

(ok200)

(XS) dyf-5(XS)

■non-Dyf ■partial Dyf

■Dyf ≡ectopic Dyf

D

dyf-5(mn400) Merge AMshp::mCherry AWAp:myr-GFP 84%

Figure S1. DYF-18 acts neuronally to regulate AWA cilia morphology. Related to Figure 1 and Figure 2.

A) Representative images of AWA expressing the indicated fusion proteins in wild-type and *dyf-18(ok200)* animals. Cilia were visualized via expression of *gpa-4* Δ 6p::*myr-gfp* or *gpa-4* Δ 6p::*mCherry*. Numbers at top right indicate the percentage of neurons exhibiting the shown phenotypes; n≥30 neurons each in 3 independent experiments. The cilia base and cilia are indicated by yellow and white arrowheads, respectively; the dendrite is marked by an arrow. Anterior is at top in all images. Scale bars: 10 µm.

B) Percentage of adult hermaphrodites of the indicated genotypes exhibiting AWA cilia phenotypes. Numbers in each bar indicate the number of examined neurons in 2-3 independent experiments. *** indicates different from wild-type at P<0.001; ns – not significant (Wilcoxon rank-sum test).

C) Representative images of AWA (green) and the amphid sheath cell (red) in adult hermaphrodites of the indicated genotypes. AWA was visualized via expression of *gpa-4∆6p::myr-gfp*, the amphid sheath cell was visualized via expression of *F16F9.3p::mCherry* (gift of Shai Shaham) [S1]. Wild-type *dyf-18* sequences were expressed in ciliated neurons or the amphid sheath cell under the *bbs-8* and *F16F9.3* promoters, respectively. Numbers at top right indicate the percentage of neurons exhibiting the shown phenotypes; n≥30 neurons each in 3 independent experiments. The cilia base and cilia are indicated by yellow and white arrowheads, respectively; the dendrite is marked by an arrow. Anterior is at top in all images. Scale bars: 10 µm.
D) Percentages of neurons in adult hermaphrodites of the indicated genotypes exhibiting dye-filling phenotypes. Numbers in each bar indicate the number of examined animals in

2 independent experiments. Non-Dyf – dye uptake in 12 pairs of amphid sensory neurons; partial Dyf – dye uptake in <12 pairs of amphid sensory neurons; Dyf – no dye uptake in amphid sensory neurons; ectopic Dyf – dye uptake in additional sensory neurons.

В

Figure S2. Localization and movement of IFT motors in AWA cilia. Related to Figure 4.

A) Representative kymographs of immobile OSM-3::GFP at the distal tips of wild-type

AWA cilia. Three independent examples are shown.

B-D) Representative kymographs of KAP-1:GFP (B), OSM-3::GFP (C) and OSM-

6::GFP (D) movement in the proximal stalks of AWA cilia in wild-type and dyf-

18(ok200) mutants. Two independent examples are shown for each.

WT-like cilia
 Long cilia with >5 proximal branches
 Long cilia with <5 proximal branches
 Truncated cilia

Figure S3. AWA axonemal stability is altered in *dyf-18* mutants. Related to Figure 5 and Figure 6.

A) Representative images (left) and quantification of AWA cilia morphologies (right) in wild-type and *dyf-18(ok200)* mutant animals grown at 20°C and 25°C. The cilia base and cilia are indicated by yellow and white arrowheads, respectively; the dendrite is marked by an arrow in images at left. n \geq 30 neurons. Anterior is at left. Scale bar: 10 µm. B) Representative images of the localization of the polyglutamylated tubulin binding protein CSAP [S2] in wild-type and *dyf-18(ok200)* mutants. The cilia base and cilia are indicated by yellow and white arrowheads, respectively; the dendrite is marked by an arrow. Numbers at top right indicate the percentage of neurons exhibiting the shown phenotypes; n \geq 30 in 3 independent experiments. Scale bar: 10 µm.

Α

Figure S4. Sensory behavioral phenotypes of *dyf-5* and *dyf-18* mutants. Related to Figure 6.

A, B) Behavioral responses of adult animals of the indicated genotypes to a point source of diacetyl (DIA) diluted to 10^{-3} and isoamyl alcohol (IAA) diluted to 10^{-2} . Chemotaxis index = (number of animals in plate segments containing the odor) – (number of animals in plate segments containing ethanol)/total number of animals. Horizontal bar indicates mean, errors are SEM. Each dot is the chemotaxis index of a single assay with ~100 animals; assays were performed at least in triplicate on three independent days. *, **, and *** indicate different from wild-type at *P*<0.05, 0.01, and 0.001, respectively; #, ## and ### indicate different from *dyf-18(ok200)* at *P*<0.05, 0.01 and 0.001, respectively (ANOVA with Tukey's posthoc corrections). Animals in A and B were grown at 20°C and 15°C, respectively.

Figure S5. Movement of OSM-3::GFP in ASH cilia. Related to Figure 7.

Shown are two representative kymographs each for OSM-3::GFP movement in the ASH cilia of animals of the indicated genotypes. Velocities shown in Table S3 were calculated from the first halves of the kymographs in wild-type, *dyf-18* and *dyf-18; tbb-4* double mutants (middle segments).

Strain	Fusion protein ^a	Mean anterograde velocity $(\mu m/sec \pm SD)^b$	n/N
Wild-type	KAP-1::GFP	0.66 ± 0.15	322/16
dyf-18(ok200)	KAP-1::GFP	0.70 ± 0.12	609/27
Wild-type	OSM-3::GFP	1.34 ± 0.43	742/17
dyf-18(ok200)	OSM-3::GFP	1.30 ± 0.37	425/16
Wild-type	OSM-6::GFP	0.72 ± 0.25	701/27
dyf-18(ok200)	OSM-6::GFP	$0.90\pm0.52^{\circ}$	745/15

Table S1. Anterograde IFT velocities in AWA cilia. Related to Figure 4.

^aAll fusion proteins were expressed under the $gpa-4\Delta 6$ promoter.

^bIFT was quantified in the proximal stalk of wild-type cilia, and in a region

approximately 7 μ m from the cilia base in *dyf-18* mutants.

^cDifferent from wild-type at *P*<0.001.

All analyses were performed in one day old adult hermaphrodites grown at 20°C. n: number of GFP particles; N: number of cilia.

Also see Figure S2B-D.

Genotype	Percentage of neurons exhibiting phenotype:				
	Wild-type	Elongated	Truncated	n	References
atat-2(ok2415)	92.6	0.0	7.4	27	[S3]
dyf-18(ok200); atat-2(ok2415)	0.0	89.7	10.3	29	
ccpp-1(ok1821)	89.7	0.0	10.3	29	[S4]
ccpp-1(ok1821); dyf-18(ok200)	7.4	85.2	7.4	27	
klp-13(oy154)	96.2	0.0	3.8	26	[85]
dyf-18(ok200); klp-13(oy154)	0.0	95.2	4.8	21	
ccpp-6(ok382)	91.3	0.0	8.7	23	[S6]
ccpp-6(ok382); dyf-18(ok200)	5.7	88.6	5.7	35	
ttll-4(tm3310)	95.7	0.0	4.3	23	[S4, S6]
ttll-4(tm3310); dyf-18(ok200)	4.0	92.0	4.0	25	L / J
mec-17(ok2109)	96.7	0.0	3.3	30	[S7]

Table S2. AWA cilia morphology in animals mutant for tubulin post-translational modification genes. Related to Figure 6.

Table S3. Anterograde OSM-3::GFP velocities in the middle segments of ASH cilia. Related to Figure 7.

Strain expressing OSM-3::GFP ^a	Mean anterograde velocity	n/N
	$(\mu m/sec \pm SD)^b$	
Wild-type	0.63 ± 0.18	866/31
dyf-18(0k200)	$0.46\pm0.15^{\rm c}$	670/43
tbb-4(sa127)	$0.95\pm0.29^{\circ}$	811/40
dyf-18(ok200); tbb-4(sa127)	$0.75\pm0.28^{\text{d,e}}$	864/41

^aOSM-3::GFP was expressed under the *sra-6* promoter.

^bIFT velocities were quantified in the middle segments of ASH cilia.

^cDifferent from wild-type at *P*<0.001.

^dDifferent from *dyf-18* at P < 0.001.

^eDifferent from $t\tilde{b}b-4$ at P < 0.001.

All analyses were performed in one day old adult hermaphrodites grown at 15°C. n: number of GFP particles; N: number of cilia.

Also see Figure S5.

Supplemental References

- S1. Bacaj, T., Tevlin, M., Lu, Y., and Shaham, S. (2008). Glia are essential for sensory organ function in *C. elegans*. Science *322*, 744-747.
- S2. Backer, C.B., Gutzman, J.H., Pearson, C.G., and Cheeseman, I.M. (2012). CSAP localizes to polyglutamylated microtubules and promotes proper cilia function and zebrafish development. Mol Biol Cell *23*, 2122-2130.
- S3. Shida, T., Cueva, J.G., Xu, Z., Goodman, M.B., and Nachury, M.V. (2010). The major alpha-tubulin K40 acetyltransferase alphaTAT1 promotes rapid ciliogenesis and efficient mechanosensation. Proc Natl Acad Sci USA *107*, 21517-21522.
- S4. O'Hagan, R., Piasecki, B.P., Silva, M., Phirke, P., Nguyen, K.C., Hall, D.H., Swoboda, P., and Barr, M.M. (2011). The tubulin deglutamylase CCPP-1 regulates the function and stability of sensory cilia in *C. elegans*. Curr Biol 21, 1685-1694.
- S5. Niwa, S., Nakajima, K., Miki, H., Minato, Y., Wang, D., and Hirokawa, N. (2012). KIF19A is a microtubule-depolymerizing kinesin for ciliary length control. Dev Cell 23, 1167-1175.
- S6. Kimura, Y., Kurabe, N., Ikegami, K., Tsutsumi, K., Konishi, Y., Kaplan, O.I., Kunitomo, H., Iino, Y., Blacque, O.E., and Setou, M. (2010). Identification of tubulin deglutamylase among *Caenorhabditis elegans* and mammalian cytosolic carboxypeptidases (CCPs). J Biol Chem 285, 22936-22941.
- S7. Akella, J.S., Wloga, D., Kim, J., Starostina, N.G., Lyons-Abbott, S., Morrissette, N.S., Dougan, S.T., Kipreos, E.T., and Gaertig, J. (2010). MEC-17 is an alphatubulin acetyltransferase. Nature 467, 218-222.