAGAGAACCTGGGAGTAGAC
mTnf_prim_6	CATCTTGTGTTTCTGAGTAG
mSCGB1A1_prim	TATCTCTGAAATCCAGTGAG
mSftpc_prim	CAGGTCTCTCCCGGAAGAAT
Cd69_prim1	GTGCTTTTGTTTTCTTCCTT
Cd69_prim2	ATCCTTGATGTGATTAGCAG
Cd69_prim3	ATGTCTGATTAGCTTCATTT
Cd40lg_prim1	TCAGATTGTAAGTTCTTAGG
Cd40lg_prim2	CAGTCACGTTGACAAACACA
Cd40lg_prim3	CTTGAGTGTAGACATAATAG
mCD86_ap1_prim	CCAGATCTTAAGAGTCTGCA
mCD86_ap2_prim	CAAATATACCACTCCCATCC
mCD86_ap3_prim	CTGAAGTTGGCGATCACTGA
mElane_ap1_prim	CATTATGGCTTCGGATAATG
mElane_ap2_prim	TGGGCCACCTGCACGTTGGC
mElane_ap3_prim	GCCAGAGTCCGGCTGGATAG
mIl12b_ap1_prim	GAGTGTGGCCATTGTGTCCT
mIl12b_ap2_prim	GGTTGTCACAAAAGCTAATG
mIl12b_ap3_prim	GCACGTGAACCGTCCGGAGT
mTbx21_ap1_prim	AGTGATGCAAAACAGAAGAA
mTbx21_ap2_prim	CCCTGTTCCTCTGAGGATCC
mTbx21_ap3_prim	GTCGGGTCCTGTGCGCCCGG

mCd4_5_prim	CTTGAGGTCTTTGGTGGACT
mCd4_6_prim	AGAAGGAGATCCAGGGCTGG
mCd4_7_prim	GAACCCTTAGGTTGGACATG

Supplementary Table 3

Padlock probes (all padlock probes are 5' phosphorylated)

name	sequence
mSocs3_GGAG	TCCAACGTGGCCACCCTCTTCCTCTATGATTACTGACTGCGTCT ATTTAGTGGAGCCGGAGCTATCTTCTTTTACTGAGCCGACCTCTCCC
mMpo_GAGG	CGATGACCCCTGCCTCCTCTTCCTCTATGATTACTGACTG
mIl10_CCGG	GCTAACCGACTCCTTAATGCTTCCTCTATGATTACTGACTG
mIfng_CACA	GCTGTTTCTGGCTGTTACTGTTCCTCTATGATTACTGACTG
mFoxp3_CAAC	CCTCCCACCACCTTCTGCTTTCCTCTATGATTACTGACTG
mCxcr3_AGAA	GCCCTCTACAGCCTCCTCTTTTCCTCTATGATTACTGACTG
mCd80_ACCA	CCGGGGCACATACAGCTGTTTCCTCTATGATTACTGACTG
mCd19_ACAC	GGACTCCTCACCTGTCTCTTTTCCTCTATGATTACTGACTG
mCcr6_AAGA	GTTACTCATGCCACCAACACTTCCTCTATGATTACTGACTG
mCcr4_AACC	TTTGCTGTTCGTCCTGTCCCTTCCTCTATGATTACTGACTG
mCd11b_AATT	AAACCCTAGCCCAAGATTCCTCTATGATTACTGACTGCGTCTAT TTAGTGGAGCCAATTCTATCTTCTTTACCTTCAATGACTTCAAGAG
mCd3e_ACGT	CACCCTGCTACTCCTTTCCTCTATGATTACTGACTGCGTCTATTT AGTGGAGCCACGTCTATCTTCTTTATCCAGCCCTCCGAG
mF4/80_ACTG	TGTCTGCTCAACCGTTCCTCTATGATTACTGACTGCGTCTATTTA GTGGAGCCACTGCTATCTTCTTTCTTTCATCTTCCTCATTCAC
mCd4_AGTC	TGCACCGTGACCCTGTCCTCTATGATTACTGACTGCGTCTATTTA GTGGAGCCAGTCCTATCTTCTTCAGCGACTTCTGGAAC
mCd8b1_ATAT	GTTCAAACCAACCATACGTCCTCTATGATTACTGACTGCGTCTA TTTAGTGGAGCCATATCTATCTTCTTTCCTTCGTCCCTGCTG
mCd8a_ATCG	AAGTGAACTCTACTACTACCTCCTCTATGATTACTGACTG
mCd11c_ATGC	CTGCCACCAACCCTTTCCTCTATGATTACTGACTGCGTCTATTTA GTGGAGCCATGCCTATCTTCTTTGCCTGTCCCTTGCTG
mCd127_ATTA	CTTCTCTATTCTTTCTCTCTCTCTCTATGATTACTGACTG
mIl17a_CATG	AGGCAGCCTAAACAGATCCTCTATGATTACTGACTGCGTCTATT

		TAGTGGAGCCCATGCTATCTTCTTTCCTCGATTGTCCGCC
	miNos2_GACT	AAGGCCACATCGGATTTCCTCTATGATTACTGACTGCGTCTATT TAGTGGAGCCGACTCTATCTTCTTTCATGACACTCTTCACCAC
	mTcrg_GCCG	GACCTACCTTTGTCTCCTTCCTCTATGATTACTGACTGCGTCTAT TTAGTGGAGCCGCCGCTATCTTCTTTAAATCTCCATAAGGCTGG
	mRorgT_GCGC	TCCCTTTCTGCACTCTATTCCTCTATGATTACTGACTGCGTCTAT TTAGTGGAGCCGCGCCTATCTTCTTTCCTTCACCCAGCCTT
	mTcrb_GTAC	GTCTTGTCTGCCACCATCCTCTATGATTACTGACTGCGTCTATTT AGTGGAGCCGTACCTATCTTCTTTCACATCCTATCAACAAGGG
	mActb_GCAT	TTACACCCTTTCTTTGACAATCCGAGTAGTCTTTGTGCGTCTATT TAGTGGAGCCGCATCTATCTTCTTTGACTGTTACTGAGCTGCGTT
	mIl6_CGAT_1	CTCTACGAAGAACTGACAATTCCTCTATGATTACTGACTG
	mIl6_CGAT_2	GCTCTCCTAACAGATAAGCTTCCTCTATGATTACTGACTG
	mIl12_CAGT_1	TGACACCTTTGCTGATTTCTTCCTCTATGATTACTGACTG
	mIl12_CAGT_2	TCTCCCTCAAGTTCTTTGTTTCCTCTATGATTACTGACTG
1	mCd68_AGCT_	CTGTCTCTCTCATTTCCTTATCCTCTATGATTACTGACTG
2	mCd68_AGCT_	TCCTTCACGATGACACCTTCCTCTATGATTACTGACTGCGTCTAT TTAGTGGAGCCAGCTCTATCTTTTGCCGTTACTCTCCTGCCA
	mTnf_CCAA_3	ATGGCCCAGACCCTCACACTTCCTCTATGATTACTGACTG
2_AP1	mSocs3_GGAG_	GACCGGCCGGGCAGTTCCAGTCTACGATTTTACCAGTGGCTTTT GCGTCTATTTAGTGGAGCCGGAGCTATCTTCTTTGTGACTAAACATTAC AAGAA
3_AP2	mSocs3_GGAG_	CGGGAGTACCCCCAAGAGAGCTGATTCCTTTGACTCACATTTTT GCGTCTATTTAGTGGAGCCGGAGCTATCTTCTTTCCACCTGCCCAGGCA CTCCC
4_AP3	mSocs3_GGAG_	ATGAGCCATCTTGGAGCCCATCTACGAGTTTGCAGTCACGTTTT GCGTCTATTTAGTGGAGCCGGAGCTATCTTCTTTGAAGGGAGGCAGATC AACAG
	mMpo_GAGG_2	CACTCAGTTTAACCAACACTCTACGATTTTACCAGTGGCTTTTG CGTCTATTTAGTGGAGCCGAGGCTATCTTCTTTGTTCTTTCAAAGGATTT GGG
_AP2	mMpo_GAGG_3	CTTCTTCACTGGCCTCAACTCTGATTCCTTTGACTCACATTTTTG CGTCTATTTAGTGGAGCCGAGGCTATCTTCTTTGAGCCAGCTACCCGGTT CTC
_AP3	mMpo_GAGG_4	GAAGAACCTGGAGTTGGCACTCTACGAGTTTGCAGTCACGTTTT GCGTCTATTTAGTGGAGCCGAGGCTATCTTCTTTGGTGAGCTCGGCACG GTGCT
_AP1	mIl10_CCGG_2	ATCATGCCTGGCTCAGCACTTCTACGATTTTACCAGTGGCTTTT GCGTCTATTTAGTGGAGCCCCGGCTATCTTCTTTCTTGCAGAAAAGAGA GCTCC
_AP2	mIl10_CCGG_3	AAGGCCATGAATGAATTTGACTGATTCCTTTGACTCACATTTTT GCGTCTATTTAGTGGAGCCCCGGCTATCTTCTTTTCCAAGACCAAGGTGT CTAC
AP3	mIl10_CCGG_4	TGAAGAAACTCATGGGTCTTTCTACGAGTTTGCAGTCACGTTTT GCGTCTATTTAGTGGAGCCCCGGCTATCTTCTTTCAGAGCTCCTAAGAG

		AGTTG
_AP1	mIfng_CACA_2	AGTTCTGGGCTTCTCCTCCTTCTACGATTTTACCAGTGGCTTTTG CGTCTATTTAGTGGAGCCCACACTATCTTCTTTACCCTCTGACTTGAGAC AGA
_AP2	mIfng_CACA_3	GTCCACCAGCTGTTGCCGGACTGATTCCTTTGACTCACATTTTG CGTCTATTTAGTGGAGCCCACACTATCTTCTTTTCAATGAGCTCATCCGA GTG
_AP3	mIfng_CACA_4	AGAAAGCAGTGTCTCAAGAGTCTACGAGTTTGCAGTCACGTTTT GCGTCTATTTAGTGGAGCCCACACTATCTTCTTTAGTAACAGGCTGTCCC TGAA
_2_AP1	mFoxp3_CAAC	GGCACTGTGCCTGGTATATGTCTACGATTTTACCAGTGGCTTTT GCGTCTATTTAGTGGAGCCCAACCTATCTTCTTTCTCTGCAGGTTTAGTG CTGT
_3_AP2	mFoxp3_CAAC	AGTGTGCTCCCGGCCTGGTCCTGATTCCTTTGACTCACATTTTTG CGTCTATTTAGTGGAGCCCAACCTATCTTCTTTTAGCCACCAGTACTCAG GGC
_4_AP3	mFoxp3_CAAC	ACGCAGCCTCAAGCAATGCCTCTACGAGTTTGCAGTCACGTTTT GCGTCTATTTAGTGGAGCCCAACCTATCTTCTTTACACAGGCATAACTG ATCAT
_2_AP1	mCxcr3_AGAA	TTCTCTGACTCCCCGCCCTGTCTACGATTTTACCAGTGGCTTTTG CGTCTATTTAGTGGAGCCAGAACTATCTTCTTTATGGGGAAAACGAGAG CGAC
_3_AP2	mCxcr3_AGAA	AGATCTACCGCAGGGACCCCCTGATTCCTTTGACTCACATTTTT GCGTCTATTTAGTGGAGCCAGAACTATCTTCTTTGAGCATAGTGCACGC CACCC
_4_AP3	mCxcr3_AGAA	CGCCTGGGCCGCTCTGACCATCTACGAGTTTGCAGTCACGTTTT GCGTCTATTTAGTGGAGCCAGAACTATCTTCTTTAAATGTGGATGTTGTT CACG
2_AP1	mCd80_ACCA_	AAAGACACTCTGTTCCATTTTCTACGATTTTACCAGTGGCTTTTG CGTCTATTTAGTGGAGCCACCACTATCTTCTTTGGTTGTGAAACTCAACC TTC
3_AP2	mCd80_ACCA_	ATAAGAACCGGACTTTATATCTGATTCCTTTGACTCACATTTTTG CGTCTATTTAGTGGAGCCACCACTATCTTCTTTACTAAAAGTGTGGCCCG AGT
4_AP3	mCd80_ACCA_	CAGTAATAACAGTCGTCGTCTCTACGAGTTTGCAGTCACGTTTT GCGTCTATTTAGTGGAGCCACCACTATCTTCTTTCTTTGGGGCAGGATTC GGCG
2_AP1	mCd19_ACAC_	ACCAGTCAACACCCTTCCTGTCTACGATTTTACCAGTGGCTTTT GCGTCTATTTAGTGGAGCCACACCTATCTTCTTTGCTGGCTTGGTATCGA GGTA
3_AP2	mCd19_ACAC_	AAAGTGACGCCTCCCTCGGGCTGATTCCTTTGACTCACATTTTT GCGTCTATTTAGTGGAGCCACACCTATCTTCTTTACCCCGCCAGGAGATT CTTC
4_AP3	mCd19_ACAC_	TCCATGGTGTCCCACAAGGGTCTACGAGTTTGCAGTCACGTTTT GCGTCTATTTAGTGGAGCCACACCTATCTTCTTTAATATGTCCAGCCGCT ACAT
2_AP1	mCcr6_AAGA_	GTGAACAACTTCACAGTTCTTCTACGATTTTACCAGTGGCTTTT GCGTCTATTTAGTGGAGCCAAGACTATCTTCTTTTGCTTCCTGGCCACCG AGGT
3_AP2	mCcr6_AAGA_	AAGGTCATCTGTGTGGGCAGTCTGATTCCTTTGACTCACATTTTTG CGTCTATTTAGTGGAGCCAAGACTATCTTCTTTCCAGAACACTGACGCA CAGT

4 AP3	mCcr6_AAGA_	TTACTCGGAAAGCTACATCTTCTACGAGTTTGCAGTCACGTTTT GCGTCTATTTAGTGGAGCCAAGACTATCTTCTTTGGCTTCCTCTGTGCCC GGGT
	mCcr4_AACC_2	TCTCCTGCTGGTACCCGGAGTCTACGATTTTACCAGTGGCTTTT GCGTCTATTTAGTGGAGCCAACCCTATCTTCTTTCTCAACTGTTCTCATT GGCT
_AP2	mCcr4_AACC_3	AGTACATCACCCAACTCTTCCTGATTCCTTTGACTCACATTTTTG CGTCTATTTAGTGGAGCCAACCCTATCTTCTTTTCTCGGGGGAGAAATTCC GCA
_AP3	mCcr4_AACC_4	GTGGAGGCAGAGGCAGGAGTTCTACGAGTTTGCAGTCACGTTT TGCGTCTATTTAGTGGAGCCAACCCTATCTTCTTTGTTATTGGGTATTGG GCATG
_2_AP1	mCd11b_AATT	GATGGCTTGATGGACCTGGCTCTACGATTTTACCAGTGGCTTTT GCGTCTATTTAGTGGAGCCAATTCTATCTTCTTTGGGGTAAGGATCTCAC AATG
_3_AP2	mCd11b_AATT	TTAAAAAACAAGGATGCTGGCTGATTCCTTTGACTCACATTTT GCGTCTATTTAGTGGAGCCAATTCTATCTTCTTTTTGCATGTCAAGAACA AGTA
_4_AP3	mCd11b_AATT	TGATGCAGAAATGTGAAACATCTACGAGTTTGCAGTCACGTTTT GCGTCTATTTAGTGGAGCCAATTCTATCTTCTTTGCGCACCCAGGTCTTT GGAT
2_AP1	mCd3e_ACGT_	ACACTTTCTGGGGCATCCTGTCTACGATTTTACCAGTGGCTTTTG CGTCTATTTAGTGGAGCCACGTCTATCTTCTTTTTCTGAGAGGATGCGGT GGA
3_AP2	mCd3e_ACGT_	ACCTGTTCCCAACCCAGACTCTGATTCCTTTGACTCACATTTTTG CGTCTATTTAGTGGAGCCACGTCTATCTTCTTTCAAAACAAGGAGCGGC CACC
4_AP3	mCd3e_ACGT_	TTACACACCCCATACCTCCTTCTACGAGTTTGCAGTCACGTTTTG CGTCTATTTAGTGGAGCCACGTCTATCTTCTTTCCCGGCCCATCCTCCGA CTG
2_AP1	mF4/80_ACTG_	GGCTTTTGGCTGCTCCTCTTTCTACGATTTTACCAGTGGCTTTTG CGTCTATTTAGTGGAGCCACTGCTATCTTCTTTACTGCCACAGTACGATG TGG
3_AP2	mF4/80_ACTG_	TGCACCAATGTACCAGGCTCCTGATTCCTTTGACTCACATTTTTG CGTCTATTTAGTGGAGCCACTGCTATCTTCTTTAATGTGGACTGAATTCT GTC
4_AP3	mF4/80_ACTG_	CATAGCCACCTTCCTGCTGTTCTACGAGTTTGCAGTCACGTTTTG CGTCTATTTAGTGGAGCCACTGCTATCTTCTTCTGGTATGTCTTGCCTT GGC
_AP1	mCd4_AGTC_2	CCTGTTTGCAAAGTCTCGAGTCTACGATTTTACCAGTGGCTTTT GCGTCTATTTAGTGGAGCCAGTCCTATCTTCTTTACTCTCTTCACTA GGTA
_AP2	mCd4_AGTC_3	CCCACTCACCCTCAAGATACCTGATTCCTTTGACTCACATTTTTG CGTCTATTTAGTGGAGCCAGTCCTATCTTCTTCTCCAGCTGAAGGAAAC GCT
_AP3	mCd4_AGTC_4	TCTCTTTTGAATTTGCAAGATCTACGAGTTTGCAGTCACGTTTTG CGTCTATTTAGTGGAGCCAGTCCTATCTTCTTTAGCTTCCCATGATGCCT GCT
_2_AP1	mCd8b1_ATAT	TCCCCAAAAGCGCCAAGATGTCTACGATTTTACCAGTGGCTTTT GCGTCTATTTAGTGGAGCCATATCTATCTTCTTTGAGCACTGAGGGGAA CAGTG
3 AP2	mCd8b1_ATAT	TCCCCCACCCAGAGACCCAGCTGATTCCTTTGACTCACATTTTT GCGTCTATTTAGTGGAGCCATATCTATCTTCTTTGAAGAAGAAGCAATG

		CCCGT
_4_AP3	mCd8b1_ATAT	GAGCTAGCCGGGACCCTGGATCTACGAGTTTGCAGTCACGTTTT GCGTCTATTTAGTGGAGCCATATCTATCTTCTTTCTTTGGCCTTTCATGG AAAA
2_AP1	mCd8a_ATCG_	GACCCTACACGCCTCCCCATCTACGATTTTACCAGTGGCTTTT GCGTCTATTTAGTGGAGCCATCGCTATCTTCTTTGCTAAAGGAGCAGTTT CCCC
3_AP2	mCd8a_ATCG_	GACTGTAACACCAGAGCTAGCTGATTCCTTTGACTCACATTTT GCGTCTATTTAGTGGAGCCATCGCTATCTTCTTTTACAATGGGAGTAATG AGCA
4_AP3	mCd8a_ATCG_	AGATTCCCAGGCTCTTTCTGTCTACGAGTTTGCAGTCACGTTTTG CGTCTATTTAGTGGAGCCATCGCTATCTTCTTTTAAAGATTTTTATCTCA GTG
_2_AP1	mCd11c_ATGC	CAGTCATGAGCTGTACCTGGTCTACGATTTTACCAGTGGCTTTT GCGTCTATTTAGTGGAGCCATGCCTATCTTCTTTCAGAGCCTGCTTCTGT TCTC
_3_AP2	mCd11c_ATGC	TGAAGGATATTGAGAATCAGCTGATTCCTTTGACTCACATTTTT GCGTCTATTTAGTGGAGCCATGCCTATCTTCTTTCGTGGAGAACTTTGAT GCTT
_4_AP3	mCd11c_ATGC	AAAGCCCCAAGACCCAACTATCTACGAGTTTGCAGTCACGTTTT GCGTCTATTTAGTGGAGCCATGCCTATCTTCTTTTGTCTGCCTTCATATT CATG
_2_AP1	mCd127_ATTA	TGGGTAGAGCTTTCGCTATATCTACGATTTTACCAGTGGCTTTT GCGTCTATTTAGTGGAGCCATTACTATCTTCTTTCTCTCTC
_3_AP2	mCd127_ATTA	TTCCTGGACTGCCAGATTCACTGATTCCTTTGACTCACATTTTTG CGTCTATTTAGTGGAGCCATTACTATCTTCTTTTGAGTTTCAATCCCGAA AGT
_4_AP3	mCd127_ATTA	TCTCTTGCCATGAACCTGTCTCTACGAGTTTGCAGTCACGTTTTG CGTCTATTTAGTGGAGCCATTACTATCTTCTTTACACATTCCAACTTCAA CCC
_AP1	mIl17a_CATG_2	TCCAGGGAGAGCTTCATCTGTCTACGATTTTACCAGTGGCTTTT GCGTCTATTTAGTGGAGCCCATGCTATCTTCTTTTCAGGACGCGCAAAC ATGAG
_AP2	mIl17a_CATG_3	TGACCCCTAAGAAACCCCCACTGATTCCTTTGACTCACATTTTT GCGTCTATTTAGTGGAGCCCATGCTATCTTCTTTCCTAAACAGAGACCC GCGGC
_AP3	mIl17a_CATG_4	ACCAAACTTAGTTTTATGTTTCTACGAGTTTGCAGTCACGTTTTG CGTCTATTTAGTGGAGCCCATGCTATCTTCTTCTCCTCTGAATGGGGTG AAA
2_AP1	miNos2_GACT_	AACTGGGGCAGTGGAGAGATTCTACGATTTTACCAGTGGCTTTT GCGTCTATTTAGTGGAGCCGACTCTATCTTCTTTCACAGTATGTGAGGAT CAAA
3_AP2	miNos2_GACT_	CAGCGCTACAACATCCTGGACTGATTCCTTTGACTCACATTTTT GCGTCTATTTAGTGGAGCCGACTCTATCTTCTTTTTCGAGACTTCTGTGA CACA
4_AP3	miNos2_GACT_	AGAGCCCGGAGCCTTTAGACTCTACGAGTTTGCAGTCACGTTTT GCGTCTATTTAGTGGAGCCGACTCTATCTTCTTTACAGCAATATAGGCTC ATCC
_AP1	mTcrg_GCCG_2	GCCTGCAGAGCACTTCCTGCTCTACGATTTTACCAGTGGCTTTT GCGTCTATTTAGTGGAGCCGCCGCTATCTTCTTTGCTGGTGACCTGAAAT TCCA

_AP2	mTcrg_GCCG_3	AAGTTCTTTCCCGATGTCATCTGATTCCTTTGACTCACATTTTG CGTCTATTTAGTGGAGCCGCCGCTATCTTCTTCATACCTTTGTCTCCTT GAA
_AP3	mTcrg_GCCG_4	TTTCATCCTCACTGCCATAATCTACGAGTTTGCAGTCACGTTTTG CGTCTATTTAGTGGAGCCGCCGCTATCTTCTTTGGTACAGCAAGTCAGCT GGA
_2_AP1	mRorgT_GCGC	CACCGGACATCTCGGGAGCTTCTACGATTTTACCAGTGGCTTTT GCGTCTATTTAGTGGAGCCGCGCCCTATCTTCTTTACAGGGCCCCACAGA GACAC
_3_AP2	mRorgT_GCGC	GACCAGCTACCAGAGGAAGTCTGATTCCTTTGACTCACATTTTT GCGTCTATTTAGTGGAGCCGCGCCCTATCTTCTTTCTCTTTTCACGGGAGG AGGT
_4_AP3	mRorgT_GCGC	AAATAAAAAAAAAAGACTGACATCTACGAGTTTGCAGTCACGTTTT GCGTCTATTTAGTGGAGCCGCGCCCTATCTTCTTTAGAGATAGGATGACC AAGTC
_AP1	mTcrb_GTAC_2	CTACTTTGCGGCAGGCACCCTCTACGATTTTACCAGTGGCTTTT GCGTCTATTTAGTGGAGCCGTACCTATCTTCTTTAGTCCGGTGAATTCGC CCCT
_AP2	mTcrb_GTAC_3	AAGTTCTTTCCCGATGTCATCTGATTCCTTTGACTCACATTTTTG CGTCTATTTAGTGGAGCCGTACCTATCTTCTTTCATACCTTTGTCTCCTTG AA
_AP3	mTcrb_GTAC_4	TTTCATCCTCACTGCCATAATCTACGAGTTTGCAGTCACGTTTTG CGTCTATTTAGTGGAGCCGTACCTATCTTCTTTGGTACAGCAAGTCAGCT GGA
AP1	mIl6_CGAT_3_	CTGGAGCCCACCAAGAACGATCTACGATTTTACCAGTGGCTTTT GCGTCTATTTAGTGGAGCCCGATCTATCTTCTTTTGTCTGTAGCTCATTC TGCT
AP2	mIl6_CGAT_4_	CTGGAGTACATGAAGAACAACTGATTCCTTTGACTCACATTTTT GCGTCTATTTAGTGGAGCCCGATCTATCTTCTTTTTCTGGAGTACCATAG CTAC
AP3	mIl6_CGAT_5_	GTTTCTTGGAATGTATAAGTTCTACGAGTTTGCAGTCACGTTTT GCGTCTATTTAGTGGAGCCCGATCTATCTTCTTTTTCTGTTACCTAGCCA GATG
_AP1	mIl12_CAGT_3	CTCTTTTTGGCCACCCTTGCTCTACGATTTTACCAGTGGCTTTTG CGTCTATTTAGTGGAGCCCAGTCTATCTTCTTTTGTGTCAATCACGCTAC CTC
_AP2	mIl12_CAGT_4	CAGCAGATCATTCTAGACAACTGATTCCTTTGACTCACATTTT GCGTCTATTTAGTGGAGCCCAGTCTATCTTCTTTCACTTCAGAATCACAA CCAT
_AP3	mIl12_CAGT_5	TCCCCTCCATCGCTTCTCTCTCTCCGAGTTTGCAGTCACGTTTTG CGTCTATTTAGTGGAGCCCAGTCTATCTTCTTTGCACAGCTACCTCAGCA TGG
3_AP1	mCd68_AGCT_	TCCTCTTCCAAGAGAAGGCATCTACGATTTTACCAGTGGCTTTT GCGTCTATTTAGTGGAGCCAGCTCTATCTTCTTTGGGAAGTGAGGCTTTT CATT
4_AP2	mCd68_AGCT_	CAAATTCAAATCCGAATCCTCTGATTCCTTTGACTCACATTTTTG CGTCTATTTAGTGGAGCCAGCTCTATCTTCTTTCTTGTGTTCAGCTCCAA GCC
5_AP3	mCd68_AGCT_	AGCATCTGCCCCAGTCCACTTCTACGAGTTTGCAGTCACGTTTT GCGTCTATTTAGTGGAGCCAGCTCTATCTTCTTTTCAACCTACCAGCCCC TCTG
AP1	mTnf_CCAA_4_	GCCAGGAGGGAGAACAGAAATCTACGATTTTACCAGTGGCTTT TGCGTCTATTTAGTGGAGCCCCAACTATCTTCTTTGCGAGGACAGCAAG

		GGACTA
AP2	mTnf_CCAA_5_	GTCTACTCCCAGGTTCTCTTCTGATTCCTTTGACTCACATTTTTG CGTCTATTTAGTGGAGCCCCAACTATCTTCTTTCAGCCGATGGGTTGTAC CTT
AP3	mTnf_CCAA_6_	CTACTCAGAAACACAAGATGTCTACGAGTTTGCAGTCACGTTTT GCGTCTATTTAGTGGAGCCCCAACTATCTTCTTTGTGCTCAGAGCTTTCA ACAA
_1_AP1	mCd40L_CGTA	CCTAAGAACTTACAATCTGATCTACGATTTTACCAGTGGCTTTT GCGTCTATTTAGTGGAGCCCGTACTATCTTCTTTAATCCCAAGGGACCCT GCTC
_2_AP2	mCd40L_CGTA	TGTGTTTGTCAACGTGACTGCTGATTCCTTTGACTCACATTTTTG CGTCTATTTAGTGGAGCCCGTACTATCTTCTTTGAATTACAAGCTGGTGC TTC
_3_AP3	mCd40L_CGTA	CTATTATGTCTACACTCAAGTCTACGAGTTTGCAGTCACGTTTT GCGTCTATTTAGTGGAGCCCGTACTATCTTCTTTACGGTTAAAAGAGAA GGACT
1_AP1	mCd69_CTAG_	AAGGAAGAAAAAAAAAGCACTCTACGATTTTACCAGTGGCTTT TGCGTCTATTTAGTGGAGCCCTAGCTATCTTCTTTAAACCTCTGTAGCGT ATTTC
2_AP2	mCd69_CTAG_	CTGCTAATCACATCAAGGATCTGATTCCTTTGACTCACATTTTTG CGTCTATTTAGTGGAGCCCTAGCTATCTTCTTTCTGAAACTGTCACCAAC TGA
3_AP3	mCd69_CTAG_	AAATGAAGCTAATCAGACATTCTACGAGTTTGCAGTCACGTTTT GCGTCTATTTAGTGGAGCCCTAGCTATCTTCTTTGAACATTGGATTGGGC TGAA
CC_AP4	mSCGB1A1_GG 4	CTCACTGGATTTCAGAGATATGCTTGTGGTAGCAAATATTTTGC GTCTATTTAGTGGAGCCGGCCCTATCTTCTTTAAGCAAGATTTAAGATTC TGAAG
AP4	mSftpc_CGCG_	ATTCTTCCGGGAGAGACCTGTGCTTGTGGTAGCAAATATTTTGC GTCTATTTAGTGGAGCCCGCGCTATCTTCTTTTGATACTGGTTCCGAGTC CG
ap1	mCD86_CTGA_	TGCAGACTCTTAAGATCTGGTCTACGATTTTACCAGTGGCTTTT GCGTCTATTTAGTGGAGCCCTGACTATCTTCTTTGTCCATCTTGATTCAC CCTG
ap2	mCD86_CTGA_	GGATGGGAGTGGTATATTTGCTGATTCCTTTGACTCACATTTTT GCGTCTATTTAGTGGAGCCCTGACTATCTTCTTTGACAGCTACCTCTTCA GTCA
ap3	mCD86_CTGA_	TCAGTGATCGCCAACTTCAGTCTACGAGTTTGCAGTCACGTTTT GCGTCTATTTAGTGGAGCCCTGACTATCTTCTTTAACAGACATTAACAG AACTG
ap1	mElane_GATC_	CATTATCCGAAGCCATAATGTCTACGATTTTACCAGTGGCTTTT GCGTCTATTTAGTGGAGCCGATCCTATCTTCTTTTTGCAGATTGGATCA ATTC
ap2	mElane_GATC_	GCCAACGTGCAGGTGGCCCACTGATTCCTTTGACTCACATTTT GCGTCTATTTAGTGGAGCCGATCCTATCTTCTTTATGGCTCCGCTACCAT TAAC
ap3	mElane_GATC_	CTATCCAGCCGGACTCTGGCTCTACGAGTTTGCAGTCACGTTTT GCGTCTATTTAGTGGAGCCGATCCTATCTTCTTTCCACCATGGCCCTTGG CAGA
p1	mIl12b_GCTA_a	AGGACACAATGGCCACACTCTCTACGATTTTACCAGTGGCTTTT GCGTCTATTTAGTGGAGCCGCTACTATCTTCTTTGAAGATACTACGGCTA CCTC

p2	mIl12b_GCTA_a	CATTAGCTTTTGTGACAACCCTGATTCCTTTGACTCACATTTTTG CGTCTATTTAGTGGAGCCGCTACTATCTTCTTTCAATCAGGGCTGCGTAG GTA
р3	mIl12b_GCTA_a	ACTCCGGACGGTTCACGTGCTCTACGAGTTTGCAGTCACGTTTT GCGTCTATTTAGTGGAGCCGCTACTATCTTCTTTGAAGTGTGAAGCACC AAATT
_ap1	mTbx21_GTCA	TTCTTCTGTTTTGCATCACTTCTACGATTTTACCAGTGGCTTTTG CGTCTATTTAGTGGAGCCGTCACTATCTTCTTTAGAGTGGTGTCTGGATG TAT
_ap2	mTbx21_GTCA	GGATCCTCAGAGGAACAGGGCTGATTCCTTTGACTCACATTTTT GCGTCTATTTAGTGGAGCCGTCACTATCTTCTTTTGCCCATGGACCCGGG CCTG
_ap3	mTbx21_GTCA	CCGGGCGCACAGGACCCGACTCTACGAGTTTGCAGTCACGTTTT GCGTCTATTTAGTGGAGCCGTCACTATCTTCTTTATCGTTTCTTCTATCCC GAG
_AP1	mCd4_AGTC_5	AGTCCACCAAAGACCTCAAGTCTACGATTTTACCAGTGGCTTTT GCGTCTATTTAGTGGAGCCAGTCCTATCTTCTTTCAAAGAGGTGTCCGTA CAAA
_AP2	mCd4_AGTC_6	CCAGCCCTGGATCTCCTTCTGATTCCTTTGACTCACATTTTG CGTCTATTTAGTGGAGCCAGTCCTATCTTCTTTGCAGAGAAGGATTCTTT CTT
_AP3	mCd4_AGTC_7	CATGTCCAACCTAAGGGTTCTCTACGAGTTTGCAGTCACGTTTT GCGTCTATTTAGTGGAGCCAGTCCTATCTTCTTTAGTGGTTCCAAAGTTC TCTC

Supplementary Table 4

Sequencing-by-ligation oligonucleotides

name	sequence	5' modification	3' modification
Anchor oligo	/5Alex750N/UGCGUCUAU	Alexa Fluor 750	-
B2_DO_27_U_5AF750	UUAGUGGAGCC		
Cy5_0A_4N	ANNNCTATC	Phosphorylation	Cy5
Cy3_0G_4N	GNNNCTATC	Phosphorylation	СуЗ
TR_0C_4N	CNNNCTATC	Phosphorylation	Texas Red
AF488_0T_4N	TNNNCTATC	Phosphorylation	Alexa Fluor 488
Cy5_1A_4N	NANNCTATC	Phosphorylation	Cy5
Cy3_1G_4N	NGNNCTATC	Phosphorylation	Cy3
TR_1C_4N	NCNNCTATC	Phosphorylation	Texas Red
AF488_1T_4N	NTNNCTATC	Phosphorylation	Alexa Fluor 488
Cy5_2A_4N	NNANCTATC	Phosphorylation	Cy5
Cy3_2G_4N	NNGNCTATC	Phosphorylation	Cy3
TR_2C_4N	NNCNCTATC	Phosphorylation	Texas Red
AF488_2T_4N	NNTNCTATC	Phosphorylation	Alexa Fluor 488
Cy5_3A_4N	NNNACTATC	Phosphorylation	Cy5
Cy3_3G_4N	NNNGCTATC	Phosphorylation	Cy3
TR_3C_4N	NNNCCTATC	Phosphorylation	Texas Red
AF488_3T_4N	NNNTCTATC	Phosphorylation	Alexa Fluor 488