Parameter	Median [2.5, 97.5%ile] bias of estimate (\log_{10})	Median absolute error of estimate (\log_{10})	95% CI coverage
Total variation $\left(\sqrt{\sigma_a^2 + \sigma_b^2 + \sigma_c^2}\right)$	+0.016 [-0.092, +0.149]	0.044	94.8%
Aliquot & batch variation $\left(\sqrt{\sigma_a^2 + \sigma_b^2}\right)$	-0.016 [-0.259, +0.146]	0.059	97.3%
Aliquot & lab variation $\left(\sqrt{\sigma_a^2 + \sigma_c^2}\right)$	+0.064 [-0.042, +0.179]	0.065	76.9%
Batch & lab variation $\left(\sqrt{\sigma_b^2 + \sigma_c^2}\right)$	-0.015 [-0.234, +0.148]	0.065	95.4%
σ_a	+0.044 [-0.175 , $+0.174$]	0.083	88.7%
σ_b	-0.203 [-0.248, +0.114]	0.203	92.2%
σ_c	+0.014 [-0.189, +0.196]	0.119	93.4%
$\beta_{\mathbf{S}}$	+0.000 [-0.282, +0.268]	0.095	95.3%
eta_2	+0.013 [-0.330, +0.367]	0.127	93.7%
β_3	+0.001 [-0.396, +0.408]	0.134	93.9%
eta_4	-0.012 [-0.469, +0.415]	0.142	94.3%