Supplementary Table. Effects of supplementation with multiple micronutrients on fertility mechanisms and outcomes

Study (country)	Study characteristics		Number of patients, N			Supplements/control groups			
	Design	Duration	<mark>Multiple</mark> micronu- trients (MMN)	Control group(s)	Mean age ± SD (range), y	Investigational product: folate [µg] vs. Control	Taken PC	Results	Author conclusions
Effect in healthy women									
Czeizel et al 1996 ¹ (Hungary)	Double-blind RCT in women planning pregnancy	~4 mo	3953	3952	26.9±3.4	Elevit (Bayer): 800 vs. Trace element supplement (Cu, Mn, Zn, vit. C)	Yes, and T1	 Significantly higher number of confirmed pregnancies with MMN (2553, 64.6%) vs. trace elements (2466, 62.3%) (excl. non-supplemented women) Time to conception was shorter with MMN (3.8 menstrual cycles) vs. trace elements (4.0 cycles), suggesting a 5% increase in fertility 	• Preconceptional MMN supplementation causes a slight but significant increase in fertility due to the shorter achievement of conception
Cueto et al 2015 ² (Denmark)	Prospective cohort study in women planning pregnancy	Varied duration	2560	1335	28.6 (supplement group)	FA and/or MMN (either used alone or together; type not specified) vs. Non-use	Yes	 Increased fecundability with supplement use Stronger association among women with irregular cycles and those with either short or long cycle length 	• Longer duration of supplementation (≥1 year) did not increase fecundability
Chavarro et al 2008 ³ (USA)	Prospective cohort study in women planning pregnancy	8 years FO	10451	8104	32.5 (supplement group)	MMN (type not specified) vs. Non-use	Yes	 Inverse association between frequency of MMN use and risk of ovulatory infertility RR of ovulatory infertility with MMN use compared with non- use was 0.88 for women consuming ≤2 tablets/week, 0.69 for women consuming 3-5 tablets/week, 0.59 for women consuming ≥6 tablets/week 	 Folic acid appeared to explain part of the association between MMN use and risk of ovulatory infertility Regular use of MMN supplements may decrease the risk of ovulatory infertility

Study (country)	Study characteristics		Number of patients, N			Supplements/control groups				
	Design	Duration	Multiple micronu- trients (MMN)	Control group(s)	Mean age ± SD (range), y	Investigational product: folate [µg] vs. Control	Taken PC	Results	Author conclusions	
Effect in women undergoing infertility treatment										
Restoring micronutrient levels										
La Vecchia ⁴ (Italy)	Cross-sectional study in women undergoing IVF; analysis of plasma levels of vitamins or microelements		125	144	37.1±3.5	FA supplement (type not specified) vs. Non-use	Yes	 Users significantly more likely to have adequate levels of serum folate, RBC folate and HCY compared with non-users Only a minority of participants reached adequate levels of RBC folate despite long-term FA supplementation: proportion of replete women (>400 ng/ml): 25% and 23% in participants women using FA supplementation for >12 and <12 months, respectively In the absence of FA supplementation, the proportion of replete women was nearly negligible 	 Folate levels largely inadequate in women undergoing IVF, but higher in women using supplements vs. non-users There is a need to promote recommendations for FA supplementation among women attending infertility clinics 	
Özkaya et al 2011 ⁵ (Turkey)	PBO- controlled RCT in IVF patients	45 d	26	43	28.8±3.2 (22- 43)	Megadyn Pronatal Film Tablet (Mecom Inc): 800 vs. Placebo	Yes	 IVF vs. controls: ↓selenium and zinc in FF and serum; ↓copper in serum; ↑ iron in FF and serum Supplementation vs. untreated IVF: ↑ copper, zinc, selenium in FF and serum; ↓iron in FF; calcium, magnesium levels unaffected 	 Copper, zinc, and selenium in serum and FF were lower in women undergoing IVF MMN supplementation in serum and FF of such women normalized trace element levels 	

	Study characteristics		Number of patients, N			Supplements/control groups			
Study (country)	Design	Duration	<mark>Multiple</mark> micronu- trients (MMN)	Control group(s)	Mean age ± SD (range), y	Investigational product: folate [µg] vs. Control	Taken PC	Results	Author conclusions
Sun et al 2013 ⁶ (China)	PBO- controlled RCT in IVF patients	60 d	60	55	28.8	Elevit (Bayer): 800 vs. Placebo	Yes	 IVF vs. controls: ↓copper and zinc in serum Supplementation vs. untreated IVF: ↑copper, zinc and manganese in serum; ↑copper and zinc in FF; ↓iron in FF; iron and calcium in serum unaffected 	• Taking MMN might normalize trace element levels in the serum and FF of women undergoing IVF
Impact on antioxidant defenses, oxidative stress and fertility									
Özkaya et al 2010 ⁷ (Turkey)	PBO- controlled RCT in IVF patients	45 d	26	43	28.8±3.2 (22- 43)	Megadyn Pronatal Film Tablet (Mecom Inc): 800 vs. Placebo	Yes	 IVF: significantly ↓antioxidant vitamins (C, GSH-Px) and ↑LP in FF and serum Supplementation vs. untreated IVF: significantly ↑GSH, vit. C & E in serum, ↑GSH-Px and vit. C in FF; significantly ↓LP in FF and serum 	• MMN supplementation in women undergoing IVF may strengthen the antioxidant defense system by decreasing oxidative stress
Luddi et al 2016 ⁸ (Italy)	Preliminary study in IVF patients (no MMN in first COS cycle, MMN in second COS cycle)	MMN used for 3 mo before and through- out second COS cycle	18		40.3±1.2	Elevit (Bayer): 800 vs. Non-use in first COS cycle	Yes	 MMN (used in the second COS cycle only) protected the follicular microenvironment and serum proteins from oxidative damage Significant increase in mean number of good quality oocytes after MMN usage In the treated cycle, a total of 3 ongoing pregnancies (pregnancy rate=17.7%) was registered 	• MMN supplementation may decrease oxidative stress both in serum and follicular fluid proteins and is positively associated with oocyte quality in women undergoing IVF

	Study characteristics		Number of patients, N			Supplements/control groups			
Study (country)	Design	Duration	<mark>Multiple</mark> micronu- trients (MMN)	Control group(s)	Mean age ± SD (range), y	Investigational product: folate [µg] vs. Control	Taken PC	Results	Author conclusions
Nouri et al 2017 ⁹	Pilot, non- blind RCT in women undergoing IVF	28-56 d prior to COS	50	50	Median 37.1 (IQR 33.6-40.2)	PROfertil [®] female (Lenus Pharma GesmbH): 800 vs. FA: 400	Yes	 Median fertilization rate significantly higher with MMN (66.7%) vs. FA use (42.9%) Significantly more MMN patients with at least one high quality embryo (29%) vs. FA patients (18%) 	• Use of MMN supplementation for a minimum of 28 d is beneficial in terms of fertilization rate and embryo quality
Youssef et al 2015 ¹⁰	RCT in women with unexplained infertility	58 d	112	106	30.9±5.7 (MMN group)	Octatron [®] (Nerhadou International) + FA: 2500 vs. FA: 2500	Yes, and T1	• No significant differences between groups, including number of mature oocytes and clinical pregnancy rate	• Oral antioxidants from MMN did not improve oocyte quality and pregnancy rates in women with unexplained infertility undergoing IVF/ICSI treatment
Impact on the ti	ime to pregnancy a	and chances	of becoming p	pregnant				1	
Ruder et al 2014 ¹¹	Secondary data analysis of RCT in women with unexplained infertility		368		33.1	MMN (type not specified)	Yes	 TTP was shorter among women: with BMI <25 kg/m² with increasing vitamin C with BMI ≥25 kg/m² with increasing β-carotene <35 y with increasing β-carotene and vitamin C ≥35 y with increasing vitamin E 	 Increased intakes of β-carotene, vitamin C, and vitamin E were associated with shorter TTP, but the effect of these antioxidant nutrients varied with BMI and age The results are consistent with the hypothesis that increased antioxidant intake is positively associated with female fertility
Westphal et al 2004/2006 ^{12,13}	Double-blind, PBO- controlled RCT in women struggling to conceive	3 mo	53	40	35.4 (MMN group)	FertilityBlend™ (Daily Wellness Co.) vs. Placebo	Yes	• Significant increase in average number of days in cycle with basal temperature >37°C during the luteal phase with MMN vs. baseline	• MMN supplementation may provide an attractive alternative or complement to conventional fertility therapy

Study (country)	Study characteristics		Number of patients, N			Supplements/control groups			
	Design	Duration	<mark>Multiple</mark> micronu- trients (MMN)	Control group(s)	Mean age ± SD (range), y	Investigational product: folate [µg] vs. Control	Taken PC	Results	Author conclusions
								 Increase in mean midluteal phase progesterone level with MMN vs. baseline, significant in women with the lowest progesterone levels at baseline Short and long cycles were normalized with MMN No notable changes at all with PBO After 3 mo, 26% of MMN women pregnant vs. 10% PBO women; three more MMN women conceived after 6 mo 	• Nutritional supplementation may play an important role in optimizing fertility health
Agrawal et al 2012 ¹⁴	Pilot, double- blind RCT in women with unexplained infertility	3-6 mo	30	28	32.2 (MMN group)	Pregnacare Conception (Vitabiotics) + FA: 400 + 400 vs. FA: 400	Yes	 Compared with FA alone, women using MMN supplementation had: significantly fewer attempts to achieve pregnancy a significantly higher cumulative clinical pregnancy rate (66.7% vs. 39.3%) a significantly higher ongoing pregnancy rate (60.0% vs. 25.0%) 	 Study suggests that women who use adjuvant MMN supplementation during ovulation induction have a higher chance of pregnancy compared with women on FA alone Women susceptible to micronutrient deficiencies should receive micronutrient supplements to optimize their reproductive health

BMI, body mass index; COS, controlled ovarian stimulation; d, days; FA, folic acid; FF, follicular fluid; FO, follow-up; GSH-Px, glutathione peroxidase; HCY, homocysteine; IQR, interquartile range; IVF-ET, in vitro fertilization-embryo transfer; LP, lipid peroxidation; MMN, multiple micronutrients; mo, months; PBO, placebo; PC, pre-conception; PP, post-partum; RBC, red blood cells; RCT, randomized, controlled trial; ROS, reactive oxygen species; SD, standard deviation; T1, first trimester; TTP, time to pregnancy; wks, weeks; y, years.

Supplementary references

- 1. Czeizel A, Métneki J, Dudás I. The effect of preconceptional multivitamin supplementation on fertility. Int J Vitam Nutr Res. 1996;66(1):55-58.
- 2. Cueto H, Riis A, Hatch E, et al. Folic acid supplementation and fecundability: a Danish prospective cohort study. *Eur J Clin Nutr.* 2015;70(1):66-71.
- 3. Chavarro JE, Rich-Edwards JW, Rosner BA, Willett WC. Use of multivitamins, intake of B vitamins, and risk of ovulatory infertility. *Fertil Steril*. 2008;89(3):668-676.
- 4. La Vecchia I, Paffoni A, Castiglioni M, et al. Folate, homocysteine and selected vitamins and minerals status in infertile women. *Eur J Contracept Reprod Health Care*. 2017;22(1):70-75.
- 5. Özkaya M, Nazıroğlu M, Barak C, Berkkanoglu M. Effects of multivitamin/mineral supplementation on trace element levels in serum and follicular fluid of women undergoing in vitro fertilization (IVF). *Biol Trace Elem Res.* 2011;139(1):1-9.
- 6. Sun N-X, Xu C, Zhang Q, Lu X-M, Li W. Impact of multivitamin supplementation on trace element levels in serum and follicular fluid of women undergoing in vitro fertilisation. *J Development Med.* 2013;1(2):74-77.
- 7. Özkaya M, Nazıroğlu M. Multivitamin and mineral supplementation modulates oxidative stress and antioxidant vitamin levels in serum and follicular fluid of women undergoing in vitro fertilization. *Fertil Steril.* 2010;94(6):2465-2466.
- Luddi A, Capaldo A, Focarelli R, et al. Antioxidants reduce oxidative stress in follicular fluid of aged women undergoing IVF. *Reprod Biol Endocrinol*. 2016;14(1):57.
- 9. Nouri K, Walch K, Weghofer A, Imhof M, Egarter C, Ott J. The impact of a standardized oral multinutrient supplementation on embryo quality in in vitro fertilization/intracytoplasmic sperm injection: a prospective randomized trial. *Gynecol Obstet Invest.* 2017;82(1):8-14.
- 10. Youssef MA, Abdelmoty HI, Elashmwi HA, et al. Oral antioxidants supplementation for women with unexplained infertility undergoing ICSI/IVF: randomized controlled trial. *Hum Fertil (Camb)*. 2015;18(1):382-342.
- 11. Ruder EH, Hartman TJ, Reindollar RH, Goldman MB. Female dietary antioxidant intake and time to pregnancy among couples treated for unexplained infertility. *Fertil Steril.* 2014;101(3):759-766.
- 12. Westphal L, Polan M, Trant A, Mooney S. A nutritional supplement for improving fertility in women. A pilot study. J Reprod Med. 2004;49:289-293.
- 13. Westphal L, Polan M, Trant A. Double-blind, placebo-controlled study of Fertilityblend: a nutritional supplement for improving fertility in women. *Clin Exp Obstet Gynecol.* 2006;33(4):205-208.
- 14. Agrawal R, Burt E, Gallagher AM, Butler L, Venkatakrishnan R, Peitsidis P. Prospective randomized trial of multiple micronutrients in subfertile women undergoing ovulation induction: a pilot study. *Reprod Biomed Online*. 2012;24(1):54-60.