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eMethods. Details on Design 

Annotation Protocol  

Lesions were annotated by 7 readers, 6 of whom are board certified radiologists with 6-
29 years contributing to radiology (DP, BNB, PT, ME, DDBB, KG) and 1 of whom is a 
medical doctor with extensive experience in medical imaging (KB). All readers with 
fewer than 5 years as a practicing radiologist (ME, DDBB, KG, KB) performed 
annotations in consensus with a senior radiologist (DP, 25 years practicing; BNB, 11 
years practicing; PL, 7 years practicing). Lesions were annotated on three adjacent 
slices of DCE-MRI scans chosen to maximize tumor size while avoiding biopsy markers 
and artifacts. Radiologists were instructed to annotate the outer boundaries of tumor 
enhancement, including spiculation and internal non-enhancing regions surrounded by 
tumor (e.g. necrotic core). 

Additional MRI acquisition Details for the Discovery Cohort 

One or more 3D fat-saturated T1-weighted images were collected in the axial plane 
following contrast agent injection using a 1.5T (n=37) or 3.0T magnet (n=5). Pixel 
dimensions in the axial plane ranged from .50 mm x .50 mm to 1.06 x 1.06 mm, with an 
average of .70 mm x .70 mm+/- .14 mm. Slice thickness was on average 1.93 mm +/- 
.40 mm (range: 1-3 mm). Patients were injected with an average of 15.5 mL (range: 8-
36 mL) of gadolinium-based contrast agent (Magnevist, Multihance, Gadavist, Optimark, 
or Prohance). Contrast agent dose was unavailable for five patients and contrast agent 
brand was unavailable for two. 

Expanded Radiomic Descriptor Information 

Laws. (1) 25 2-D Laws filters are derived by computing the outer product of 
combinations of the following 1-D filter vectors designed to capture specific textural 
patterns within an image. Each filter vector spans five pixels and is denoted as “P5,” 
where P is a letter representing the textural pattern captured by the filter.  

1. Level (L5) – detects smoothness of intensity values.  
a. L5 = [1 4 6 4 1] 

2. Edge (E5) – detects edges between regions with abrupt changes in intensity.  
a. E5 = [-1 -2  0  2  1] 

3. Spot (S5) – detects speckled enhancement patterns. 
a. S5 = [-1  0  2  0 -1] 

4. Wave (W5) – detects regularly oscillating local intensity patterns.   
a. W5 = [-1  2  0 -2  1] 

5. Ripple (R5) – detects oscillating intensity patterns centered at region of extreme 
intensity.  

a. R5 = [ 1 -4  6 -4  1] 

To obtain a feature vector, each filter is convolved with the image and the absolute 
value of filter response within all voxels contained within a region of interest are 
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concatenated. Features are named by the combination of filters applied in the y and x 
axes, e.g. L5E5 is the product of a level detection filter in the y axis and an edge 
detection filter in the x axis.  

Gabor. (2) 2-D Gabor filters are computed by modulating a Gaussian kernel function 
with one of 48 sinusoidal plane waves. Each sinusoidal plane wave corresponds to a 
unique combination of one of six spatial wavelengths (2 pixels, 4 pixels, 8 pixels, 12 
pixels, 16 pixels, 32 pixels, 64 pixels) and one of eight orientations (0°, 22.5°, 45°, 
67.5°, 90°, 112.5°, 135°, 157.5°). Each Gabor filter is then convolved with the original 
image and values corresponding to filter response within the region of interest are 
concatenated.  

Haralick GLCM. (3) Intensity values within the image are discretized into 64 bins from 0 
to 63. Gray level co-occurrence matrices were computed within a sliding window of 5 
pixels by 5 pixels. Intensity values outside the region of interest were ignored when 
computing GLCM statistics. The following GLCM descriptors were computed, as 
described in (3): entropy, energy, inertia, inverse difference moment, correlation, 
information measure of correlation 1, information measure of correlation 2, sum 
average, sum variance, sum entropy, difference average, difference variance, and 
difference entropy. GLCM statistics were concatenated within regions-of-interest, 
yielding 13 descriptor vectors per region.  

Co-occurrence of local anisotropy gradients (CoLlAGe). (4) An image’s intensity 
gradients in the x and y direction, Fx and Fy, are computed. Within a sliding 5 pixel 
square window, the dominant intensity gradient orientation (between 0°-360°) is 
computed via principal component analysis, resulting in a 2D array of equal size with 
the dominant gradient orientation value centered at the corresponding pixel of the 
original image. Metrics of the co-occurrence matrix are then applied to this gradient 
orientation image in the same manner as described above for Haralick GLCM features. 
The resulting 13 CoLlAGe descriptors are then the same 13 co-occurrence metrics 
(entropy, energy, inertia, inverse difference moment, correlation, information measure of 
correlation 1, information measure of correlation 2, sum average, sum variance, sum 
entropy, difference average, difference variance, and difference entropy) computed from 
the gradient orientation image, indicating the homogeneity of intensity gradient 
directionality within an image.  

Permutation testing for ROC curve significance 

A permutation testing framework was chosen to determine AUC significance due to its 
applicability in both a cross-validation and testing setting. For each individual model, 
permutation testing (5,6) was performed with Monte Carlo sample to assess whether 
model performance offered significant improvement over a random model. Each 
simulation consisted of 50,000 iterations. 

 Testing: The locked down HER2-E classifier was applied to the validation cohort 
to obtain predicted probability of response. A test-statistic for the ROC curve was 
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computed using posterior probability from the classifier and ground truth 
response labels. Next, across 50,000 iterations, the ground truth pCR labels 
were randomly permuted. A second test statistic was computed from the original 
posterior probabilities and the randomly permuted labels. The proportion of runs 
where the test statistic corresponding to the randomly permuted ROC curve was 
greater than the true test statistic yields the p-value (5). 95% confidence intervals 
are twice the standard deviation in both directions from the mean AUC using 
non-permuted labels, assuming a normal distribution.   

 Cross-Validation: for each iteration, DLDA classifiers were trained on both the 
original data and a data set with permuted class labels in a three-fold cross-
validation setting. Posterior probabilities corresponding to classifiers trained 
using both the original and permuted labels were compiled for all patients across 
the three validation folds. Test statistics were computed for the ROC curve of 
each classifier. The p-value is the proportion of runs where the test statistic of the 
permuted classifier was greater than a classifier trained and tested using the 
ground truth (5). 95% confidence intervals are computed using the empirical 
probability distribution of the test statistic across all permutations and its variance 
(6).  

 

Automated Lymphocyte Detection Model 

A previously developed automated deep learning-based nuclei and lymphocyte 
detection model (7) was adapted and utilized to quantify the number of tumor infiltrating 
lymphocytes and tumor nuclei contained on digitized H&E tissue samples 
corresponding to biopsies obtained from the tumor periphery. Watershed nuclei 
segmentation (8) was compared with manual lymphocyte segmentation in 10 regions of 
interest (ROI) by a subspecialty-trained breast pathologist of 10+ years’ experience. A 
Random Forest classifier (9) was trained to separate nuclei and lymphocyte 
segmentations based on shape, textural, and color features. 
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eFigure 1. Patient selection flowchart for the molecular subtype discovery cohort.  
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eTable 1. Comparison of clinical variables in molecular subtyping discovery cohort with 
the original BrUOG 211B and TCGA-BRCA study populations 

 BrUOG 211B HER2+ TCGA-BRCA Discovery Cohort  

Variable  Original  Included Original  Included  p-value 

Number of patients (No.) 60 35 114 7 42  

Age, mean (SD), yearsa 52.0 (9.1)  51.7 (9.8)  58.4 (13.3) 54.0 (9.7) 51.3 (9.0) p=.25a 

Receptor statusb, No. 
  

    

ER+ 30 18 79 7 25 P=.04b 

PR+ 20 14 62 5 19 P=.03b 

Stageb, No.  
 

    

I 
0 0 7 4 

4 

P=.21b,c 

 

II 39 21 72 3 24  

III 21 13 30 0 13  

IV 0 0 1 0 0  

NA 1 0 4    0 1  

Molecular Subtype, No.     P=.18 b,d 

HER2-Enriched 16 16 39 3 19 

Luminal 19 15 34  4 19 

Basal  6 4 2 0 4 

N/A 19 0 39 0 0  

Abbreviations: ER, estrogen receptor; PR, progesterone receptor. 
 
*Assessed by one-way analysis of variance (ANOVA) test between discovery cohort 
and original BrUOG 211B and TCGA-BRCA populations. 
b Assessed by Pearson’s chi-squared test between discovery cohort and original 
BrUOG 211B and TCGA-BRCA populations. 
c Comparing distribution of Stage I, Stage II, and Stage III/IV 
d Comparing only distribution of HER2-Enriched, Luminal, and Basal 
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eFigure 2. Overview of radiogenomic signature development and evaluation. 
Tumor boundaries were manually annotated and used to derive five annular peri-
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tumoral regions of interest of 3 mm each (top). Within each region, four families of 2D 
radiomic texture descriptors were computed and summarized via first order statistics 
(middle): Laws, Gabor, Gray Level Co-Occurrence Matrix (GLCM), and Co-occurrence 
of Local Anisotropy Gradients (CoLlAGe). A multi-stage feature selection approach was 
employed to select in cross-validation a set of 5 features associated with receptor status 
or molecular subtype. Diagonal linear discriminant analysis (DLDA) classifiers were 
trained and evaluated for each imaging signature in a cross-validation setting. 
Additionally, the HER2-E classifier was assessed for association with response in 
cohorts PR1 and PR2.  
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eFigure 3. ROC curves for the intra- and peri-tumoral radiomics model in response 
prediction cohorts PR1 and PR2. 
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eFigure 4: Training and performance of model for lymphocyte detection from H&E slide 
images of pre-treatment biopsy samples. a) Top lymphocyte detection model features. 
Wilcoxon rank-sum feature selection was performed to identify the 44 features that best 
distinguished the nuclei of lymphocytes from those of other cells. The top three most 
discriminating features, all Haralick measures of nucleus texture, visually separate 
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lymphocytes (red) from other cells (blue). The full model incorporated 19 Haralick 
features, 22 shape features, and 3 color ratio features. b) Receiver Operating 
Characteristic curve for lymphocyte detection. A Random Forest classifier was trained in 
a 3-fold cross validation setting using the top 44 features. The classifier distinguished 
lymphocytic from other nuclei with an average AUC of .85. c) Lymphocytic density by 
subtype group. The trained classifier was applied to lymphocyte detection across whole 
H&E slide images. We observed a slight, but insignificant (p>.05), elevation in mean 
intra-tumoral lymphocytic density for HER2-E patients, consistent with previous findings 
on biopsy of the pre-treatment and a hand-counting of TIL density on the BrUOG 
dataset (10). 
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eTable 2: Lists of top features for individual intra- and peri-tumoral regions and combined 
region feature sets, along with corresponding AUC in identifying HER2-E in the discovery 
cohort and identifying pCR in PR1. p-values indicate significance of ROC curve AUC in 
permutation testing with random sampling.  

*p<.005  

Abbreviations: ER, estrogen receptor; PR, progesterone receptor. 

 Feature Molecular Subtype pCR 
Region Group Descriptor Statistic Discovery,  

AUC [95% CI] 
PR1,  

AUC [95% CI] 
Tumor  
 Gabor w=4 px, θ=135° Kurtosis 0.76* 0.66 

Laws R5R5 Kurtosis [0.69-0.84] [0.43-0.88] 
Gabor w=16 px, θ=112.5° Kurtosis   
Gabor w=16 px, θ=45° Kurtosis   
CoLlAGe Energy Kurtosis   

0-3mm  
 CoLlAGe Difference Average Kurtosis 0.77* 0.44 

Gabor w=8 px, θ=45° Mean [0.70-0.84] [0.18-0.70] 
Gabor w=16 px, θ=67.5° Kurtosis   
Gabor w=8 px, θ=90° Std Dev.   
Gabor w=8 px, θ=67.5° Kurtosis   

3-6mm 
 Laws R5R5 Kurtosis 0.83* 0.65 

CoLlAGe Correlation Mean [0.76-0.90] [0.39-0.91] 
Gabor w=8 px, θ=67.5° Skewness   
Gabor w=8 px, θ=45° Median   
CoLlAGe Inertia Kurtosis   

6-9mm 
 CoLlAGe Difference Average Skewness 0.83* 0.56 

CoLlAGe Correlation Mean [0.77-0.88] [0.32-0.81] 
Laws R5S5 Kurtosis   
CoLlAGe Energy Kurtosis   
CoLlAGe IDM Kurtosis   

9-12mm  
 Gabor w=16 px, θ=0° Kurtosis 0.85* 0.53 

CoLlAGe Inertia Median [0.79-0.90] [0.28-0.78] 

Gabor w=8 px, θ=22.5° Kurtosis   
Gabor w=8 px, θ=112.5° Kurtosis   
Laws R5W5 Skewness   

12-15mm 
 Laws R5R5 Kurtosis 0.80* 0.63 

CoLlAGe Difference Average Median [0.74-0.85] [0.40-0.86] 
Gabor w=8 px, θ=45° Kurtosis   
CoLlAGe Correlation Skewness   
Gabor w=32 px, θ=67.5° Std Dev.   

COMBINED 
Tumor Laws R5R5 Kurtosis 0.89* 0.80* 
Tumor Gabor w=16 px, θ=112.5° Kurtosis [0.84-0.93] [0.61-0.98] 
6-9mm CoLlAGe Energy Kurtosis   
Tumor Gabor w=4 px, θ=135° Kurtosis   

9-12mm CoLlAGe Inertia Median   
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AUC, area under the receiver operating characteristic curve; GLCM, Gray level co-
occurrence matrix features. CoLlAGe, co-occurrence of local anisotropic gradient 
orientation features; px, pixels; w, width; θ, orientation. 
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eTable 3. Repeated feature selection experiments for HER2+ molecular subtyping 
across all intra- and peri-tumoral regions using alternative, non-parametric feature 
pruning approaches. Feature selection was repeated across the combined intra-tumoral 
and peri-tumoral feature pool using the following feature pruning approaches: (a) 
eliminating features by Spearman correlation > .6 and (b) eliminating features using an 
Elastic Net penalized regression with equal contributions by L1 and L2 regularization 
(11,12). Features listed in red were not identified in a given location in any feature 
discovery experiment. Features listed in orange were not included in the original 
combined intra- + peri-tumoral top feature set, but were identified as top features within 
individual annular regions. Repeating classification within the discovery cohort resulted 
in similar AUCs to feature pruning by Pearson correlation. Regardless of feature pruning 
approach, AUC remained strongly significant (p<.001).   

 

Abbreviations: ER, estrogen receptor; PR, progesterone receptor. 
AUC, area under the receiver operating characteristic curve; GLCM, Gray level co-
occurrence matrix features. CoLlAGe, co-occurrence of local anisotropic gradient 
orientation features; px, pixels; w, width; θ, orientation.  

 Feature PAM50 
Region Group Descriptor Statistic (Discovery, 

AUC) 
Original Top Features (Feature pruning by pearson correlation) 

Tumor Laws R5R5 Kurtosis .89 +/- .02 
Tumor Gabor w = 16 px, θ = 112.5° Kurtosis 

6-9 mm CoLlAGe Energy Kurtosis 
Tumor Gabor w = 4 px, θ = 135° Kurtosis 

9-12 mm CoLlAGe Inertia Median 
Feature pruning by Spearman correlation 

Tumor Laws R5R5 Kurtosis .84 +/- .02 
Tumor Gabor w = 16 px, θ = 112.5° Kurtosis 

6-9 mm CoLlAGe Energy Kurtosis 
9-12 mm CoLlAGe Inertia Median 

Tumor Gabor w = 16 px, θ = 45° Kurtosis 
Feature pruning by Elastic Net  

Tumor CoLlAGe Entropy Kurtosis .87 +/- .03 
6-9 mm CoLlAGe Energy Skewness 
Tumor Gabor w = 16 px, θ = 112.5° Kurtosis 
Tumor Gabor w = 16 px, θ = 45° Kurtosis 

12-15 mm CoLlAGe Correlation Skewness 
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eTable 4. Risk stratification table comparing intra-tumoral only and combined intra- and 
peri-tumoral radiomics model within the molecular subtype cohort. In a cross-validation 
setting, HER2-E status was predicted using classifier with and without peri-tumoral 
features. Median classification results and 95% confidence intervals are displayed. 
Concordant predictions are between the two models are charted along the diagonal, 
while patients reclassified from Non-HER2-E to HER2-E or HER2-E to Non-HER2-E 
with the addition of peri-tumoral features are recorded in the top right and bottom left, 
respectively. Incorporating peri-tumoral features resulted in the reclassification of many 
patients to the correct ground truth category.  

  
Intra‐tumoral radiomics model  

Combined intra‐ and peri‐tumoral radiomics model  

Non‐HER2‐E  HER2‐E  Total 

Non‐HER2‐E  N  17 [13.7 ‐ 20.3]  6 [2.4 ‐ 9.6]  23 [18.9 ‐ 27.1] 

HER2‐E  3 [1.3 ‐ 4.7]  4 [0.7 ‐ 7.3]  7 [3.9 ‐ 10.1] 

Non‐HER2‐E  14 [11.4 ‐ 16.6]  2 [0.6 ‐ 3.4]  16 [13.3 ‐ 18.7] 

Proportion HER2‐E 
(%) 

17.7 [9.1 ‐ 
26.4] 

71.4 [46.9 ‐ 96.0]  30.4 [20.4 ‐ 40.4] 

HER2‐E  N  5 [2.3 ‐ 7.7]  14 [10.5 ‐ 18.4]  19 [14.9 ‐ 23.1] 

HER2‐E  0 [0 ‐ 1.1]   12 [8.5 ‐ 15.5]   12 [8.9 ‐ 15.1] 

Non‐HER2‐E  5 [2.5 ‐ 7.5]   2 [0.1 ‐ 3.9]   7 [4.3 ‐ 9.7] 

Proportion HER2‐E 
(%) 

0 [0 ‐ 20.38]   85.7 [73.2 ‐ 98.2]   63.2 [52.2 ‐ 74.2]  

Total  N  22 [19.3 ‐ 24.6]  20 [17.9 ‐ 23.1]  42 

HER2‐E  3 [0.9 ‐ 5.1]  16 [13.8 ‐ 18.2]  19 

Non‐HER2‐E  19 [17.3 ‐ 20.7]   4 [2.2 ‐ 5.8]   23 

Proportion HER2‐E 
(%) 

13.6 [4.9 ‐ 
21.2] 

80.0 [73.9 ‐ 88.0]  45.2 
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eTable 5. Univariate and multivariate significance of radiomic classifier and clinical 
variables within the discovery cohort (n=42). Individually significant variables were 
included in a multinomial logistic regression model.  

Variable Univariate (p-value) Multivariate (p-value) 

Radiomics <.001a .007 
Age .78a -- 
ER Statusc <.001b .27 
PR Statusc <.001b .19 
Stage  .58b -- 

Abbreviations: ER, estrogen receptor; PR, progesterone receptor. 
a Assessed by unpaired two-sided student’s t-test.  
b Assessed by Pearson’s chi-squared test. 
d Evaluated within n=41, as one patient did not have IHC-identified receptor status.  
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eTable 6. Univariate and multivariate significance of radiomic classifier and clinical 
variables for the prediction of pCR within PR1 (n=28). Since no clinical variables were 
found to be individually significant, all were included in multivariate analysis.  

Variable Univariate (p-value) Multivariate (p-value) 

Radiomics .006 a .03 
Age .93 a .31 
Size .44 a .53 
ER Status .38 b .64 
PR Status .23 b .41 
Stage  .15 b .10 
   

Abbreviations: ER, estrogen receptor; PR, progesterone receptor; 
a Assessed by unpaired two-sided student’s t-test.  
b Assessed by Pearson’s chi-squared test. 
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eTable 7. Radiologist assessment of fibroglandular tissue (FGT) and background 
parenchymal enhancement (BPE) for validation cohort PR1 according to BI-RADS atlas 
5th edition. Neither FGT (p=.52) nor BPE (p=.15) differed significantly between pCR and 
non-pCR when evaluated by two sample chi-squared test. 

 PR1 
 pCR Non-pCR 
Fibroglandular tissue 

Fatty 1 0 
Scattered 2 3 

Heterogeneous 7 3 
Extremely dense 6 6 

Background Parenchymal Enhancement 
Minimal  1 3 

Mild  5 6 
Moderate 7 1 

Marked 3 2 
Abbreviations: pCR, pathological complete response; PR1, pathologic response cohort 
1.   
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eFigure 5. Correlation of HER2-E-associated feature sets with lymphocyte density 
within tumor and peripheral tissue on pre-treatment biopsy by peri-tumoral 
distance. a) HER2-E-associated features 0-3mm from the tumor are significantly 
associated with TIL density (n=27). b) For patients whose biopsy contained peri-tumoral 
tissue (n=13), correlation between radiomic features and peripheral lymphocytic density 
was stronger with distance from the tumor, but was not significant. 
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