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1. PROPERTIES OF STABILIZED INVERSE PROBABILITY OF TREATMENT WEIGHTS

We show that pr∗(Ti | Xi) = pr(Ti) and pr∗(Yi | Ti, Xi) = pr(Yi | Ti, Xi) if Wi =
Wi(Ti, Xi) = pr(Ti)/pr(Ti | Xi). Without loss of generality, suppose Ti and Yi are continuous 10

on the real line. Then

pr∗(Ti | Xi) =
pr(Ti | Xi)Wi(Ti, Xi)∫∞

−∞ pr(Ti | Xi)Wi(Ti, Xi) dTi
=

pr(Ti)∫∞
−∞ pr(Ti) dTi

= pr(Ti),

pr∗(Yi | Ti, Xi) =
pr(Yi | Ti, Xi)Wi(Ti, Xi)∫∞

−∞ pr(Yi | Ti, Xi)Wi(Ti, Xi) dYi
=

pr(Yi | Ti, Xi)∫∞
−∞ pr(Yi | Ti, Xi) dYi

= pr(Yi | Ti, Xi).

2. CATEGORICAL TREATMENT

The covariate balancing conditions for categorical treatments with J categories are (Imai &
Ratkovic, 2015)

1

n

n∑
i=1

X∗i =
1

n

n∑
i=1

I(Ti = j)WiX
∗
i (j = 1, . . . , J), (1)

where X∗i = (1, X̃T
i )T and I(·) is an indicator function. For identifiability one set of conditions 15

is redundant and so there are J − 1 sets of conditions in total. Because X∗i includes 1, these
conditions constrain the number of units in each category to be equal to n in the weighted data.
The other conditions constrain the weighted mean of X̃i in each category to be equal to the over-
all mean of X̃i in the observed data. Using the proposed framework, we specify a multinomial
logistic regression model for the propensity function in the weighted data 20

pr{Ti = j | X̃i;β(W )} =
exp{βj(W )TX∗i }

1 +
∑J−1

j=1 exp{βj(W )TX∗i }

with βJ(W ) = 0. The corresponding score equations are

n∑
i=1

WiX
∗
i

[
I(Ti = j)− exp{βj(W )TX∗i }

1 +
∑J−1

j=1 exp{βj(W )TX∗i }

]
= 0.
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The next step is to force the regression coefficients for X̃i to zeros, and the intercept terms in
β(W ) to preserve the marginal distribution of Ti. This leads to the set of conditions

n∑
i=1

WiX
∗
i {I(Ti = j)− π̂j} = 0, (2)

where π̂j is the observed proportion of units in the treatment category j. This set of conditions
impose equality in the numbers of units in the weighted and observed data for each treatment cat-25

egory, since X∗i includes 1. They also constrain the mean of X̃i in each category in the weighted
data to be equal to the overall weighted mean of X̃i. Hence (2) is analogous to (1).

3. TWO-PART LOG-SKEW-NORMAL MODEL

Another approach to modelling semi-continuous treatments is to specify a model that can
account for right skewness in the distribution of the positive values of Ti, such as the flexible30

two-part log-skew-normal model in Smith et al. (2014)

pr(Ti | X̃i;πi, ωi, ξi, κ) = (1− πi)1−δi
[

2πi
ωiTi

φ

(
log Ti − ξi

ωi

)
Φ

{
κ

(
log Ti − ξi

ωi

)}]δi
,

(3)
where πi = 1/[1 + exp{−βπ(W )TX∗i }], ξi = βξ(W )TX∗i , ωi = exp{βω(W )TX∗i }, κ =

κ(W ), X∗i = (1, X̃T
i )T, δi = I(Ti > 0), where I(·) is an indicator function, and φ(·) and Φ(·)

are standard normal density and distribution functions. The parameter κ accounts for skewness in
the positive values of Ti; a positive/negative value of κ indicates that the distribution is right/left35

skewed, while κ = 0 corresponds to the two-part log-normal distribution. The weighted score
equations for the parameters in the continuous component of the model are

n∑
i=1

WiX
∗
i δi

[(
log Ti − ξi

ω2
i

)
− κ

ωi

φ{κ(log Ti − ξi)/ωi}
Φ{κ(log Ti − ξi)/ωi}

]
= 0, (4)

n∑
i=1

WiX
∗
i δi

[
−1 +

(
log Ti − ξi

ωi

)2

− κ(log Ti − ξi)
ωi

φ{κ(log Ti − ξi)/ωi}
Φ{κ(log Ti − ξi)/ωi}

]
= 0, (5)

n∑
i=1

Wiδi

[(
log Ti − ξi

ωi

)
φ{κ(log Ti − ξi)/ωi}
Φ{κ(log Ti − ξi)/ωi}

]
= 0, (6)

where (4)–(6) corresponds to the score equations for βξ(W ), βω(W ) and κ(W ), respectively.
Together with the conditions from the binary component, one set of conditions are

n∑
i=1

WiX
∗
i {δi − π̂0} = 0,

n∑
i=1

WiX
∗
i δi

(
log Ti − ξ̂0

ω̂2
0

)
= 0,

n∑
i=1

WiX
∗
i δi

{
−1 +

(log Ti − ξ̂0)2

ω̂2
0

}
= 0,

n∑
i=1

Wiδi

(
log Ti − ξ̂0

ω̂0

)
= 0,

where π̂0, ξ̂0 and ω̂0 are the maximum likelihood estimates of πi, ξi and ωi obtained by fitting (3),40

but without covariates and with κ = 0, to the observed treatment data. Fixing κ = 0 in the pro-
jection function does not invalidate the constructed weights for consistently estimating causal
treatment effects.
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4. COUNT TREATMENT

In many situations it is of interest to investigate the causal dose-response relationship between 45

a count treatment and the outcome. A common example is the effect of treatment frequency, for
instance, the effect of smoking frequency on annual medical expenditure (Imai & van Dyk, 2004)
or the effect of the number of prescribed pulse steroids, a common treatment in systemic lupus
erythematosus, on organ damage accrual (Mosca et al., 2011).

A natural approach to modelling a count treatment Ti is to specify a negative binomial model 50

pr(Ti | X̃i; θi, µi) =
Γ(Ti + 1/θi)

Γ(1/θi)Ti!

(
θiµi

1 + θiµi

)Ti ( 1

1 + θiµi

)1/θi

(Ti = 0, 1, . . .), (7)

where µi = E{Ti | X̃i;βµ(W )} = exp{βµ(W )TX∗i }, θi = exp{βθ(W )TX∗i } and X∗i =

(1, X̃T
i )T. The parameter θi accounts for over-dispersion, a common phenomenon in many count

data in practice. Specifically, var{Ti | X̃i;βµ(W ), βθ(W )} = µi(1 + θiµi). The corresponding
score equations for the parameters βµ(W ) and βθ(W ) are

n∑
i=1

WiX
∗
i

(
Ti − µi
1 + θiµi

)
= 0, (8) 55

n∑
i=1

Wi
X∗i
θi

{
θi(Ti − µi)

1 + θiµi
+ log(1 + θiµi)− ψ(Ti + 1/θi) + ψ(1/θi)

}
= 0, (9)

where ψ(x) is the derivative of the log Γ(x) function. In order for X̃i and Ti to be unassociated
as described by (7) in the weighted data, we find weights W as solutions to the conditions

n∑
i=1

WiX
∗
i

(
Ti − µ̂0
1 + θ̂0µ̂0

)
= 0, (10)

n∑
i=1

Wi
X∗i
θ̂0

{
θ̂0(Ti − µ̂0)

1 + θ̂0µ̂0
+ log(1 + θ̂0µ̂0)− ψ(Ti + 1/θ̂0) + ψ(1/θ̂0)

}
= 0, (11) 60

where µ̂0 and θ̂0 are obtained by fitting (7), but without covariates, to the observed treatment
data. Conditions (10) and (11) are obtained by fixing the regression coefficient components of
βµ(W ) and βθ(W ) to zeros and the exponential of the intercept terms to µ̂0 and θ̂0 in (8) and (9).

5. ADDITIONAL SIMULATION RESULTS

Because Approach 2 performs so poorly relative to Approach 1 when the transformed covari- 65

ates are used, it is difficult to distinguish between the performance of Approach 1 under model
structures A and B in Fig. 1 of the main text. We therefore summarize the corresponding results
in Table 1. Within Approach 1, estimates from model structure A have smaller biases but larger
variances than estimates from model structure B. Overall, estimates from model structure A have
smaller mean square errors for n ≥ 1000. 70

6. FURTHER DETAILS OF THE APPLICATION

6·1. Descriptive statistics
The mean of the time period Oi was 1.36 years with standard deviation 0.87 years. Of the

1342 patients, 1156 patients had no damage accrual within Oi, while the remaining 186 patients
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Table 1: Simulation results from Approach 1 under model structures A and B with
transformed covariates

Model structure A Model structure B
Bias Variance Mean square error Bias Variance Mean square error

(10−2) (10−3) (10−2) (10−2) (10−3) (10−2)
n = 500 7.9 4.30 1.10 8.6 3.30 1.10
n = 1000 7.2 2.10 0.87 12.0 1.60 0.95
n = 2500 8.3 0.87 0.77 9.0 0.66 0.87
n = 4000 8.3 0.54 0.74 9.0 0.41 0.85

developed between one and four damaged items. Steroids were prescribed to 907 patients. The75

mean positive steroid dose was 9.04 milligrams per day with standard deviation 8.23 milligrams
per day. The mean British Isles Lupus Assessment Group disease activity index was 0.51 with
standard deviation 0.49. The mean age at diagnosis was 34.31 years with standard deviation
13.55 years. The mean disease duration was 1.43 years with standard deviation 0.91 years. The
race/geographic region groups comprised of 118 Caucasians from the United States, 171 Hispan-80

ics from Mexico, 31 Hispanics from elsewhere, 65 Africans from the United States, 138 Africans
from elsewhere, 229 Asians, 46 patients with other ethnicities and 544 Caucasians from Canada
and Europe, which was the reference group.

6·2. Details of the estimated weights
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Fig. 1: Box plots of the estimated weights from the application in § 7 of the main text after
scaling by their averages.
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Figure 1 shows that the weights from Approach 2 have larger ranges than those from Approach 85

1. Furthermore, several weights from Approach 2 are greater than the largest weight from Ap-
proach 1, which is 4.37. The variances of the weights from Approaches 1 and 2 are 0.32 and 0.27,
and 0.53 and 0.43 under model structures A and B. Thus model structure B gives less variable
weights, which was also seen in the simulations. For Approach 1, 42 and 36 weights are zeros
under model structures A and B. Interestingly, these weights correspond to small weights under 90

Approach 2; they all practically lie within the first decile, implying that the observed treatments
for the respective patients had large estimated conditional probabilities of occurrence. This sug-
gests that the proposed method is removing a subset of units that have most of their estimated
propensity function mass concentrated on a small interval around their observed treatment, i.e.,
those that are close to, or are in fact, violating the positivity assumption that was stated in § 2 95

of the main text; see Peterson et al. (2010) for a comprehensive discussion. This is similar to
removing units with extreme propensity scores (Crump et al., 2009).

Apart from examining the stability of estimated weights, researchers are also encouraged to
check covariate balance before estimating causal treatment effects. A natural approach to as-
sessing covariate balance is to apply weighted regression to the observed treatment data and 100

then to use standard statistical tests and confidence intervals to examine covariate associations.
We follow this approach by fitting (11) of the main text to the data weighted by the weights
from Approach 2. Unlike Approach 1, Approach 2 does not necessarily balance covariates. We
construct 95% percentile confidence intervals with 1000 non-parametric bootstrap samples. For
comparison, we apply the same procedure to the observed data. 105

Table 2 shows that many covariates are strongly associated with treatment assignment in the
observed data. For example, British Isles Lupus Assessment Group disease activity index, as the
measure of disease activity, is positively associated with steroid prescription and steroid dose. Re-
assuringly, both models under Approach 2 have greatly reduced most of the associations between
covariates and treatment assignment, as indicated by smaller estimated regression coefficients. 110

An interesting exception occurs for other ethnicities, which appears to have a stronger associ-
ation with the variance of steroid dose in the weighted data. Most of the confidence intervals
also suggest that there is insufficient evidence to reject the hypothesis of reasonable covariate
balance. However, following Imai et al. (2008), caution should be applied when interpreting es-
timated confidence intervals with regard to covariate balance since wide intervals may be more 115

indicative of a lack of statistical power to detect imbalances of observed covariates, e.g., due
to highly variable weights, rather than an improvement in covariate balance. More importantly,
estimated confidence intervals should not be used as stopping rules for improving covariate bal-
ance because an arbitrarily small non-zero regression coefficient estimate, even if it is within a
narrow confidence interval containing zero, can still lead to substantial bias in treatment effect 120

estimates (Imai et al., 2008). Our method aligns well with this caution as it forces covariates to
be balanced across treatment levels as specified by a chosen propensity function model.

As an additional diagnostic check for covariate balance, we calculate the standardized mean
differences in covariates within quintiles of the positive steroid dose (0, 1.13], (1.13, 3.61],
(3.61, 7.34], (7.34, 13.75] and > 13.75 milligrams per day relative to no steroids, in the ob- 125

served and weighted data. Table 3 presents the results for both approaches under model structure
A, the results for model structure B are similar. From Table 3, it is clear that the standardized
mean differences in the observed data are relatively large, particularly for an important con-
founder, British Isles Lupus Assessment Group disease activity index, in the > 13.75 milligrams
per day category. In contrast, both weighting approaches greatly reduce the standardized mean 130

differences relative to the observed data, though Approach 1 is generally better, especially for
the strong confounder British Isles Lupus Assessment Group disease activity index.
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Table 2: Parameter estimates and 95% confidence intervals from fitting (11) of
the main text to the observed and weighted data, with weights from Approach 2

Unweighted Model structure A Model structure B
Binary component:

Intercept −0.11 (−0.42, 0.17) 0.81 (0.60, 0.99) 0.83 (0.61, 1.01)
BILAG 1.05 (0.72, 1.40) −0.05 (−0.30, 0.36) −0.06 (−0.30, 0.34)
Age at diagnosis∗ −0.16 (−0.29, −0.03) −0.07 (−0.17, 0.01) −0.08 (−0.16, 0.00)
Disease duration −0.14 (−0.26, 0.01) −0.03 (−0.11, 0.03) −0.03 (−0.10, 0.03)
Caucasian/USA −0.01 (−0.42, 0.43) 0.09 (−0.16, 0.33) 0.10 (−0.17, 0.39)
Hispanic/Mexico 1.39 (0.97, 1.90) 0.10 (−0.21, 0.40) 0.09 (−0.23, 0.37)
Hispanic/elsewhere 0.14 (−0.66, 0.96) −0.01 (−0.21, 0.16) 0.12 (−0.18, 0.55)
African/USA 1.47 (0.84, 2.30) −0.07 (−0.44, 0.27) −0.04 (−0.41, 0.31)
African/elsewhere 1.25 (0.80, 1.79) −0.05 (−0.21, 0.11) −0.06 (−0.23, 0.09)
Asian 1.74 (1.32, 2.19) 0.15 (−0.04, 0.36) 0.08 (−0.09, 0.23)
Other ethnicities 0.42 (−0.25, 1.17) −0.11 (−0.26, 0.13) −0.08 (−0.24, 0.05)

Continuous component:
mean model

Intercept 1.78 (1.64, 1.91) 1.92 (1.79, 2.07) 1.94 (1.84, 2.06)
BILAG 0.39 (0.30, 0.49) −0.02 (−0.16, 0.10) 0.02 (−0.07, 0.12)
Age at diagnosis∗ −0.04 (−0.09, 0.02) 0.04 (−0.02, 0.10) 0.02 (−0.02, 0.05)
Disease duration −0.03 (−0.08, 0.03) 0.03 (−0.06, 0.10) 0.01 (−0.05, 0.05)
Caucasian/USA −0.39 (−0.64, −0.13) 0.10 (−0.17, 0.37) 0.22 (−0.17, 0.60)
Hispanic/Mexico 0.17 (−0.01, 0.33) 0.09 (−0.03, 0.19) 0.04 (−0.06, 0.13)
Hispanic/elsewhere 0.36 (−0.09, 0.77) 0.07 (−0.15, 0.31) 0.00 (−0.71, 0.48)
African/USA −0.09 (−0.36, 0.16) 0.08 (−0.03, 0.22) 0.16 (−0.01, 0.43)
African/elsewhere 0.20 (0.05, 0.34) 0.01 (−0.15, 0.13) 0.06 (−0.03, 0.14)
Asian 0.03 (−0.10, 0.16) 0.03 (−0.20, 0.24) 0.02 (−0.07, 0.09)
Other ethnicities 0.20 (−0.13, 0.49) 0.04 (−0.38, 0.19) −0.05 (−0.24, 0.13)

standard deviation model
Intercept −0.01 (−0.25, 0.02) −0.24 (−0.34, −0.11) −0.08 (−0.23, 0.08)
BILAG −0.04 (−0.14, 0.05) 0.03 (−0.13, 0.18) 0.00 (−0.15, 0.15)
Age at diagnosis∗ −0.04 (−0.10, 0.02) −0.02 (−0.08, 0.01) 0.07 (−0.14, −0.01)
Disease duration −0.09 (−0.16, −0.02) −0.02 (−0.09, 0.03) −0.09 (−0.18, −0.02)
Caucasian/USA 0.13 (−0.06, 0.29) 0.09 (−0.12, 0.22) 0.16 (−0.15, 0.32)
Hispanic/Mexico 0.02 (−0.14, 0.16) 0.02 (−0.08, 0.12) 0.01 (−0.16, 0.17)
Hispanic/elsewhere 0.17 (−0.36, 0.45) 0.03 (−0.24, 0.21) 0.25 (−0.38, 0.49)
African/USA 0.12 (−0.10, 0.30) 0.06 (−0.06, 0.16) 0.16 (−0.11, 0.33)
African/elsewhere −0.16 (−0.34, 0.00) 0.05 (−0.07, 0.17) −0.11 (−0.31, 0.05)
Asian −0.26 (−0.40, −0.12) 0.04 (−0.11, 0.13) −0.25 (−0.41, −0.09)
Other ethnicities 0.02 (−0.30, 0.26) 0.16 (0.017, 0.31) 0.15 (−0.12, 0.35)

*, standardized version of the covariate; BILAG, British Isles Lupus Assessment Group disease activity index; USA,
United States of America.
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Table 3: Standardized mean differences in covariates within quintiles of positive
steroid dose relative to no steroids in the observed and weighted data under model
structure A

Steroid dose categories
(0, 1.1.3] (1.13, 3.61] (3.61, 7.34] (7.34, 13.75] > 13.75

BILAG (10−2) (10−2) (10−2) (10−2) (10−2)
Unweighted 2.13 9.23 18.97 35.00 63.20
Approach 1 2.14 0.70 −2.80 0.42 2.01
Approach 2 4.83 −6.38 −1.88 −4.42 1.67

Age at diagnosis∗

Unweighted −12.00 −29.68 −18.81 −19.86 −41.33
Approach 1 7.51 −14.63 0.17 4.05 −0.74
Approach 2 −11.51 −21.20 −3.51 −0.94 −3.42

Disease duration
Unweighted −13.40 −3.25 −5.21 −9.60 −10.07
Approach 1 −0.48 5.29 −3.12 −2.86 5.30
Approach 2 −8.59 2.09 −2.47 −5.32 6.42

Caucasian/USA
Unweighted 10.00 −4.18 −18.89 −25.54 −23.67
Approach 1 −0.48 2.72 1.95 −3.32 0.39
Approach 2 −1.54 4.55 −0.69 −2.79 6.61

Hispanic/Mexico
Unweighted 5.89 22.10 19.48 15.90 35.80
Approach 1 −7.17 6.41 2.70 −3.97 0.52
Approach 2 −7.31 8.74 4.51 −1.84 5.52

Hispanic/elsewhere
Unweighted −8.62 1.07 −14.45 −1.26 −0.48
Approach 1 −6.17 11.65 −10.00 3.35 −2.18
Approach 2 −5.44 10.35 −9.72 3.27 −1.32

African/USA
Unweighted 26.79 8.79 14.08 0.72 16.10
Approach 1 0.01 −3.90 6.36 −7.03 2.41
Approach 2 −1.86 −7.05 2.69 −8.71 3.78

African/elsewhere
Unweighted 0.58 7.97 13.93 19.52 23.08
Approach 1 −1.38 0.02 −0.27 −1.16 2.79
Approach 2 −0.30 −1.84 −3.16 −1.12 −0.89

Asian
Unweighted 10.40 32.28 39.48 36.65 14.91
Approach 1 0.32 1.93 −3.54 1.42 1.14
Approach 2 8.81 4.64 3.68 3.69 3.64

Other ethnicities
Unweighted 4.37 −5.08 −7.84 −2.35 6.90
Approach 1 3.31 −0.32 −1.80 2.43 −3.16
Approach 2 3.92 −2.52 −5.81 −0.65 −0.13

* standardized version of the covariate; BILAG, British Isles Lupus Assessment Group disease activity index; USA,
United States of America.
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