Electronic Supplementary Material

Journal: Molecular Imaging and Biology

[¹⁸F]FE-OTS964: A TOPK Inhibitor for *In Vivo* PET Imaging in Mouse Brain Cancer Model

Giacomo Pirovano¹, Sheryl Roberts¹, Christian Brand¹, Patrick L. Donabedian¹, Christian Mason¹, Paula Demétrio de Souza¹, Geoff S. Higgins², Thomas Reiner^{1,3,*}

¹ Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA

² CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK

³ Department of Radiology, Weill Cornell Medical College, New York, NY, USA

*Corresponding author: Thomas Reiner, Ph.D. Department of Radiology, MSK 1275 York Avenue New York, NY 10065 Phone: 646-888-3461 Fax: 646-422-0408 Email: reinert@mskcc.org

Fig. S1: Structures and relevant physicochemical parameters of OTS514 and OTS964.

Fig. S2: Structures of OTS514 and OTS964 and relevant physicochemical parameters

Fig. S3: QC normalized chromatograms of (left to right) OTS964 hydrochloride, *O*-alkylated OTS964, *N*-alkylated OTS964, and *O*-,*N*-alkylated OTS964

Fig. S4: LC-MS chemical identification of (top to bottom) OTS964 hydrochloride, *O*-alkylated OTS964, *N*-alkylated OTS964, and *O*-,*N*-alkylated OTS964

Fig. S5: ¹H NMR of OTS964. ¹H NMR (DMSO-d6, 600 MHz): δ 10.65 (s, 1H, -N(CH₃)₂<u>H</u>⁺, 9.13 (s, 1H, Ar-N<u>H</u>), 9.10 (s, 1H, -O<u>H</u>), 7.58 (d, *J* = 5.4 Hz, 1H, -CHC<u>H</u>S), 7.42 – 7.38 (m, 2H, -C<u>H</u>^{Ar}), 7.18 – 7.13 (m, 2H, -C<u>H</u>^{Ar}), 6.95 (s, 1H, -C<u>H</u>^{Ar}), 5.73 (d, *J* = 5.4 Hz, 1H, -C<u>H</u>CHS), 3.42 – 3.35 (m, 3H, Ar-C<u>H</u>(CH₃)C<u>H</u>₂-), 2.77 (dd, *J* = 13.8, 4.8 Hz, 6H, -N(C<u>H₃)₂), 2.43 (s, 3H, -Ar-C<u>H</u>₃) 1.29 (d, *J* = 6.8 Hz, 3H, -C<u>H₃). Identity by LC-MS analysis, ESI-MS (ES⁺) calculated for C₂₃H₂₄FN₂O₂S [M+H]⁺ m/z 393.30, found 393.16</u></u>

Fig. S6: ¹H NMR of *O*-alkylated OTS964. ¹H NMR (DMSO-d6, 600 MHz): δ 10.78 (s, 1H, -N(CH₃)₂<u>H</u>⁺), 9.19 (s, 1H, Ar-N<u>H</u>), 7.63_(d, J = 5.4 Hz, 1H, -CHC<u>H</u>S), 7.45–7.39 (m, 2H, -C<u>H</u>^{Ar}), 7.26 (s, 1H, -C<u>H</u>^{Ar}), 7.22 – 7.15 (m, 2H, -C<u>H</u>^{Ar}), 5.73 (d, J = 5.4 Hz, 1H, -C<u>H</u>CHS), 4.42 (ddd, J = 47.8, 7.5, 3.8 Hz, 2H, -OCH₂C<u>H</u>₂F), 4.13 (ddd, J = 30.2, 4.5, 3.2 Hz, 2H, -OC<u>H</u>₂CH₂F), 3.46 – 3.36 (m, 3H, Ar-C<u>H</u>(CH₃)C<u>H</u>₂-), 2.76 (dd, J = 28.7, 4.8 Hz, 6H, -N(C<u>H</u>₃)₂), 2.51 (s, 3H, Ar-C<u>H</u>₃), 1.31 (d, J = 6.7 Hz, 3H, -C<u>H</u>₃). Identity by LC-MS analysis, ESI-MS (ES⁺) calculated for C₂₅H₂₇FN₂O₂S [M+H]⁺ m/z 439.4, found 439.18

Fig. S7: ¹H NMR of *N*-alkylated OTS964. ¹H NMR (600 MHz, DMSO-*d*₆) δ 9.32 (s, 1H, -N(CH₃)₂<u>H</u>⁺), 9.16 (s, 1H, -OH), 7.61 (d, *J* = 5.5 Hz, 1H, -CHC<u>H</u>S), 7.43 (d, *J* = 7.7 Hz, 2H, -C<u>H</u>^{Ar}), 7.24 – 7.15 (m, 3H, -C<u>H</u>^{Ar}), 5.92 (d, *J* = 5.5 Hz, 1H, -C<u>H</u>CHS), 4.91 – 4.73 (m, 4H, -NC<u>H</u>₂C<u>H</u>₂F), 3.45 – 3.30 (m, 3H, Ar-C<u>H</u>(CH₃)C<u>H</u>₂-), 2.86 – 2.71 (m, 6H, -N(C<u>H</u>₃)₂), 2.65 – 2.57 (m, 3H, Ar-C<u>H</u>₃), 1.31 (d, *J* = 6.7 Hz, 3H, -C<u>H</u>₃). Identity by LC-MS analysis, ESI-MS (ES⁺) calculated for C₂₅H₂₇FN₂O₂S [M+H]⁺ m/z 439.40, found 439.18

Fig. S8: ¹H NMR of *O*-,*N*-alkylated OTS964. ¹H NMR (600 MHz, DMSO-*d*₆) δ 9.33 (d, *J* = 11.2 Hz, 1H, -N(CH₃)₂<u>H</u>⁺), 7.66 (d, *J* = 5.5 Hz, 1H, -CHC<u>H</u>S), 7.48 (s, 1H, -C<u>H</u>^{Ar}), 7.43 (m, 2H, -C<u>H</u>^{Ar}), 7.24 – 7.16 (m, 2H, -C<u>H</u>^{Ar}), 5.90 (d, *J* = 5.5 Hz, 1H, -C<u>H</u>CHS), 4.92 – 4.83 (m, 2H, -NCH₂C<u>H</u>₂F), 4.83 – 4.77 (m, 2H, -NC<u>H</u>₂CH₂F), 4.57 – 4.39 (m, 2H, -OCH₂C<u>H</u>₂F), 4.27 – 4.14 (m, 2H, -OC<u>H</u>₂CH₂F), 3.36 (m, 3H, Ar-C<u>H</u>(CH₃)C<u>H</u>₂-), 2.77 (d, *J* = 25.1 Hz, 6H, -N(C<u>H</u>₃)₂), 2.69 (s, 3H, Ar-CH₃), 1.32 (d, *J* = 6.7 Hz, 3H, -CH₃). Identity by LC-MS analysis, ESI-MS (ES⁺) calculated for C₂₇H₃₀F₂N₂O₂S [M+H]⁺ m/z 485.40, found 485.20

Fig. S9: QC chromatograms of (a) $[^{19}F]$ fluoroethyl p-toluenesulfonate and (b) $[^{18}F]$ fluoroethyl p-toluenesulfonate.

Fig. S10: Expression of human TOPK in murine *ex vivo* tissues, xenografts, and human cultured cancer cells. Vinculin is shown as a loading control.

Fig. S11: PET slices for all mice. M1, M2, and M3 are unblocked. M4 and M5 are blocked with excess dose.

Table S1. Complete tabular PET VOI information										
Subject	Volume (mm ³)	mean (%ID/cc)	SD (%ID/cc)	min (%ID/cc)	max (%ID/cc)					
M1	123.50	2.76	0.31	1.95	3.48					
M2	67.42	3.05	0.51	1.87	4.59					
M3	34.01	3.36	0.50	1.59	4.39					
M4	34.01	1.70	0.95	-0.49	3.48					
M5	70.40	1.10	0.77	-0.50	2.90					

M1, M2, and M3 are unblocked. M4 and M5 are blocked with excess dose.

Table S2. Complete tabular biodistribution information (%ID/g)									
organ	M1	M2	M3	M4	M5				
blood	6.65	5.89	5.09	2.64	2.03				
tumor	3.57	3.33	3.86	1.61	1.61				
lung	2.89	8.71	0.42	2.04	2.11				
heart	2.88	1.86	3.72	2.28	1.73				
liver	4.17	5.98	6.70	4.24	2.90				
spleen	12.32	16.07	19.65	15.93	7.70				
small intestine	7.91	7.59	4.48	3.26	2.46				
large intestine	5.23	4.38	4.58	6.29	1.89				
stomach	2.86	3.47	3.42	2.62	2.93				
kidney	4.81	5.90	6.06	3.46	3.25				
muscle	1.37	1.86	1.79	1.37	1.22				
skin	0.91	2.60	2.85	1.52	0.79				
bone	3.26	1.86	17.92ª	2.56	2.78				

^aExcluded as an outlier (maximum normalized residual - Grubb's - test).