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Materials and Methods 
Animals 

Adult C57Bl6/J male and female mice aged 50-90 days were used in this study. Animals 
were maintained on a 12 hour:12 hour light/dark cycle (2pm-2am dark period) with ad libitum 
access to food and water. Animal care and experiments were carried out in accordance with NIH 
guidelines and were approved by the Harvard University Institutional Animal Care and Use 
Committee (IACUC).  
 
Single-cell dissociation and library preparation 

Imaging and digestion of perineuronal nets. Single-cell analysis of adult mouse brain tissue 
has been challenging due to the high rates of cell death during dissociation, and several protocols 
have been developed to partially address this issue (70). To further improve cell survival 
following dissociation of adult brain tissue, we examined the possible role of age-dependent 
increases in extracellular matrix glycoproteins such as chondroitin sulfate proteoglycans and 
hyaluronans (perineuronal nets) in increased cell death during dissociation of adult brain tissue 
(76). To visualize extracellular matrix in the preoptic region, mice aged post-natal day (PND) 10 
and PND 65 were perfused transcardially with 1× phosphate buffered saline (PBS) followed by a 
solution of 4% v/v paraformaldehyde (PFA) in 1×PBS. Brains were harvested and post fixed 
overnight in 4% v/v PFA in 1×PBS and sectioned at 40-µm thickness on a vibratome (Leica, 
VT1000s). To reveal perineuronal nets, sections harboring the hypothalamus were blocked for 1 
hour in 5% normal donkey serum in 1×PBS, followed by overnight incubation in biotinylated 
Wisteria Floribunda lectin (Vector Laboratories, B-1355). Sections were washed with 1% v/v 
Triton X-100 in 1×PBS, incubated in Alexa568-conjugated streptavidin (Invitrogen, S11226), 
washed again, placed on coverslips, and imaged on a Zeiss Axioscan Z1 microscope. A 
substantial increase in perineuronal net signal was seen in the hypothalamus of adult compared to 
PND 10 mice (fig. S1B). To address the challenge such nets might place in live cell dissociation, 
we modified published dissociation protocols (70) to include enzymes that digest extracellular 
matrix glycoproteins, as detailed below. As shown in fig. S1C, these modifications substantially 
improved cell survival during dissociation. 

Preparation of single-cell suspensions. Adult virgin male and female mouse brains (aged 
~7-8 weeks) were harvested using standard lab protocols (5). Tissue was pooled from 4-5 mice 
per sex per replicate. We generated single-cell gene-expression profiles from 3 replicates each 
for adult male and female mice. Each male and female replicate was processed in parallel to 
reduce batch effects. Briefly, mice were anesthetized with isoflurane, and brains were rapidly 
dissected in ice cold 1×PBS on an adult mouse brain matrix (Zivic instruments, BSMAS001-1). 
A ~2.5 mm × 2.5 mm × 1.1 mm (Bregma +0.5 to -0.6) tissue block spanning the preoptic region 
was dissected, and this tissue was placed into papain dissociation buffer comprising 8 U/ml 
Papain (Worthington, LK003178), 100 U/ml DNase1 (Worthington, LK003172), 50 U/ml 
chondroitinase ABC (Sigma, C3667), 0.07% hyaluronidase (MP BIOMEDICALS, 0210074080) 
0.8 mM kynurenic acid (Sigma, K3375), 1X Glutamax (Life Technologies, 35050061), 0.05 mM 
(2R)-amino-5-phosphonovaleric acid (APV; Thermo Fisher Scientific, 010510), 0.01 mM 
Y27632 dihydrochloride (Sigma, Y0503), 0.2X B27 supplement (Thermo Fisher Biosciences, 
17504044), and 1% w/v D(+)trehalose (Sigma, T9531) in hibernate A media (Life Technologies, 
A1247501)). The tissue was incubated in this buffer for 2 hours with gentle rotation at 37 °C. 
The tissue was then washed three times in Hibernate A buffer (0.8 mM kynurenic acid; 1X 
Glutamax; 0.05 mM APV; 1% w/v D(+)trehalose; 0.2X B27 supplement; 0.01 mM Y27632 
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dihydrochloride in 1X Hibernate A media) containing 0.1 mg/ml trypsin inhibitor (Sigma, 
T2011) at room temperature and then gently triturated in Hibernate A buffer using fire polished 
Pasteur pipettes of three different diameters (600 µm, 300 µm, 200 µm) to further aid the 
dissociation of cells. The resulting suspension was washed three times by centrifugation (400g, 
10 minutes) and resuspended in Hibernate A buffer. The cell suspension was then passed through 
a 20-µm nylon filter (Thermo Fisher Scientific, 130-101-812) to remove debris and clumped 
tissue. For the comparison shown in fig. S1C, the dissociation cocktail labeled as the “published 
protocol” was the same as described above with the exception that chondroitinase ABC, 
hyaluronidase, and Y27632 dihydrochloride were not included.  

Fluorescence activated cell sorting (FACS) and single-cell RNA-seq. To quantify the 
fraction of live cells as well as to sort live from dead cells, the resulting suspension was 
incubated for 30 minutes at 37 °C in Hibernate A buffer containing 0.1 µM calcein green AM 
(Life Technologies, C3099) and 7.5 µM propidium iodide (Life Technologies, P3566) to label 
live and dead cells, respectively. To remove excess dye, the suspension was washed and 
resuspended in Hibernate A buffer. Live cells were sorted by selecting calcein positive and 
propidium iodide negative cells on a Biorad S3 Cell sorter. The resulting suspension was 
examined for viability using the trypan blue exclusion method and loaded into a 10X Genomics 
Chromium single-cell chip at concentrations of ~300 live cells/µL according to the 
manufacturer’s instructions. We aimed to obtain ~5,000-7,000 cells per run. Downstream 
preparation of sequencing libraries was carried out using the 10X Genomics Chromium Single 
Cell Kit V2. The libraries were sequenced on an Illumina NextSeq500 instrument using the 
instructions provided by 10X Genomics. Paired-end sequencing with read lengths of 150 nt was 
performed for all samples.  

 
Analysis of single-cell RNA-seq  

Sequence alignment. Illumina sequencing reads were aligned to the mouse genome (mm10-
1.2.0) using the 10X Genomics CellRanger pipeline (version 2.0.0) with the default parameters. 
The data were normalized to the lowest saturated sample (78.1%), leading to 101,771 reads 
(mean), 2,461 genes (median), and 5,513 unique molecular identifier (UMI) counts (median) per 
cell. Raw reads and the output of the CellRanger pipeline are available on GEO (GSE113576).  

Variable gene identification. To identify transcriptionally distinct groups of cells, we 
utilized approaches that have been described elsewhere (28, 31, 73). Specifically, we utilized a 
Poisson-Gamma-distribution model to determine the predicted variability for individual genes 
given their observed expression profile and identified genes with a measured variability higher 
than this predicted value, as described previously (73). In this model, the coefficient of variation, 
CV, for each gene is described by   

!" = $	1 '( + 	1 *(  ,     (1) 

where µ is the mean of the number of transcripts per cell for that gene and the parameter α is 
identical for all genes and captures technical sources of variation, such as variation in the 
efficiency with which transcripts within individual cells are captured. α is determined by fitting 
the total number of transcripts per cell, N, relative to the mean value across all cells, 〈,〉, to a 
gamma distribution 
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The set of variable genes were selected as those that had a CV at least 1.5 times greater than that 
predicted from the null model in Eq. (1). Small variations in this threshold did not substantially 
affect subsequent clustering results.  

To reduce the impact of potential batch effects as well as of perturbations due to cell 
preparation, we first removed overall variations in the number of transcripts observed for each 
cell by dividing the observed counts within each cell by the total number of transcripts within 
that cell. These normalized counts were then scaled by the average number of transcripts 
observed within all cells across all replicates, creating a matrix, =>? , of normalized counts for 
each gene, i, in each cell, j. Unless otherwise noted, we supplemented this expression matrix with 
a pseudo count of 1 and log transformed it, i.e. logCDE=>? + 1F, for the subsequent cell clustering 
analysis, as has been described previously (28, 31, 73). 

The cell dissociation and capture process can modify the expression of some mRNAs. In 
particular, it has been documented to increase the expression of ribosomal-protein RNAs, 
mitochondrial RNAs, and immediate-early genes as well as to lead to changes in the total 
number of transcripts recovered per cell (77, 78). We used these known proxies for cell-
dissociation-induced expression changes to mitigate expression variations in all genes that might 
be due to cell dissociation. Specifically, we first computed a score for each cell associated with 
the ribosomal, mitochondrial, and immediate-early gene expression level within each cell. Each 
of these three scores was calculated from the average of the logCDE=>? + 1F values within each 
cell for each of the following gene sets. The ribosomal score was calculated from the average of 
all ribosomal-protein genes, i.e. all genes with names starting with ‘Rpl’ or ‘Rps’; the 
mitochondrial score was calculated from the average of all mitochondrial transcripts, i.e. all 
genes with names starting with ‘mt-’, and the immediate-early gene score was calculated from 
the average of Fos, Egr1, and Npas4. We then constructed a linear regression model for the 
logCDE=>? + 1F for each gene across all cells as a function of the ribosomal, mitochondrial, and 
immediate early gene scores as well as the total number of transcripts per cell, to subtract the 
effect of cell-dissociation-induced expression changes, as previously described (28, 79), and the 
resulting logCDE=>? + 1F after this treatment was used for clustering. However, all reported 
expression values were calculated from the log transformed data prior to this regression.  

To further remove any potential effects of cell-dissociation-induced expression changes on 
clustering, we removed ‘variable’ genes with an expression level that correlated across all cells 
with any of the above scores (ribosomal, mitochondrial, and immediate-early gene), as described 
previously (28, 79) . Genes with a Pearson correlation coefficient with any of these scores larger 
than 0.2 or smaller than -0.2 were excluded. We also excluded genes that were expressed in 20 or 
fewer cells from the ‘variable’ gene list. 859 genes were contained in the final set of variable 
genes.  

Principal component analysis (PCA) and community-based cell clustering. To identify 
transcriptionally distinct clusters of cells, we first reduced the dimensionality of these data with a 
PCA on the z-score of the regressed logCDE=>? + 1F values for the final set of variable genes. The 
z-score was calculated for individual genes across all cells. To determine the number of principal 
components to keep from this analysis, we estimated the largest eigenvalue one would expect to 
obtain in PCA computed on random permutations of the data. Specifically, we conducted 50 
iterations, where, in each case, we randomly permuted the expression values of each gene 
independently across cells. This permutation maintains the univariate distribution for every gene, 
but deflates gene-gene correlations. For every iteration, we calculated the maximum eigenvalue 
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from a PCA of the randomized matrix. We kept all principal components that had an eigenvalue 
larger than the mean of the distribution of maximum eigenvalues across the 50 iterations.  

To then identify transcriptionally distinct clusters of cells, we utilized the Jaccard-Louvain 
community detection approach on a k-nearest neighbor graph as implemented by the Phenograph 
package (30) with the following modifications. First, we performed cell clustering based on the 
principle components identified above using the Jaccard-Louvain community detection approach 
on a k-nearest neighbor graph (30). We then identified stable clusters by running a bootstrap 
analysis to identify cells that were consistently clustered together. Specifically, we selected a 
random 50% of cells and repeated the PCA, graph construction, and community detection for 
those cells. We then compared the clustering results derived from this subset of cells to that 
derived from the original clustering of all cells and computed the maximum fraction of cells 
from each of the original clusters found in any of the clusters generated in the bootstrap. We 
defined an original cluster as stable if the average of this value across 20 replicate bootstraps was 
greater than or equal to 0.5. We found that the vast majority of clusters were not sensitive to 
small changes in this threshold. Cells that were members of unstable clusters or which clustered 
into small clusters (<10 cells) were marked as unstable and discarded from subsequent analysis. 

In addition, we found that the number of stable clusters and the number of cells assigned to 
stable clusters was somewhat sensitive to the choice of the neighborhood size, k, used to create 
the nearest neighbor graph. Thus, we developed a method to guide the selection of this number. 
We performed clustering and the cluster stability analysis for a range of k values and then 
examined the dependence of the number stable clusters and the fraction of cells assigned to 
stable clusters on k (fig. S2A). Initially, as we increased the value of k, the number of cells that 
were assigned to stable clusters increased substantially with a concomitant but slow decrease in 
the number of stable clusters. However, after k was increased to pass a certain value (the “elbow” 
point), further increase in k caused a precipitous decrease in the number of stable clusters with 
little to no change in the number of cells assigned to stable clusters. This behavior allowed us to 
find a value of k that balanced the desire to better resolve similar groups of cells (i.e. increase the 
number of stable clusters) with the desire to explain the majority of the data (i.e. maximize the 
number of cells within stable clusters). The specific k value selected (k = 10) is depicted in fig. 
S2A.  

After clustering, we identified several clusters that expressed mixtures of markers for 
multiple cell types, e.g. neurons and oligodendrocytes, and that did not contain any genes that 
were uniquely enriched in these clusters (as judged by the largest z-score of individual genes for 
the average expression profile of individual clusters). These clusters were marked as ambiguous, 
possibly representing doublets, and were excluded from subsequent analysis.  

This clustering analysis produced major cell classes, including inhibitory neurons, 
excitatory neurons, microglia, astrocytes, mature and immature oligodendrocytes, ependymal 
cells, endothelial cells, and mural cells, some of which contain further sub-divisions. The major 
cell classes and sub-divisions of the non-neuronal cell classes derived from this analysis are 
summarized in Table S1, but the sub-division results of neurons from this round of analysis are 
not depicted in Table S1 because the clustering of inhibitory and excitatory neurons were further 
refined, as described below.  

To further refine our detection of transcriptionally distinct populations of inhibitory and 
excitatory neurons, we utilized the expression of Gad1 and Vglut2 (Slc17a6) to assign individual 
clusters as inhibitory or excitatory neurons, respectively. We then pooled all inhibitory neurons 
together and all excitatory neurons together, and repeated the procedure of variable gene 
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identification, PCA, and community-based clustering as described above for cells in these two 
major classes separately. We identified 246 and 172 variable genes for inhibitory and excitatory 
neurons, respectively. We identified the optimal value of k for each of these sets of neurons using 
the same bootstrap analysis described above (k = 20 and 10 for excitatory and inhibitory neurons, 
respectively; fig. S2B, C). We initially named these clusters as ‘i’ for inhibitory clusters or ‘e’ 
for excitatory clusters based on the relative strength of inhibitory (Gad1) or excitatory (Slc17a6) 
markers and then numbered them in order of cell abundance with e1 and i1 as the highest 
abundance excitatory and inhibitory clusters, respectively. One excitatory cluster (e18) was 
identified as unstable from our bootstrap analysis and removed. No inhibitory clusters were 
unstable. Two inhibitory clusters (i33 and i34) were identified as putative doublets based on the 
strong expression of non-neuronal markers and were removed from subsequent analysis. We did 
not relabel the remaining clusters hence the cluster IDs e18, i33, and i34 are missing from our 
final data set. In addition, we identified several clusters which expressed both inhibitory and 
excitatory markers (i19, i26, and e14) and renamed these clusters as (h1, h2, and h3). Hence, 
cluster IDs i19, i26, and e14 are also missing from our final data set. To confirm that these 
hybrid clusters were not composite clusters or doublets, we first examined individual cells within 
this cluster and determined that many cells co-expressed both the inhibitory and excitatory 
markers. In addition, we used a doublet detection software 
(https://github.com/JonathanShor/DoubletDetection) to confirm that these clusters and all other 
clusters were not enriched in doublets. The sub-divisions of inhibitory neurons and excitatory 
neurons derived from this round of analysis are also summarized in Table S1. 

tSNE calculation. The t-distributed stochastic neighbor embedding (tSNE) for all cells, 
inhibitory neurons, and excitatory neurons was performed based on the same principal 
components derived from the variable genes described above, namely 859, 246, and 172 genes 
for all cells, inhibitory neurons, and excitatory neurons, respectively. tSNE values were 
calculated using the Barnes-Hut implementation (80), which is publicly available 
(https://github.com/lvdmaaten/bhtsne). 

Marker gene identification. For each neuronal cluster, we utilized the model-based analysis 
of single-cell transcriptomics (MAST) package (75) to identify the set of all genes that were 
enriched within that cluster relative to all other neurons. If the enrichment of a given gene within 
a given cluster had a false-discovery-rate (FDR) adjusted p-value of 0.01 or less, its enrichment 
was judged as statistically significant.  

Figure 2A-C report all clusters that are enriched in expression of Gal, Th, or Adcyap1, 
respectively. The marker genes listed for each cluster in Fig. 2A-C represent statistically 
significant genes (not exhaustive) from each cluster, in addition to Gal, Th, or Adcyap1/Bdnf. 
The violin plots in Fig. 2A-C contain both marker genes selected in this fashion (with gene name 
colored in black) as well as genes of particular interest that are expressed but not necessarily 
statistically significantly enriched within some of the displayed clusters (with gene name colored 
in blue and green).  

Hierarchical tree construction. To build a hierarchical tree that explains the relationship 
between neuronal clusters, we used the same significant principal components (PCs) used for 
clustering (described above). Using all the cells for a given cluster, the mean PC loadings were 
calculated. A distance matrix was then calculated in Euclidean space and this was fed to the r 
function ‘hclust’ using the 'complete' method for constructing the tree. Genes marking branches 
within the trees in Fig. 1C, D were identified by finding differentially expressed genes between 
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all cells within the clusters on one side of the branch relative to all cells within the clusters on the 
other side of the branch. The listed genes are not necessarily the most differentially expressed. 

Gene set enrichment analysis (GSEA). To explore the potential enrichment of different gene 
categories within the genes that mark different neuronal clusters, we utilized a gene set 
enrichment analysis (81). Specifically, we first constructed manually curated lists for three 
categories of genes (1) neuropeptides and genes involved in neuromodulator production and 
transport, (2) transcription factors, and (3) neuromodulator (neuropeptide and hormone) 
receptors, from public resources. The genes included within each of these categories are listed in 
Table S3. Next, to determine the set of differentially expressed genes, we estimated the z-score 
of logCDE=>? + 1F	for each gene for each cluster via a Wilcoxon rank-sum test for neurons within 
each cluster versus all other neurons. We selected putative markers as any gene that had a z-
score greater than 5 within any cluster, a relatively permissive threshold that produced a set of 
3610 putative markers. To then rank these genes based on the strength with which they mark 
individual clusters, we calculated, for each gene, the fold change for the average logCDE=>? + 1F 
value within each cluster relative to the average logCDE=>? + 1F value for cells of all other 
clusters. We then sorted all genes based on their maximum fold change value in any cluster. To 
determine if any of these three gene categories were enriched in the stronger markers, we utilized 
a publicly available, light-weight implementation of the GSEA algorithm in R 
(https://github.com/JEFworks/liger). The results of this analysis are provided in fig. S6 and the p-
values are also provided in Fig. 1E. These results did not depend critically on our z-score 
threshold for defining putative markers. 

Nomenclature of scRNAseq clusters. In addition to the cluster ID (e1, e2, …, i1, i2, …, and 
h1, h2, h3) as described above, we also assigned a descriptive name to each neuronal cluster. On 
the basis of our finding that neuropeptides and molecules involved in neuromodulator synthesis 
and release were enriched in marker genes of neuronal clusters in the scRNA-seq dataset, we 
chose a naming scheme for preoptic neuronal clusters that highlights this fact and also identifies 
markers for potential future functional manipulation of specific neuronal populations. A two-
marker nomenclature was devised in which the first marker gene mostly relies on 
neuromodulators enriched in a cluster. In addition, if needed and possible for full identification, a 
second marker gene was provided that either reflects a second peptide, or another biologically 
important gene co-expressed in a cluster. In the absence of identifiable peptide or 
neuromodulator marker, we used specifically enriched/highly expressed genes as markers. In 
some cases, two clusters expressed the same two cardinal markers and differed only in the 
expression levels of these markers. In the case where no genes satisfactorily distinguished 
clusters for manipulation purposes, we choose genes that varied in expression levels between 
clusters. In these cases, the secondary or primary marker gene of these clusters were chosen 
based on their higher expression in one cluster over the other. Finally, for the inhibitory and 
excitatory clusters that we could not readily identify two notable marker genes, we designated 
them as Gaba and Glut, respectively, together with the name of an additional gene to help 
differentiate among these less defined clusters when possible.    
 
Bulk RNA-seq of the preoptic region 

Estimates of RNA expression in the preoptic region were derived from previously published 
bulk RNA-seq data of this brain region [GSE22131] (43). Specifically, we reanalyzed and 
averaged the results from two replicates (F1i, F1r) using a previously published pipeline (82). In 
some cases, the sequencing data are not sufficient to distinguish the expression level of two or 
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more similar isoforms of the same gene. In this pipeline, this situation is identified, and the 
combined expression of these isoforms is reported. These bulk RNA-seq data were used to 
determine the specificity of potential MERFISH probes (described below). We also used these 
bulk RNA-seq data for comparison with the average abundance per cell measured with 
MERFISH (fig. S11B).  
 
Selection of genes for MERFISH 

In order to discriminate transcriptionally distinct cell populations with MERFISH, we 
designed a MERFISH gene panel comprised of 155 genes. To discriminate major cell classes, we 
included in this panel a set of 33 established markers for inhibitory neurons, excitatory neurons, 
mature and immature oligodendrocytes, astrocytes, microglia, endothelial cells, and mural cells, 
which we confirmed were expressed within the expected cell classes in our scRNA-seq data. To 
discriminate different neuronal types, we took two approaches to select genes. In the first 
approach, we selected a panel of genes likely to be relevant to neuronal function in the 
hypothalamus (33, 37). Specifically, we generated a panel of 16 neuropeptide genes and 28 
neuropeptide and hormone receptor genes. In addition, we also included a panel of 11 genes 
reported to be expressed differentially between male and female mice in some portions of the 
preoptic region of the hypothalamus (41, 42). This strategy for gene selection serves the dual 
purpose of revealing important functional properties of neurons as well as including genes that 
likely discriminate many neuronal populations. Some genes appeared in multiple of these 
categories; thus, this set contained a total of 52 unique genes. When combined with the 33 
markers for cell classes, this pre-selected gene set contained a total of 85 unique genes. 

In the second approach to select genes that discriminate different neuronal types, we utilized 
our scRNA-seq data to generate a set of putative marker genes for the identified neuronal 
clusters. This marker set started with all ‘variable’ genes identified for the inhibitory and 
excitatory neurons, as described above. To include genes that capture the transcriptional 
heterogeneity observed in our data, we identified putative markers by clustering the inhibitory 
and excitatory neurons using the approach described above but with two modifications designed 
to include more cell clusters and, thus, allow for the identification of genes that also display 
expression heterogeneity within some of the reported scRNA-seq clusters. First, we purposefully 
selected a value of the nearest neighborhood size k that was smaller than what we selected using 
our guidelines above so as to sub-divide clusters that contained some transcriptional 
heterogeneity (k = 7 for both excitatory and inhibitory neurons). Second, we included all clusters 
even if they were not identified as stable via the bootstrap method described above. We 
computed the average value of logCDE=>? + 1F for each gene across all clusters and then 
computed the z-score of these values for individual genes across all clusters. We selected 
putative markers as any gene that had a z-score greater than 2 in any cluster and was expressed in 
at least 25% of the cells in that cluster.  

We then trimmed this list of putative markers for neuronal clusters by identifying genes that 
are potentially challenging for highly multiplexed FISH imaging experiments. These include (1) 
genes that were relatively short and hence would only allow binding of relatively few 
hybridization probes (the number of probes we used for each transcript is described in more 
detail below) and (2) genes that were expressed at an average of 10 or more UMI counts in any 
cell cluster as determined from our scRNA-seq data. We chose this threshold of 10 UMI counts 
to mitigate the concern that some RNAs may be expressed at abundance levels too high to 
measure with MERFISH. Given the reported capture efficiencies for droplet-based methods of 
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~10% (27, 28), we estimate that an average count of 10 UMIs corresponds to ~100 RNA copies 
per cell. This 10-UMI threshold is a conservative threshold to use because even at a RNA density 
substantially greater than ~100 copies per cell, individual RNA molecules can still be resolved 
by diffraction-limited imaging. We note that some of genes that did not pass the above criteria on 
RNA length and expression but are important for discriminating cell populations or describing 
cell function were still included in our MERFISH measurements, but not as a part of the 
combinatorial single-molecule FISH (smFISH) imaging run as described in our previous 
MERFISH work (20, 26, 40); instead, these genes were imaged in a non-combinatorial manner 
in a set of sequential, multi-color FISH imaging rounds with one single gene measured in each 
color channel per round, following the combinatorial smFISH imaging run, as described below. 

This trimmed list of putative markers for neuronal clusters contained 199 genes, of which 7 
were in the list of 85 pre-selected gene set described above. However, we found that many of 
these markers were expressed in the same sets of neuronal clusters and, thus, marked the same 
neuronal types. To reduce this redundancy, we utilized an iterative approach to identify pairs of 
genes that most strongly correlated in their expression across different neuronal clusters. We first 
computed the Pearson correlation coefficients between the average expression of individual pairs 
of genes across all clusters. We then identified the pair of genes with the largest correlation 
coefficient and removed one of these genes at random. Using this approach, we reduced this set 
of marker genes for neuronal clusters to a final number of 70 genes. Combining this set with the 
first set of 85 pre-selected genes as described above, we included a total of 155 genes in our 
MERFISH measurements.  

Among these 155 genes, 135 genes were imaged in the combinatorial smFISH imaging run. 
However, all of the neuropeptides as well as several genes that we considered to be important in 
discriminating cell populations, i.e. Th, Mbp, Sln, Nnat, were either expressed at high levels or 
are short, and hence are potentially challenging for the combinatorial smFISH imaging run. 
These amounted to a total of 20 genes. We included these 20 genes in our overall MERFISH 
measurements but detected them in the non-combinatorial, sequential rounds of multi-color FISH 
following the combinatorial smFISH imaging run. For behavioral measurements, cFos was 
added to the set of genes measured with sequential rounds of FISH. The set of genes measured 
with MERFISH are described in Table S6. 

Design of MERFISH encoding probes 
MERFISH encoding probes for the 135 genes that were included in the combinatorial 

smFISH imaging run were designed using a pipeline that we have described previously (40). 
Each MERFISH encoding probe contains a 30-mer targeting region that is complementary to the 
RNA of interest and, thus, targets that probe to that RNA, as well as a series of 20-mer readout 
sequences that encode the specific barcode assigned to each RNA.  

We first identified all possible 30-mer targeting regions within each desired transcript as we 
have previously described (40). From the set of all possible 30-mers for each gene, we selected 
92, 30-mers at random. Also as we have previously described (83), only a fraction of possible 
MERFISH probes bind to each RNA, likely due the exclusion of binding sites by proteins or 
RNA secondary structure. Thus, we allowed these 30-mers to overlap by as much as 20 nt to 
increase the number of probes utilized for shorter RNAs. This allowed us to include genes as 
short as ~1000 nt (83). 

We next assigned to each of the 135 RNAs a unique binary barcode drawn from a 
previously published, 16-bit, Hamming-Distance-4, Hamming-Weight-4 encoding scheme (20). 
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The encoding scheme contains 140 possible barcodes; we used only 135 of them to code RNAs 
and left 5 of these barcodes unassigned so that measurement of these 5 ‘blank’ barcodes would 
provide a direct measure of the false-positive rate in MERFISH (figs. S9F-H, S11C). 

We then utilized these barcodes to assign readout sequences to the encoding probes 
associated with each gene with each encoding probe containing two readout sequences, as 
previously described (40). For the 16-bit encoding scheme, a total of 16 readout sequences were 
used, and the collection of encoding probes for each gene together contain 4 of the 16 readout 
sequences according to the barcode assigned to the gene. In addition, we concatenated to each 
encoding probe sequence two PCR primers, the first comprising the T7 promoter, and the second 
being a random 20-mer designed to have no region of homology greater than 15 nt with any of 
the encoding probe sequences designed above, as we previously described (40).  

Encoding probes for the 20 genes imaged in the non-combinatorial sequential multi-color 
FISH rounds were produced in the same fashion, except that each of these RNAs was associated 
with a single unique readout sequence and that a single copy of this readout sequence was placed 
at the 5’ end of the target region for each probe. Each of these RNAs contained 36 or more 
encoding probes. The readout sequences used here were different from the 16 readout sequences 
used for the combinatorial smFISH run. The sequences of all template molecules for encoding 
probes are included in Table S10.  
 
Construction of MERFISH encoding probes  

MERFISH encoding probes were created from the template molecules above, following a 
procedure as we have described previously (26). Briefly, template molecules were synthesized as 
a complex oligopool (CustomArray). This pool was then amplified via PCR to produce a set of 
templates for an in vitro transcription reaction, which in turn generated a large quantity of RNA 
molecules complementary to these templates. The RNA molecules were purified via size-
exclusion chromatography (Zeba desalting columns; ThermoFisher, 89894) and then converted 
back to DNA using reverse transcription (Maxima H- reverse transcriptase; ThermoFisher, 
EP0751). We utilized the USER enzyme system (New England Biolabs, M5505S) to excise the 
reverse transcription primer, which contained a penultimate ‘U’ at the 3’ position, as described 
previously (83).  

Encoding probes to the 135 genes measured in the combinatorial smFISH run or the 20 
genes measured in sequential multicolor FISH rounds were produced separately and then mixed 
during staining. Probes for cFos and Th were synthesized via direct solid phase synthesis 
(Integrated DNA Technologies [IDT]).  
 
Tissue section preparation for MERFISH experiments 

Mice (aged 7-8 weeks) were individually housed for four to five days and then euthanized 
directly from the home cage or exposed to specific behavioral stimuli (as described below) prior 
to harvest. Mice were euthanized with isoflurane, the brain quickly harvested, frozen 
immediately in optimal cutting temperature compound (Tissue-Tek O.C.T.; VWR, 25608-930), 
and stored at -80 °C for at least 6 hours before cutting. In parallel, coverslips for mounting the 
tissue sections for MERFISH imaging experiments were prepared as described previously (26). 

Frozen brains were manually dissected to a ~ 3-mm × 3-mm × 3-mm block containing the 
entire preoptic region and surrounding nuclei and were sectioned at -18 °C on a cryostat 
(MICROM, HM550). Slices were removed and discarded until the preoptic region was reached. 
For the animals that were not exposed to behavioral stimuli (naïve animals), a contiguous set of 
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sixty 10-µm-thick slices were collected with every fifth slice (12 slices total) placed onto 
coverslips for imaging. The other slices were either placed on additional coverslips for additional 
use or discarded. Each coverslip contained either 6 slices from the anterior portion or 6 slices 
from the posterior portion of the preoptic region. These slices are labeled in order from anterior 
to posterior as 1 to 12, with 1 representing the most anterior slice and 12 the most posterior slice.  

This sampling frequency corresponds to a 50-µm resolution along the anterior-posterior 
axis, and we adopted this sampling frequency because 50 µm is smaller than the sizes of all 
established nuclei in the preoptic region, and previous measured gene expression patterns do not 
change substantially over a 50-µm anterior-posterior distance in this region. Thus, we anticipated 
that this sampling frequency would be sufficient to capture the cell diversity in this region. 
Indeed, we find that all but the ~5 very low abundance neuronal clusters identified via 
MERFISH are present in multiple subsequent slices (fig. S17), confirming that this anterior-
posterior resolution was sufficient to sample the spatial distributions of the neuronal clusters in 
the preoptic region.  

For the animals that were exposed to behavioral treatments, we collected the same 
contiguous set of 10-µm-thick slices and kept every 15th slice. These slices were labeled in order 
from anterior to posterior as 1 to 4. Given the spatial distribution observed for neuronal clusters 
identified in naïve animals with the higher sampling frequency described above (fig. S17), we 
anticipated that this reduction in sampling frequency would not result in significant loss in 
neuronal clusters identified. Indeed, we found that all neuronal clusters identified with the higher 
sampling frequency, naïve animal data were observed in the lower sampling frequency data 
measured for animals exposed to behavioral treatments.  

Tissue slices were allowed to briefly thaw on coverslips at room temperature, and then were 
fixed by treating with 4% PFA in 1×PBS for 10 minutes. We then washed coverslips three times 
with 1×PBS and stored them in 70% ethanol at 4 °C for at least 18 hours to permeabilize cell 
membranes. 

Staining of MERFISH samples was conducted as we have described previously (26). 
Briefly, we removed the 70% ethanol from samples and washed them once with encoding-probe 
wash buffer (30% formamide in 2× saline sodium citrate [SSC]) for five minutes at room 
temperature. The wash buffer was then aspirated from a coverslip, and the coverslip was inverted 
onto a 50 µL droplet of probe mixture on a parafilm coated petri dish. The probe mixture 
comprised ~1 nM of each encoding probe for the combinatorial smFISH run, ~10 nM of each 
encoding probe for the sequential multi-color FISH rounds, and 1 µM of a polyA-anchor probe 
(IDT) in 2×SSC with 30% v/v formamide, 0.1% wt/v yeast tRNA (Life Technologies, 15401-
011) and 10% v/v dextran sulfate (Sigma, D8906). We then incubated the sample at 37 °C for 36 
hours. The sequence of the polyA-anchor probe was /5Acryd/ TTGAGTGGATGGAGTGTAAT 
T+TT+TT+TT+TT+TT+TT+TT+TT+TT+T, were T+ indicates locked nucleic acid and /5Acryd/ 
represents a 5’ acrydite modification. This polyA-anchor probe hybridizes to the polyA sequence 
on the polyadenylated mRNAs and allows these RNAs to be anchored to a polyacrylamide gel as 
described below. To wash away excess encoding probes and polyA-anchor probes, each 
coverslip was washed in encoding-probe wash buffer for 30 minutes at 47 °C for a total of two 
times. We optimized the concentrations of the encoding probes each time these probes were 
created.  

To clear our samples and remove fluorescence background, we embedded tissue slices in a 
thin polyacrylamide gel and then treated these samples with protease and detergent as we 
described previously (26) but with a modified digestion protocol that we found to improve 
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clearing in the mouse brain. Specifically, we utilized a digestion buffer comprising 2×SSC, 2% 
v/v sodium dodecyl sulfate (SDS; ThermoFisher, AM9823), 0.5% v/v Triton X-100 (Sigma, 
X100), and 1:100 proteinase K (New England Biolabs, P8107S) and digested samples for 48 
hours at 37 °C. The digestion buffer was exchanged once during this incubation. After digestion, 
coverslips were washed in 2×SSC for 30 minutes for a total of four washes and then stored at 4 
°C for up to a week in 2×SSC supplemented with 1:100 Murine RNase inhibitor (New England 
Biolabs, M0314S) prior to imaging. We observed no degradation in the quality of the sample 
over this time.  

MERFISH imaging 
To prepare for a MERFISH measurement, we first filled a home-built reagent cartridge with 

fresh aliquots of buffers utilized in each round of staining and imaging. This cartridge contained 
40 mL of a readout-probe-wash buffer comprised of 2×SSC, 10% v/v ethylene carbonate (Sigma, 
E26258), and 0.1 % v/v Triton X-100; 40 mL of a cleavage buffer comprised of 50 mM Tris(2-
carboxyethyl)phosphine (TCEP; Sigma, 646547) in 2×SSC; 40 mL of a TCEP-wash buffer 
comprised of 2×SSC; and 40 mL of an imaging buffer comprising 5 mM 3,4-dihydroxybenzoic 
acid (Sigma, P5630), 2 mM trolox (Sigma, 238813), 50 µM trolox quinone, 1:500 recombinant 
protocatechuate 3,4-dioxygenase (rPCO; OYC Americas), 1:500 Murine RNase inhibitor, and 5 
mM NaOH (to adjust pH to 7.0) in 2×SSC. We used the O2 scavenging enzyme rPCO and its 
substrate 3,4-dihydrozybenzoic acid to remove O2 and the combination of Trolox and Trolox 
quinone to decrease photobleaching during imaging (84, 85). All buffers were degassed for 5 
minutes under vacuum prior to use. The cleavage buffer and the imaging buffers were stored 
under a layer of mineral oil (Sigma, 330779) to prevent oxygenation during the course of the 
measurement.  

In parallel, we prepared a separate reagent cartridge containing the readout probe mixtures 
appropriate for each round of hybridization. The readout probe mixture was comprised of the 
readout-probe-wash buffer supplemented with 3 nM each of the appropriate readout probes. Two 
probes were included in each mixture, one labeled with Cy5 and the other with Alexa750. These 
dyes were conjugated to the readout probe via a disulfide bond and were synthesized by 
Biosynthesis, Inc. A total of 8 readout probe mixtures (16 readout probes) were used for the 
combinatorial smFISH run and a total of 11 readout probe mixtures (22 readout probes) were 
used for the sequential multi-color FISH rounds. We utilized 5 mL of each readout probe 
mixture.  

Both reagent cartridges were loaded into a home-built, automated fluidics system as we 
have described previously (20). The sequences of all readout probes as well as the associated 
dyes are described in Table S11. 

To prepare the sample for imaging, we first stained it with a readout hybridization mixture 
containing the readout probes associated with the first round of imaging in the combinatorial 
smFISH run, as well as a probe complementary to the polyA-anchor probe and conjugated via a 
disulfide bond to the dye Alexa488 (Table S11), also at a concentration of 3 nM. The sample 
was incubated in this mixture for 15 minutes at room temperature, and then washed in the 
readout-probe-wash buffer supplemented with 1 µg/mL DAPI for 10 minutes to both wash away 
excess readout probe and stain nuclei within the sample. The sample was then washed briefly in 
2×SSC and imaged immediately.  

We imaged samples largely as we have described previously (26). Briefly, the sample was 
loaded into a commercial flow chamber (Bioptechs, FCS2) with a 0.75-mm-thick flow gasket 
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(Bioptechs, 1907-100; DIE# F18524). Imaging buffer was introduced into the chamber and the 
sample was imaged with a low magnification objective (Olympus, PlanN 10×/0.25 NA) with 
405-nm illumination to produce a low-resolution mosaic of all slices in the DAPI channel. We 
then used this mosaic image to identify the center position of each slice and generated a 9×9 grid 
of field-of-view (FOV) positions covering 1.8-mm ×1.8-mm around each slice center. 

We then switched the microscope to a high magnification, high-numerical aperture 
objective (Olympus, PlanApo 60×/1.3 NA, silicon oil) and imaged each of the FOV positions 
generated above. In the first round of imaging, we collected images in the 750-nm, 650-nm, 488-
nm, and 405-nm channels to image the first two readout probes (conjugated to Alexa750 and 
Cy5, respectively), the total polyA-mRNA signal as revealed by the probe complementary to the 
polyA-anchor probe and conjugated to Alexa488, and the DAPI signal (405-nm channel). We 
utilized the latter two channels for cell segmentation as described below. To image the entire 
volume of each slice, we collected seven 1.5-µm-thick z-stacks for each of these color channels. 
In addition, we also collected a single image of the orange fiducial beads on the surface of the 
coverslip using the 560-nm illumination channel. This image served as a spatial reference, and 
all subsequent images of each FOV were referenced to this image to correct for slight 
misalignments in the stage position that naturally occur when the stage is moved.  

After the first round of imaging, the dyes were cleaved from the readout probes by flowing 
1.65 mL of cleavage buffer (50 mM TCEP in 2x SSC) through the flow chamber and then 
incubating the sample in this buffer for 15 minutes. Excess cleavage buffer was washed away by 
flowing 1.5 mL of TCEP-wash buffer over the span of three minutes. To perform the second 
round of readout probe hybridization, we flowed 3 mL of the readout probe mixture containing 
the appropriate readout probes across the chamber and incubated the sample in this mixture for a 
total of 15 minutes. To wash off excess readout probe, we flowed 1.25 mL of readout wash 
buffer across the system and incubated the sample in this buffer for 5 minutes. Finally, we 
flowed 1.5 mL of imaging buffer across the sample over the span of three minutes. We then 
imaged the sample at all FOV locations in the 750-nm, 650-nm, and 560-nm channels as 
described above. We repeated this process for all rounds of hybridization and imaging to 
complete the combinatorial smFISH run (8 rounds of hybridization and imaging) and the 
sequential multi-color FISH rounds (10 or 11 rounds of hybridization and imaging). The RNAs 
measured within the sequential multi-color FISH rounds were often so abundant when expressed 
that individual RNA molecules were not observed. For this reason, we did not need 
measurements of the entire cell volume to produce a statistically robust measure of expression; 
thus, to reduce imaging time, we only imaged the central z-plane for both the 650-nm and 750-
nm channels in these rounds. These samples were imaged on a MERFISH microscope that we 
have described previously (26, 40).  
 
MERFISH image analysis and cell segmentation 

All MERFISH image analysis was performed with algorithms largely similar to what we 
have described previously (26, 40) but in a revised pipeline optimized for running in massive 
parallel on the Harvard Odyssey high-performance computer cluster. All software is available at 
github.com/ZhuangLab/MERFISH-analysis.  

As described previously (20, 26, 40), we identified the location of the fiducial beads in each 
FOV in each round of imaging and used these locations to create an affine transformation that 
reregisters all z-stacks of images for each FOV in each imaging round to the position of that 
FOV in the first imaging round. We high-pass filtered these image stacks to remove background, 
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deconvolved them using 20 rounds of Lucy-Richardson deconvolution to tighten RNA spots, and 
low-pass filtered them to account for small movements in the centroid of RNAs between imaging 
rounds as we have observed previously (20). Individual RNA molecules imaged in the 
combinatorial smFISH run were identified as describe in our previous MERFISH studies (26, 
40). Briefly, we assigned individual pixels to specific barcodes by finding the barcode with the 
smallest Euclidean distance between the normalized intensity profile across all 16 images in the 
combinatorial smFISH imaging run for that pixel and the predicted intensity profile across all 16 
bits for that barcode. To remove spurious assignments, we discarded any pixels for which this 
distance was larger than the distance between a given barcode and any of the error-containing 
barcodes generated via a single bit flip. Contiguous sets of pixels in each image that matched the 
same barcode where then combined to form a putative RNA.  

We removed a background of spurious barcodes generated by random fluorescent 
fluctuations by removing putative RNAs that contained a small number of contiguous pixels (< 
4) and putative RNAs that were dim. To identify dim RNAs, we utilized the observation that two
peaks were present in a histogram of the average brightness of identified RNAs and set a
brightness threshold based on the local minimum in probability between these two populations,
as previously described (26, 40).

The identity of the RNAs imaged in the non-combinatorial, sequential multicolor FISH 
rounds were naturally provided by the round and color channel in which each RNA was imaged. 

We identified cell segmentation boundaries in each FOV using a seeded watershed 
approach. To identify seeds, i.e. regions of the image that must contain a cell, we first low-pass 
filtered the DAPI image stack to remove noise and then applied an adaptive intensity threshold to 
identify putative nuclei. To resolve closely spaced nuclei, we eroded this image stack using a 
disk of 2-µm diameter, less than half the observed average diameter for nuclei. We identified the 
center of these putative nuclei from regional maximum of this eroded image. To account for 
slight offsets in the center of the same nuclei in different z-planes, we used image dilation to 
connect putative nuclei center in different z-planes that were within 1-µm of one another. To 
identify regions of high polyA signal that correspond to individual cells, we similarly applied a 
low pass filter and an adaptive intensity threshold to the polyA image stack. To create catch 
basins for the watershed algorithm, we then inverted this image and set the regions associated 
with the nuclei seeds to zero. To remove local variations in the polyA intensity and force all 
watershed basins to contain a seed, we used morphological reconstruction to remove all local 
image minima other than the regions associated with seeds. Finally, we applied a watershed 
algorithm on this processed polyA stack to identify segmentation boundaries. Because each of 
these image operations was applied to the full z-stack of images for each FOV, as opposed to 
individual z-sections, the generated cell segmentation boundaries were naturally 3D. This 
algorithm was able to largely address the situation in which two adjacent cells partially 
overlapped along the axial direction. Nonetheless, given the lower optical resolution in the axial 
direction relative to the lateral directions, we expect that some cells that overlapped in the z-
direction were not properly segmented. In this case, we anticipate that our ability to detect 
doublets during clustering should further allow some of this small fraction of remaining doublet 
cells to be identified and rejected.  

This segmentation approach generated a small population of spurious segmentation 
artifacts, which resulted in putative cells with very small total volumes. We removed these 
features from subsequent analysis by requiring that all cells have a volume of at least 100 µm3. 
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We assigned individual RNAs to segmentation boundaries based on whether or not they fell 
within those boundaries. We note that given the thickness of our slices, some cells could not be 
imaged completely. Thus, to remove differences in RNA counts due to imaged cell volumes, we 
normalized the RNA counts per cell by the imaged volume of each cell. In addition, we observed 
a modest batch effect between MERFISH runs. Specifically, we found that the mean total 
number of RNAs identified per cell varied by ~20% from run-to-run. This variation could arise 
from variation in the RNA integrity between samples or in the signal-to-noise ratio for individual 
RNA spots. We sought to remove the influence of these batch effects by normalizing the mean 
total RNA density per cell for each MERFISH data set so that this mean value was the same 
across all datasets.  

We observed that the polyA stain dropped substantially in brightness outside of the soma of 
cells such that, in the vast majority of cases, we could not identify neuronal or glial processes 
from these stains, and thus the boundaries that we segmented corresponded to the boundaries of 
the cell soma. Some RNA molecules that we identified fell outside of these boundaries and are, 
thus, candidates for RNAs found within neuronal or glial processes.  

For the RNAs imaged in the non-combinatorial sequential FISH rounds, since many of them 
were so abundant that individual molecules could not be resolved, we quantified the signal from 
these sequential FISH rounds by summing the fluorescence intensity of all pixels that fell within 
the segmentation boundary associated with the central z-plane (the only plane imaged for these 
sequential FISH rounds). We then normalized this signal by the area of the segmentation 
boundary in the central z-slice. We observed that the fluorescence background observed in these 
sequential FISH rounds was different in both the 650-nm and 750-nm channels. To remove this 
differential background, we exploited the fact that no cells expressed a majority of the genes 
measured in the sequential FISH rounds; thus, we estimated the background in the 650-nm and 
750-nm channels for each cell by taking the median of the signal for each sequential FISH round 
in each of these channels. We then subtracted these background estimates from the measured 
fluorescence intensities of each sequential FISH round. A small population of cells did not 
contain a segmentation boundary within the central z-slice, presumably because these represent 
small cell fragments present only in the top or bottom portions of the slice, and these cells were 
removed from subsequent analysis.  

 
Clustering of MERFISH data 

MERFISH data were clustered using the same approach as described for the clustering of 
scRNA-seq data with several notable exceptions. First, given that the total number of genes in 
the MERFISH panel is only 155, a reduction in the number of included genes was not 
computationally necessary. Thus, we did not select ‘variable’ genes but rather used all genes for 
clustering. Second, MERFISH has a small false positive rate, as revealed by the small but finite 
frequency at which we observe the blank barcodes (figs. S9F-H, S11C). A logarithmic transform 
would tend to increase the weight of such false counts. To avoid this effect, we performed all 
clustering on the z-scores of the normalized RNA densities per cell, with the z-score calculated 
for individual genes across all cells, without applying a logarithmic transform. Following the 
scRNA-seq approach described above, we then reduced the dimensionality of these data with 
PCA and identified clusters using the Jaccard-Louvain community-based detection with a 
bootstrap analysis to both identify stable clusters and select the optimal value of the nearest 
neighborhood size k as described earlier for the scRNA-seq clustering analysis. We utilized a k 
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value of 10 for all cells, a value of 12 for inhibitory neurons, and a value of 10 for excitatory 
neurons. 

As with the scRNA-seq measurements, we first performed clustering of all cells and 
identified major cell classes, including inhibitory neurons, excitatory neurons, microglia, 
astrocytes, mature and immature oligodendrocytes, ependymal cells, endothelial cells, and mural 
cells, some of which contain further sub-partitions. Again, we observed a few cell clusters (~3% 
of all cells) that co-expressed markers for more than one cell class and thus were candidates for 
putative doublets, i.e. adjacent cells that our cell segmentation algorithm failed to separate. We 
utilized the same criteria for doublet selection as we did with the scRNA-seq data to identify and 
remove these doublets. However, one advantage of MERFISH is that we have an image of every 
member of each of these clusters. Thus, we visually inspected a random subset of cells within 
each of these putative doublet clusters and confirmed that indeed these clusters were enriched in 
connected cells that were not separated by our automated segmentation algorithm.  

We also identified a few clusters of cells (~1% of all cells) that had very low average 
intensities of DAPI and polyA as well as low total RNA counts, suggesting that these segmented 
features did not represent real cells or, perhaps, represented very small cell fragments. Indeed, 
visual inspection of members of these groups revealed that they appeared to be small cell 
fragments or spurious fluorescence signals in the DAPI and polyA channels. These groups were 
also removed from subsequent analysis.  

In this clustering analysis, we observed sub-divisions of several of the cell classes, as we 
did with the scRNA-seq data. We manually aggregated the sub-divisions of non-neuronal cell 
classes for all subsequent analysis. To further distinguish transcriptionally distinct clusters of 
inhibitory and excitatory neurons, we performed a second round of clustering on the inhibitory 
neurons and excitatory neurons separately. We also identified clusters of neurons that were 
enriched in markers associated with non-neuronal cells (~10% of all neurons), and we assigned 
these groups as putative doubles of neuronal and non-neuronal cells. Again, visual inspection of 
members of these groups supported this assignment. To formalize this visual assessment of 
putative doublets, we created a polarization metric, defined as the distance between the average 
center of mass of all observed RNAs for the neuronal markers, i.e. Gad1, Syt4, Slc17a6, and the 
center of mass of all observed RNAs for a panel of non-neuronal markers (Ndrg1, Lpar1, Ermn, 
Gjc3, Opalin, Sgk1, Ttyh2, Sox6, Traf4, Pdgfra, Cspg5, Aqp4, Aldh1l1, Lmod1, Myh11, 
Slco1a4, Fn1, Selplg, Slc15a3). Indeed, we found that this polarization metric was larger for 
these putative doublet clusters than for all other clusters. We removed these doublet clusters 
from subsequent analysis.  

We then assigned a basic ID to each neuronal cluster comprised of an ‘I’ or ‘E’ to mark 
inhibitory or excitatory clusters, determined based upon the relative expression of the inhibitory 
marker Gad1 or the excitatory marker Slc17a6, and a number indicating the relative cell 
abundance of that cluster with respect to all other inhibitory or excitatory clusters, e.g. E-1 and I-
1 are the most abundant excitatory and inhibitory clusters, respectively. Of these clusters, we 
identified one (I-28) as a putative hybrid cluster based on the co-expression of inhibitory and 
excitatory markers and renamed it as H-1, which showed correspondence to the scRNA-seq 
cluster h2. Again, we did not relabel the other clusters, and hence the cluster ID I-28 is missing 
from our final dataset. In total, this analysis identified ~40 inhibitory and ~30 excitatory neuronal 
clusters after removal of putative doublets. 

MERFISH data from naïve male and female animals, as well as animals subjected to 
defined behavioral stimuli (described below), were clustered together. The expression level of 
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cFos, which was measured only for the animals exposed to behavioral stimuli, was not included 
in clustering. With the exception of Fig. 8 and fig. S20, all reported analyses on MERFISH data 
were conducted with the data derived from naïve animals. 

tSNE visualization of MERFISH data were performed as described for the scRNA-seq data, 
using the same principle components calculated from all 155 genes that were used to cluster 
cells. Marker genes that were statistically enriched within specific MERFISH clusters were 
identified by comparing the expression level of a given gene (in normalized RNA density, as 
described above) within cells of the given cluster relative to the expression level of this gene in 
cells of all other clusters using a two-sided t-test. An enrichment was judged to be significant if it 
had a p-value less than 0.05 after correction for a false discovery rate of 5%. Genes included 
within the violin plots for Fig. 6-8 and within the dot plots in fig. S15, were drawn from the set 
of statistically enriched genes for each of the listed MERFISH cluster. However, these figures 
also include genes of interest that were expressed within these clusters but not necessarily 
statistically significantly enriched.  

Nomenclature of MERFISH neuronal clusters. In addition to the cluster ID (E-1, E-2, …, I-
1, I-2, …, and H-1) as described above, we also assigned a descriptive name to each neuronal 
cluster on the basis of the spatial measurements of these neuronal clusters. We determined the 
nuclei in which these clusters were primarily enriched (Fig. 5C). We then assigned names to 
individual neuronal clusters based on this nuclei assignment. For the small fraction of dispersed 
clusters that were not enriched in specific nucleic, we provided a gene-based name on the basis 
to two marker genes. We note that I-17 was found at the very edge of our imaged region and falls 
outside of the boundaries of the nearest imaged nuclei, the VLPO. Given its location, it is likely 
located within the HDB, a nuclei which is immediately next to but largely outside of the imaged 
region (fig. S17, S18). For this reason, we gave this cluster a gene-based name with HDB in the 
parenthesis (I-17:Tac1 (HDB).  
 
Correspondence between MERFISH and scRNA-seq 

To identify neuronal clusters identified with scRNA-seq and MERFISH that have similar 
expression profiles and, thus, might represent corresponding clusters of cells, we first computed 
the pairwise Pearson correlation coefficient between the average expression profiles of each 
MERFISH neuronal cluster and each scRNA-seq neuronal cluster (Fig. 4C; fig. S14A). The 
expression profiles for both groups of clusters were measured in z-scores. We then utilized this 
correlation analysis to identify the scRNA-seq cluster(s) that correlated the most strongly with 
each MERFISH cluster (Fig. 4D; fig. S14C). Specifically, we first identified the scRNA-seq 
cluster with the largest correlation coefficient for each MERFISH cluster. To then identify 
correlation coefficients that were statistically indistinguishable from these maximum values, we 
performed a bootstrap analysis. Specifically, we computed the average expression profiles for all 
MERFISH clusters for a random ~75% of the replicates of the anterior and posterior portions of 
the preoptic region. Similarly, we computed the average expression profiles for all scRNA-seq 
clusters from a random ~75% of the scRNA-seq replicates. We then computed the pairwise 
Pearson correlation coefficients between the average expression profiles for these bootstrap 
replicates, as described above. For each MERFISH cluster, we identified any scRNA-seq 
cluster(s) that had a correlation coefficient larger than that of the scRNA-seq cluster with the 
largest correlation coefficient in the original analysis. If a scRNA-seq cluster had a larger 
correlation coefficient in at least 10% of the bootstrap replicates, it was considered to be 
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statistically indistinguishable from the largest value, and this cluster was included as an 
additional, putative corresponding cluster to that MERFISH cluster.  

To remove potentially spurious correspondences, we determined the null probability 
distribution of maximum Pearson correlation coefficients when no correspondence exists. We 
performed an analysis in which we randomized the gene labels associated with the average 
expression profiles for each scRNA-seq cluster and recomputed the pairwise Pearson correlation 
coefficients between scRNA-seq (after randomization) and MERFISH clusters. From this 
analysis, we found that there was a 10% probability of generating a maximum correlation 
coefficient greater than 0.34 when no correspondence exists, and we removed any putative 
corresponding clusters with a correlation coefficient less than or equal to 0.34.  

In parallel, we trained a neural network classifier (single-layer perceptron, 100 nodes) on 
the MERFISH data and predicted the MERFISH neuronal cluster identity for each neuron 
measured with scRNA-seq (fig. S14D). For the vast majority of clusters, the scRNA-seq cluster 
that best correlated in its expression profile with a given MERFISH cluster was also the scRNA-
seq cluster that was most frequently assigned the label associated with that MERFISH cluster via 
this classifier (fig. S14A, D), providing further support for the putative correspondence 
constructed above.  

We utilized the results from the classifier approach in two additional ways. First, we 
removed any putative correspondence between a MERFISH cluster and a scRNA-seq cluster 
(determined using the correlation approach) for which this classifier did not provide significant 
support for this correspondence, i.e. <10% of cells assigned a given MERFISH label were found 
within the putative corresponding scRNA-seq cluster. Reflecting the agreement between the 
classifier results and the correspondence determined via correlation, this cut removed only ~10% 
of putative correspondences identified via correlation. The final set of putative correspondence 
between MERFISH and scRNA-seq clusters with their Pearson correlation coefficients is 
included in Fig. 4D, fig. S14C and Table S9. 

Second, to provide further support of the correspondence that we drew between MERFISH 
and scRNA-seq clusters based on correlation, we identified the scRNA-seq cluster most closely 
associated with a given MERFISH cluster based on these classifier results. Specifically, for each 
MERFISH cluster, we identified the scRNA-seq cluster to which this MERFISH cluster label 
had been assigned most frequently. To also include assignments that were statistically 
indistinguishable from this maximum frequency, we adopted a similar bootstrap approach as 
described above for the correlation approach but applied it to the measured frequency with which 
this MERFISH cluster label was applied to each scRNA-seq cluster. We also required that a 
given scRNA-seq cluster comprise at least 10% of the cells that were given this MERFISH 
cluster label. From this analysis we found a small number of putative correspondences between 
MERFISH clusters and scRNA-seq clusters for which the Pearson correlation coefficient 
between their average expression profiles was lower than our false-positive threshold of 0.34, 
described above. We, thus, removed these elements, which reduced the number of putative 
correspondences by only ~25%. The resulting set of correspondences between MERFISH and 
scRNA-seq clusters produced from this classier analysis (fig. S14E) agreed well with that 
produced by the correlation analysis above (fig. S14C).  

Because our scRNAseq measurements were performed over a larger tissue volume than our 
MERFISH measurements, several scRNA-seq clusters can be readily determined to be located in 
structures outside of the region imaged by MERFISH. Specifically, we identified these clusters 
as being outside of the MERFISH imaged region by using the most specific markers for each 
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cluster and examining coronal images from the Allen Brain Atlas (35) and our own in situ 
hybridization data for these marker genes. Marker genes of clusters i6, i14, i28, i30, and i31 
place these cells in the SCN, marker genes of clusters e20, e21, h3, and i27 place them in the 
PVN, and marker genes for cluster i3 place it to the olfactory tubercle (OT), which were all 
outside of the region imaged via MERFISH. Marker genes of clusters i35 and i44 place these 
cells to the LPO and MnPO, respectively. Although MnPO and LPO were partially covered in 
our imaged region, our in situ hybridization data revealed that neurons co-expressing markers of 
these clusters were found in portions of these nuclei outside our imaged region. Marker genes for 
clusters e9, i42 and i43 placed these cells in the HDB; only a small portion of this nuclei was 
included in our imaged region. Thus, we did not seek a correspondence between MERFISH 
clusters and these scRNA-seq clusters (i3, i6, i14, i27, i28, i30, i31, i35, i42, i43, i44, h3, e9, e20, 
and e21). We note that it is possible that some of the remaining scRNA-seq clusters were still 
outside the MERFISH imaged region because the some of these clusters had no markers that 
were present in the Allen Brain Atlas and, thus, we were unable to estimate their location.  

To select galanin (Gal)-enriched MERFISH clusters for the purpose of comparison to 
galanin-enriched scRNA-seq clusters, we selected MERFISH clusters with an above average and 
statistically significant enrichment in Gal relative to all cells (as determined via a two-sided t-test 
with a p-value cut-off of 0.05). In examining the corresponding scRNA-seq clusters to the Gal-
enriched MERFISH clusters, we determined that one MERFISH cluster (E-28), which was not 
identified as Gal-enriched but had the next highest level of Gal expression, corresponded to a 
Gal-enriched scRNA-seq cluster. Similarly, we found that the scRNA-seq cluster e3, which 
corresponded to a Gal-enriched MERFISH cluster, also had a high but not statistically enriched 
level of Gal expression. Because these two clusters expressed appreciable levels of Gal and each 
showed putative correspondence to a Gal-enriched cluster measured by the other approach, they 
were included in the analysis shown in Fig. 4E. 

For comparison purpose, we also partitioned our scRNA-seq neurons into two random sets 
each comprised of half of the measured cells (bootstrapped replicates). We then re-clustered 
these bootstrapped replicates of neurons using the same protocols described above, computed 
average expression profiles for each of the newly formed clusters in each data subset, and 
calculated the pairwise Pearson correlation coefficients and determined the most similar clusters 
as described above. We found that the number of corresponding clusters as well as the range of 
correlation coefficients observed for these most similar clusters (fig. S14F, G) is comparable to 
or slightly higher than what we observed between the most similar MERFISH and scRNA-seq 
clusters (Fig. 4C, D; fig. S14A, C). 
 
Spatial mixing and spatial heterogeneity analysis of neuronal clusters 

Spatial mixing analysis of neuronal clusters. To compute the neighborhood composition for 
neurons, we determined the number of neurons and the number of unique neuronal clusters 
within a given radius around each neuron as a function of the radius size. We then computed the 
fraction of cells within this radius that correspond to the most abundant cluster.  

Spatial heterogeneity analysis within individual clusters. To explore the spatial heterogeneity 
of gene expression within individual clusters, we performed a principal component analysis of 
the expression of all genes within each cluster. Expression was measured in z-scores with z-score 
calculated for individual genes across all cells within that cluster. We then plotted the spatial 
distribution of these cells colored by the amplitude of one of the first two principal components 
(PC). Figure S16 contains several examples of the clusters in which there was a clear spatial 
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gradient in one PC. While we chose to display only a single PC in these examples, we note that 
spatial correlations were observed in the amplitude of multiple different PCs in some clusters.  
 
Overlap fraction analysis of neuronal clusters 

To determine the fractional overlap between different neuronal clusters, we first computed 
the local density of each neuronal cluster by convolving the location of each cell for each 
neuronal cluster with a gaussian distribution of 25-µm width. We then discretized this density 
into 25-µm × 25-µm bins, effectively creating a pixelated image of this density. We eliminated 
the effect of outlier cells by thresholding this discretized density distribution on a minimum 
density of 1 cell per 25-µm × 25-µm pixel. The overlap fraction was calculated between all pairs 
of clusters as the total number of pixels above threshold for both clusters divided by the total 
number of pixels above threshold for either cluster. The measured overlap fraction was not 
strongly sensitive to the bin width or the density threshold. Only the overlap fractions between 
the aromatase- and Esr1-enriched clusters are reported in Fig. 6F. 

 
Comparison of spatial measurements of neuronal clusters between biological replicates 

We first calculated the density of individual neuronal clusters in all slices of all replicates, as 
described above. Then for each neuronal cluster in each tissue section, we computed the area 
covered by the cluster as the number of pixels above threshold, as described above, and 
determined the variation of this area across all replicates. The area of clusters varied across 
replicate animals by only ~10% on average (averaged over all clusters). In addition, we also 
calculated the relative variation in the overlap fraction between all pairs of neuronal clusters. For 
each pair of neuronal clusters in each tissue section, we computed the overlap fraction as 
described above and then determined the relative variation in this value across all replicates. 
Again the relative variation in the overlap fraction across replicate animals was only ~10% on 
average (averaged across all clusters). Finally, we computed the distance between the centroid 
positions of each pair of neuronal clusters in each tissue section, determined the variation in 
these values across replicate animals, and also found that centroid distances varied across 
replicate animals by ~10% (median value across all cluster pairs). Thus, in general, we find that 
the area of each neuronal cluster, the overlap fraction between clusters, and the distance between 
cluster centroids is well reproduced between replicate animals. Only clusters that contained at 
least 25 cells in a given slice were used for these calculations. 
 
Behavioral assays for cFos measurements 

Animals were individually housed for ~4-5 days before behavioral assays, which were 
performed as described previously (5, 72, 74), beginning >1 hour after the onset of the dark cycle 
under dim red lighting. Mice were habituated to the testing room for 1 hour before the start of 
each behavioral assay. Only mice that performed the desired behaviors (described below) after 
the defined behavioral stimuli were selected for tissue collection. 

Parental behavior. Virgin females: A single mouse pup aged 2-3 days was introduced into 
one corner of the home cage of an adult virgin female mouse (age ~8 weeks), away from the 
nesting material. A parental response was defined as retrieval of the pup to the nest combined 
with nesting, crouching, grooming and licking behaviors. Mice were sacrificed for tissue 
harvesting 30 minutes following the retrieval of the pup to the nest. Only mice displaying all the 
above behavioral subroutines were selected for further processing. 
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Mothers and Fathers: Virgin male and female mice (age ~7 weeks) were co-housed in pairs 
until the birth of pups (~21 days). Mice were allowed to remain with pups for 3 days before 
mothers were moved to a fresh cage and pups were removed from the home cage of the father. 
Two days later, parental behavior was tested as described above with virgin females.  

Pup-directed aggression. A single mouse pup aged 2-3 days was introduced into one corner 
of the home cage of an adult virgin male mouse (age ~8 weeks), away from the nesting material. 
Mice were sacrificed for tissue harvesting 30 minutes following aggressive attacking of the pup, 
characterized by biting behavior leading to audible pup vocalizations and occasionally preceded 
by tail rattling. Pups were immediately removed from the cage following an attack. 

Inter-male aggression. Castrated C57Bl6/J males (aged ~6-8 weeks) swabbed with intact 
adult male urine (~100 µL) were introduced into the home cage of an adult virgin male mouse 
(age ~8 weeks). Mice were sacrificed for tissue harvesting 30 minutes following aggressive 
attacking of the intruder, characterized by rapid bouts of biting leading to defensive reactions by 
the intruder (rearing and escaping). Intruder males were removed from the cage 10 minutes after 
the commencement of the first attack.  

Male mating. Ovariectomized female mice (aged ~6-8 weeks) were hormonally primed to 
be in estrous as previously described (41) (injected subcutaneously with 10 µg of 17 β-estradiol 
benzoate in 100 µL sesame oil on 2 consecutive days preceding the test day). On the test day, 
females received a subcutaneous injection of 50 µg of progesterone in 50 µL sesame oil at least 6 
hours before testing and were introduced into the home cage of an adult virgin male mouse (age 
~8 weeks). Mice were sacrificed for tissue harvesting 30 minutes following intromission of the 
female. Intromission usually occurred within 5 minutes of the first mount. Female mice were 
removed from the cage 10 minutes after the first intromission. None of the male mice ejaculated 
during this short testing period. 

Female mating. An intact adult sexually experienced male mouse was introduced into the 
home cage of an adult virgin female mouse (age ~8 weeks) in estrous (determined by a vaginal 
smear). Females were sacrificed for tissue harvesting 30 minutes following intromission by the 
male. Males were removed from the cage 10 minutes after the first intromission. None of the 
male mice ejaculated during this short testing period. 
 
Calculation of cFos-positive-cell enrichment 

To determine the enrichment of cFos-positive cells within each cluster, we first defined 
neurons as cFos-positive if the cFos signal within those cells was greater than two standard 
deviations above the mean cFos value for all neurons. We then calculated the enrichment of 
cFos-positive cells within each cluster for each behavior and each replicate as the fraction of 
cells within that cluster that were cFos-positive over the fraction of all neurons in all replicates 
that were cFos-positive. We reported the average of this enrichment as well as the standard 
deviation over all replicates for each behavior in Fig. 8. To determine enrichments that were 
statistically significant, we used the binomial distribution to calculate the probability of 
observing a given fraction of cFos-positive cells within a cluster given the probability of 
observing a cFos-positive cell across all neurons. We selected a p-value cut-off using a false-
discovery rate of 5%. Clusters highlighted in red in Fig. 8 and fig. S20 satisfied this p-value cut-
off and had an average enrichment greater than 1. In addition, we excluded clusters from this 
analysis that were not present in sufficient numbers to allow reliable measurements of the 
presence of a small fraction of cFos-positive cells. Specifically, we only analyzed clusters in 
which at least 10 cells were present in at least two of the 3-4 replicate animals.  
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Two- and three-color FISH measurements by RNAscope 

Double- and triple-label FISH were performed using the RNAscope assay V2 kit (Advanced 
Cell Diagnostics, 32110). Brains from naïve animals, or brains from animals following the 
relevant behavioral stimulus, were harvested and frozen in OCT as described above. 16-µm 
sections encompassing the preoptic region were cut as described above and placed on 
microscope slides (VWR, 48311-703) chilled to -18 °C. These slides were then stored at -80 °C 
prior to staining. RNAscope staining was performed according to the manufacturer’s 
instructions.  
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Supplementary Figures 

 

Fig. S1. Sample preparation for single-cell RNA-seq. (A) Schematic depiction of the process 
by which cells are dissociated and stained with markers of live (Calcein green AM) and dead 
(Propidium iodide) cells, FACS sorted to enrich for live cells, and encapsulated in droplets with 
barcoded beads using the 10x Genomics platform in order to produce single-cell cDNA libraries 
for next-generation sequencing. (B) Wisteria floribunda lectin staining from the preoptic region 
shows an increase in perineuronal nets in adult (post-natal day 65; PND65), compared to young 
mice (PND10). Because of the accumulation of perineuronal nets during maturation, we included 
enzymes that digest extracellular matrices to increase the cell survival rate during dissociation. 
(C) The measured fraction of cells that survived dissociation for three replicates prepared with 
previous (70) (red) or our improved protocol (blue).  
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Fig. S2. Determination of the nearest neighbor number (k) used in the Jaccard-Louvain 
community detection approach for cell clustering. The number of clusters identified by the 
Jaccard-Louvain community detection algorithm depends on the number of nearest neighbors, k, 
used to construct the nearest neighbor graph upon which this algorithm operates. Similarly, the 
stability of these clusters—the fraction of cells that are co-clustered together when random 
subsets of cells are re-clustered (bootstrap analysis)—also depends on this value. We select a 
value of k that balances the desire to have more clusters with the desire to have most measured 
cells assigned to stable clusters. (A-C) The number of stable clusters versus the number of cells 
assigned to stable clusters (determined using the bootstrap analysis) as a function of the number 
of nearest neighbors (k) used for determining distinct cell clusters for all cells (A), for excitatory 
neurons only (B), and for inhibitory neurons only (C). Arrows indicate the k values selected, 
below which the number of cells included in the stable clusters decreases substantially with 
decreasing k. 
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Fig. S3. Expression of the top 5 marker genes in all neuronal clusters identified via scRNA-
seq and the distribution of inhibitory and excitatory markers in excitatory and hybrid 
neuronal clusters. (A, B) Expression profiles for all excitatory (A) or inhibitory neurons (B) 
with individual cells displayed in columns and individual genes in rows. The depicted genes 
represent the set of the top five most enriched genes within each cluster (on the basis of averaged 
normalized expression fold-change). Expression profiles are measured in z-scores of the 
normalized expression values for individual genes across all cells. The normalized expression 
value for a gene is computed by normalizing to each cell’s total UMI count, multiplied by 10,000 
(for scale), and log-transformed. Z-scores are computed by subtracting the gene’s mean 
expression (across all cells) and dividing by the gene’s standard deviation in expression. (C) 
Normalized expression distributions of inhibitory (Gad1, Gad2, and Slc32a1) and excitatory 
(Slc17a6, Slc17a8) markers in the identified hybrid and excitatory clusters. Expression 
distributions are calculated on logarithmically scaled counts, as described above, and the scale of 
each individual row is set by the 95% quantile of the cluster that expresses the largest level of 
that gene. Expression values for these genes in these clusters are included in Table S2.  
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Fig. S4. Expression distributions of notable genes in inhibitory neurons identified via 
scRNA-seq. Expression distributions for notable neuropeptides, neuromodulators, and 
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peptide/hormone receptors in all inhibitory neuronal clusters. All displayed genes were enriched 
in at least one inhibitory cluster (as determined via MAST (75) with a false-discovery rate of less 
than 0.01). Neuronal clusters are grouped based on the expression of neuropeptides and 
neuromodulators designated by the same colors as in Fig. 1C. Expression distributions were 
calculated as in Fig. 2. Expression values for these genes in these clusters are included in Table 
S2. The hybrid neuronal clusters, h1 and h2, are listed here since they were identified after the 
second round of clustering of inhibitory neurons.  
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Fig. S5. Expression distributions of notable genes in excitatory neurons identified via 
scRNA-seq. Expression distributions for notable neuropeptides, neuromodulators, and 
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peptide/hormone receptors in all excitatory neuronal clusters. All displayed genes were enriched 
in at least one excitatory cluster (as determined via MAST (75) with a false-discovery rate of less 
than 0.01). Expression distributions were calculated as in Fig. 2. Neuronal clusters are grouped 
based on the expression of neuropeptides and neuromodulators designated by the same color as 
in Fig. 1D. Expression values for these genes in these clusters are included in Table S2. The 
hybrid neuronal cluster, h3, is listed here since it was identified after the second round of 
clustering of excitatory neurons.  
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Fig. S6. Gene-set enrichment analysis of three gene categories in the differentially 
expressed genes among the neuronal clusters determined by scRNA-seq. We observed that 
different categories of genes appeared enriched in the top markers of neuronal clusters identified 
via scRNA-seq. To determine the significance of this enrichment, we performed a Gene-Set 
Enrichment Analysis (GSEA). The three categories of genes considered in this analysis are (1) 
neuropeptides and molecules involved in neuromodulator production and transport, (2) 
transcription factors, and (3) neuromodulator (neuropeptide and hormone) receptors. In this 
analysis, genes are sorted based on the strength with which they mark individual neuronal 
clusters identified in Fig. 1 (29) and arrayed from strongest to weakest markers from left to right 
with genes that belong to the specified category marked by blue lines and other genes marked in 
grey (bottom). The score on the vertical axis is an accumulating weight that either increases or 
decreases depending on whether each gene does or does not belong to the specified category 
under consideration and progresses from the strongest to the weakest marker gene. The p-value 
represents the probability of observing the maximum value of the score (red dashed line) if the 
genes belong to the specified category are distributed randomly along the horizontal axis. The p-
values for these three categories derived from this GSEA test are also reported in Fig. 1E. The 
genes included within each of these categories are provided in Table S3. On the basis of this 
calculation, the differentially expressed genes for distinct neuronal clusters are enriched for 
neuropeptides and molecules involved in neuromodulator production and transport, as well as for 
transcription factors, but not for neuromodulator receptors. However, we note that 
neuromodulator receptors are often expressed at relative low levels, which could potentially 
make the enrichment of these genes more difficult to detect.  
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Fig. S7. In situ hybridization experiments to validate the co-expression of marker genes for 
galanin-enriched clusters and Th-enriched clusters identified by scRNA-seq. (A) Two-color 
FISH images in 16-µm-thick sections of the preoptic region show co-localization between 
Galanin (green) and another marker (red) for each Galanin-enriched cluster in Fig. 2A. Yellow 
represents co-expression of the markers. The blue dashed rectangles indicate the region of the 
zoom-in depicted to the right of each image. (B) As in (A) but for the Th-enriched clusters 
depicted in Fig. 2B. Markers are selected from the set of most enriched genes within each 
cluster. Only clusters that can be distinguished by a unique marker gene are tested by these 
experiments, hence the Th-enriched cluster i17 was not tested. Images of sections at different 
positions along the anterior-posterior axis are shown for different clusters to optimize the overlap 
between the two imaged marker genes in each case, and location in Bregma coordinates is 
provided. The images for the galanin- and Th-enriched cluster i16 in (B) were reproduced from 
(A) for clarity with the green and red colors exchanged to match the color scheme of (B). Scale 
bars: 200 µm. Scale bars for zoom-in: 50 µm. 
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Fig. S8. Expression determined by MERFISH for 11 genes previously reported to display 
sexually dimorphic expression. (A) MERFISH images of RNAs for 2 genes that have been 
previously reported (42) to express at a higher level in females than in males in the preoptic 
region. (B) Same as (A) for 9 genes that have been previously reported (41, 42) to express at a 
higher level in males than in females in the preoptic region. Three of the twelve 1.8-mm × 1.8-
mm slices imaged (at indicted anterior-posterior positions) for two female and two male replicate 
animals are shown.  
 
 



 
 

 
 

34 

 
 



 
 

 
 

35 

 
Fig. S9. Identification of RNA molecules from the combinatorial smFISH images. (A) A 
maximum projection image generated from the seven z-planes imaged for one representative 
field-of-view (FOV). Depicted is the image of one of the 16 imaged bits (two color channels 
(Cy5 or Alexa750) and eight hybridization rounds). (B) The maximum projection (left) or a 
single z-plane (right) images for the cell marked in the red box in (A) in 6 of the 16 bits that 
comprise the combinatorial smFISH measurements. The bit number and color channel associated 
with each image are indicated. Background has been subtracted in (A) and (B) with a high-pass 
filter. (C) Decoded identity of the RNA molecules identified in the FOV depicted in (A). Each 
colored dot represents the position of a single RNA molecule identified, the color indicates the 
identity of the gene, and the opacity is proportional to the brightness of the RNA signal. (D) Box 
plots of the measured signal-to-noise ratio for all RNA molecules across all rounds of 
hybridizations in combinatorial smFISH imaging in each color channel. The red line is the 
median value, the box indicates the 25th to 75th quantile range, and the whiskers cover the 99% 
quantile range. Individual dots represent measurements that fall beyond this range. (E-H) 
Identifying hundreds of millions of RNAs in 1.1 million cells requires computationally efficient 
algorithms. To this end, we used a pixel-based algorithm (29, 40) that associates each pixel with 
a specific RNA barcode based on the intensity profile of that pixel across all 16 bits and then 
combines adjacent pixels assigned to the same RNA species into a single detected molecule. This 
pixel-based algorithm recently developed by us (29, 40) is far more computationally efficient 
than our previous spot-finding based approach in which individual RNA molecules are localized 
with a spot-finding algorithm and then connected across bits to form barcodes (20). In addition to 
being computationally much faster, the pixel-based algorithm also has higher performance in 
terms of RNA identification efficiency and accuracy, as shown in (E-H). (E) The total counts 
observed for each RNA species in the FOV shown in (A) when RNAs were identified with the 
pixel-based approach versus the spot-finding algorithm. The results from the two algorithms are 
highly correlated with a Pearson correlation coefficient of 0.95. (F) The ratio of total RNA 
counts (blue) or total blank-control barcode counts (red) when RNAs were identified with the 
pixel-based algorithm relative to when RNAs were identified with the spot-finding algorithm. 
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Five barcodes were not assigned to RNAs (blank controls) and the detection of these barcodes 
provide an estimate of the false-positive detection rate. The pixel-based algorithm detects more 
RNA spots per cell (blue) and also has a substantially lower false-positive detection rate (red). 
(G) The total counts observed for each RNA species (barcode) for the FOV in (A) when RNAs 
were identified with a pixel-based algorithm. Barcodes are sorted from highest to lowest 
abundance. Red bars represent the observed counts for the five barcodes not assigned to RNAs 
(blank controls). (H) As in (G) but for RNAs identified with the spot-finding algorithm in the 
same FOV. For both algorithms, the blank-control barcodes are detected at lower rate than most 
RNA-encoding barcodes, except for the barcodes encoding the small fraction of RNA species 
with very low abundance, but this fraction is smaller for pixel-based algorithm than for the spot-
finding algorithm. Comparison of our decoded results with the total number of spots found by 
the spot-finding algorithm (correct + incorrect spots) indicate that our error-detection scheme 
rejects ~60-70% of the smFISH spots, which likely represent stray probes and fluorescent 
background.  
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Fig. S10. Segmentation of cells with DAPI and polyA co-stains. (A, B) DAPI (A) and total 
polyA RNA (B) images of a single field-of-view (FOV) (same FOV as in fig. S9) shown 
together with the identified segmentation boundaries for each cell marked in white. Shown is the 
image from the central slice in the z-stack collected at this FOV, and the depicted boundaries 
were identified in this z-plane. To identify cell segmentation boundaries from the DAPI and 
polyA z-stacks, adaptive image thresholding was used to identify regions of the DAPI image that 
are bright and, thus, contain nuclei. Image erosion was then used to separate closely spaced 
nuclei and identify nuclei centers. To determine cell segmentation boundaries, we used a seeded 
watershed approach in which the intensity of the polyA image acts as watershed catch-basin, 
determining the boundaries of cells, while the location of nuclei act as ‘seeds’, i.e. locations in 
the image that must contain a cell. We utilize a three-dimensional watershed algorithm on our z-
stacks, producing three-dimensional cell segmentation boundaries.  
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Fig. S11. Correlation between MERFISH and bulk RNA-seq, and reproducibility and 
false-positive detection rates in MERFISH. (A) Scatter plot of average copy number per cell 
for two MERFISH measurements conducted on two replicate animals for all genes measured in 
the combinatorial smFISH run. The dashed lines represent the average copy number per cell 
observed for the five “blank” control MERFISH barcodes (barcodes not assigned to any gene) 
and is a measure of the false-positive rate in MERFISH. We note that good correlation between 
replicates are observed even for low-expression genes whose average count per cell is below the 
average blank count. This is because not all cells express these genes and in individual cells that 
express these genes, their expression levels are typically higher than the average blank count (see 
panel (C)). (B) Scatter plot of average copy number per cell determined by MERFISH versus 
expression level determined by bulk RNA-seq for all genes measured in the combinatorial 
smFISH run. The dashed line represents the measured false-positive rate as described in (A). The 
Pearson correlation coefficients (r) between the logarithmic expression values depicted in (A, B) 
are provided. (C) The average expression of a gene across all cells (as in A, B) may not be 
representative of the average expression within individual clusters. For example, an RNA 
expressed at low levels when averaged across all cells may, nonetheless, be highly expressed in 
the cells of a low abundance cluster. To evaluate the fraction of genes that are lowly expressed 
when averaged across all cells but are still expressed above background within individual 
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clusters, we computed the average expression of each gene within every cluster and determined, 
for each gene, the expression level observed in its highest expressing cluster. This maximum 
expression level is plotted (blue and red solid circles) for the 42 low-expression genes with an 
average copy number across all cells of less than 0.5 copy per cell. Also depicted are the average 
copy number in the highest expressing clusters (red open circles) and the average copy number 
across all cells (red diamonds) for the five blank controls. Of these 42 low-expression genes, 
only four genes (red circles) have their average expression level within their respective highest 
expressing clusters below the maximum value observed for any of the blank controls. Thus, the 
vast majority of these low-expression genes are expressed above background in at least one 
cluster.   
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Fig. S12. Comparison of RNA copy numbers and cell abundance detected in MERFISH 
and scRNA-seq measurements. (A) Box plots of the total RNA copy number detected per cell 
for the 135 genes measured in the combinatorial smFISH run (right) in comparison with the total 
UMI number measured per cell with scRNA-seq for the same 135 genes (left). Depicted are 
values for all measured cells. The fold difference in the average counts observed with MERFISH 
relative to that observed with scRNA-seq is indicated. (B) As in (A) but for the total RNA copy 
number per cell for the 135 genes measured in all neurons. We note that many of the genes in the 
MERFISH panel that we chose for their biological significance happened to have low expression 
levels, such as neuromodulator receptors; thus, this panel of genes would be expected to produce 
relatively few counts per cell. (C) Box plots of the number of genes expressed per cell as 
determined by MERFISH. Depicted are values for all cells or all neurons measured with 
MERFISH. A gene is defined as expressed if a single copy is measured within a cell. In the 
boxplots, the red line is the median value, the box indicates the 25th to 75th quantile range, and 
the whiskers cover the 99% quantile range. (D) The blank-control barcodes measured in 
MERFISH allow a direct measure of the background false detection rate. To determine the 
number of genes expressed above this background level for each cluster, we computed the 
average expression of each gene within each cluster and compared those values to the average 
count of the highest-count blank-control barcode in that cluster. Depicted is the histogram of the 
number of genes in each cluster that are expressed above this background level, histogrammed 
across all clusters. (E) Fractional abundance of cells observed in MERFISH (red) and scRNA-
seq (blue) for the major cell classes.   
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Fig. S13. The dependence of the neuronal clusters recovered on the number of genes used 
for clustering. To determine the relative importance of the number of genes as well as different 
gene categories in clustering, we examined the effect of different gene subsets on re-clustering 
the neurons identified with MERFISH. In parallel, we also used an information theory quantity 
known as mutual information to determine the relative importance of each gene to the definition 
of our clusters, as described previously (67). In addition, because different genes can share 
similar expression patterns across clusters and, thus, carry partially redundant information, we 
calculated the mutual information for each gene conditional on the expression of all genes with 
higher levels of mutual information; thus, partially removing this redundancy and generating a 
sorted list of most to least informative genes. (A) The number of the originally identified 
neuronal clusters (using all 155 genes) that were recovered when the imaged neurons were re-
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clustered using different numbers of genes. A cluster is judged to be recovered if more than half 
of the cells in the original cluster are grouped together in a cluster in the new clustering scheme, 
a commonly used criterion (31). Genes were added in order of most to least mutual information 
(black markers) or were added in random order (gray markers; average over three random gene 
orders with error bars representing standard deviation (n = 3)). (B) The values in (A) displayed 
separately for the inhibitory clusters (red), excitatory clusters (blue), and the clusters that were 
activated during behavioral stimulus (green; clusters indicated by red bars with * symbol in Fig. 
8). Re-clustering results in (A) and (B) show that increasing the number of genes rapidly 
increased the number of clusters recovered up to ~75 genes, which allowed ~90% of the 
neuronal clusters to be recovered. Beyond 75 genes, the number of clusters recovered increased 
more slowly with the number of genes included. (C) The number of clusters recovered when the 
imaged neurons were re-clustered with the following 6 specific gene subsets: 1) the 135 genes 
measured in the combinatorial smFISH rounds, 2) the 20 genes measured with non-
combinatorial FISH, 3) the 85 pre-selected genes that are known markers of major cell class or 
are known to be of functional importance to hypothalamus, 4) the 70 additional genes added, 
which are marker genes for specific neuronal clusters identified by scRNA-seq but not already 
included in the 85 preselected genes, 5) the 96 genes in the MERFISH panel that were among the 
genes used for clustering the scRNA-seq neurons, and 6) the 64 genes that represent the top 10 
most expressed genes in any MERFISH neuronal cluster. The dashed line marks the total number 
of clusters identified when all 155 genes were used for clustering. (D) The mutual information 
for genes contained within the subsets depicted in (C). Individual bars represent genes, with 
genes sorted from highest to lowest mutual information from left to right. For each gene subset, 
red represents a gene that is within that subset while black indicates a gene that is not within the 
subset but is among the 155 measured genes. Results in (C) show that both the 85 genes selected 
based on prior biological knowledge and the 70 additional marker genes identified by scRNA-
seq were important for identifying neuronal clusters, as only about half of the clusters were 
recovered if either subset was used alone for clustering. Nearly 90% of the clusters were 
recovered with the 135 genes measured in the combinatorial smFISH; however, the 20 genes 
measured in the sequential FISH rounds were also highly informative, as shown in (D). In 
addition, because these genes contained many functionally relevant genes such as neuropeptides, 
they were important for inferring the functional properties of the neuronal clusters. (E, F) In 
addition to recovering fewer clusters, the accuracy of the spatial distributions of the identified 
clusters is also reduced when clustering with fewer genes. (E) An example cluster (I-34) that was 
originally detected with the 155 genes and recovered by clustering with 40, 75, and 125 genes. 
As the number of genes is decreased, fewer clusters were recovered and each cluster tends to 
include more cells. (F) To quantify this effect, we compared the spatial areas covered by the 
recovered clusters when re-clustering with different numbers of genes to the areas of the 
corresponding original clusters. Plotted are the ratios of the area of the recovered cluster to that 
of the original cluster averaged over all clusters (error bars represent S.E.M. over the number of 
recovered clusters, n = 39, 61, 68, respectively). When 40 genes were used to re-cluster the data, 
the recovered clusters displayed a ~30% increase in the area relative to the original cluster. By 
contrast, once the majority of clusters were recovered with 75 or 125 genes, this error dropped 
substantially, to <10% and <5%, respectively. Together these results illustrate both the 
importance of imaging a large gene panel and the adequacy of imaging 155 genes for the cell 
populations identified here.  
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Fig. S14. Correlation between MERFISH neuronal clusters and scRNA-seq neuronal 
clusters. (A) Pairwise Pearson correlation coefficients between the average expression profiles 
for individual neuronal cluster identified with MERFISH and those identified with scRNA-seq. 
The average expression profiles are expressed in z-scores calculated for individual genes across 
all clusters. (B) A randomization control showing the Pearson correlation coefficient as in (A) 
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but calculated when the order of the genes in the expression profiles is randomized. (C) The 
scRNA-seq cluster(s) that correspond to or are most similar to a given MERFISH cluster, 
identified as the scRNA-seq cluster with the highest Pearson correlation coefficient or the set of 
scRNA-seq clusters with highest Pearson correlation coefficients that were approximately 
indistinguishable from one another (29). The Pearson correlation coefficients are indicated by 
color and given in Table S9. Panels (A) and (C) are reproduced from Fig. 4C, D for reference. 
(D) To further validate our assignment of the most similar scRNA-seq cluster(s) for each 
MERFISH cluster, we trained a neural network on the expression profiles (measured in z-scores) 
and cluster labels for the MERFISH data and used this network to assign a MERFISH cluster 
label to each neuron measured with scRNA-seq based on its expression profile (measured in z-
scores (29)). We then identified all scRNA-seq cells that are assigned the label of each 
MERFISH cluster and plotted the fraction of these labeled cells that are within each of the 
scRNA-seq neuronal clusters. The size of the circle represents this fraction and the color 
represents the Pearson correlation coefficient between the average expression profiles of the 
scRNA-seq and MERFISH clusters as described in (A). (E) scRNA-seq cluster(s) that 
correspond to or are most similar to a given MERFISH cluster, identified as the scRNA-seq 
cluster or the set of scRNA-seq clusters that contained the largest and approximately 
indistinguishable fraction of the MERFISH label assigned via the neural network classifier 
approach described in (D). As a support for our association between scRNA-seq and MERFISH 
clusters by the correlation analysis shown in (A) and (C), we find that this classifier analysis 
identifies the vast majority of the corresponding clusters that were identified by the correlation 
analysis, and vice versa. (F, G) For comparison purpose, we partitioned our scRNA-seq neurons 
into two equally sized groups, i.e. bootstrapped replicates, clustered each of these groups 
independently, and then compared the expression profiles of these clusters using the approaches 
in (A) and (C). Depicted in (F) are the pairwise Pearson correlation coefficients between all 
clusters formed from these two bootstrapped replicates, as in (A), and depicted in (G) are these 
values for the most similar pairs of clusters, as in (C). We find that 81% of the clusters identified 
in each of bootstrapped replicates had a corresponding cluster(s) in the other replicate, and the 
correlation coefficients for these most similar clusters ranged from ~0.4-0.8, with an average of 
0.6. In comparison, 73% of MERFISH clusters had a corresponding scRNA-seq cluster(s), 75% 
of scRNA-seq clusters had a corresponding MERFISH cluster(s), and the correlation coefficients 
also ranged from ~0.4-0.8, with an average of 0.6.   
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Fig. S15. Correspondence between Gal-enriched neuronal clusters identified in MERFISH 
and scRNA-seq. (A, B) Expression of selected marker genes and genes of interest in Gal-
enriched clusters identified by MERFISH (A) or scRNA-seq (B). The size of circles indicates the 
fraction of cells in each cluster expressing a given gene, and the shade of circles indicates the 
average expression level of a given gene within each cluster normalized to the maximum 
expression level of that gene in the depicted clusters. The genes depicted here are Gal (red), the 
inhibitory and excitatory markers Gad1 and Slc17a6 (blue), the top two markers of each Gal-
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enriched neuronal cluster identified by MERFISH (black), and the sex hormone receptors, Esr1, 
Prlr, Ar, Pgr (green). The putative corresponding MERFISH and scRNA-seq clusters are 
highlighted by vertical bars of the same color, and situations in which two adjacent MERFISH 
neuronal clusters share the same color of vertical bar represent situations in which two 
MERFISH neuronal clusters corresponded to a single scRNA-seq neuronal cluster. (C) 
Identification of sub-populations of cells within the Gal-enriched scRNA-seq cluster i16 that 
express markers for the two Gal-enriched MERFISH clusters, I-14 and I-16. The average 
expression profile for selected genes in these two MERFISH clusters (left) agrees well with the 
average expression profile (right) observed for sub-populations of scRNA-seq cells in i16 that 
were classified as most similar to either I-14 or I-16 using a neural network classifier. The listed 
genes are selected from the most differentially expressed genes between I-14 and I-16. Circles 
(top) depict the number of cells in the original MERFISH clusters and the number of cells in i16 
classified as each of these MERFISH clusters. (D) (Left) Pearson correlation coefficients 
between the expression levels of pairs of genes across all cells in MERFISH clusters I-14 and I-
16 combined, for genes depicted in (C). (Right) Pearson correlation coefficients between 
expression levels of pairs of genes across all cells in scRNA-seq cluster i16. Gene expression 
within individual cells was expressed in z-scores. (E,F) As in (C,D) but for the two Gal-enriched 
MERFISH clusters, I-7 and I-31, that showed putative correspondence to the Gal-enriched 
scRNA-seq cluster, i8. (G,H) As in (C,D) but for the Gal-enriched cluster I-34 and the two non-
Gal-enriched clusters I-2 and I-32, all of which showed putative correspondence to the Gal-
enriched cluster i20.  
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Fig. S16. Heterogeneity in gene expression as a function of position within a few selected 
clusters. (A) Spatial distribution of cells in neuronal cluster I-15 (top), E-14 (middle), and 
ependymal cell class (bottom) for six of the twelve 1.8-mm × 1.8-mm imaged slices taken from 
two replicate female mice. For clusters I-15 and E-14, red markers indicate cells of the specified 
neuronal clusters and gray markers indicate all other neurons. For the ependymal cell example, 
red markers indicate all ependymal cells and gray markers indicate all other cells. (B) Spatial 
variation of gene expression within the same clusters shown in (A). Only cells within the 
specified cluster are depicted, and the color of each cell is determined by its amplitude along the 
first principal component as determined by principal component analysis (PCA) of the variation 
in gene expression among cells of each specified cluster. The loadings associated with this 
principle component are dominated by a handful of genes, suggesting that gradients in the 
expression of a small number of genes drive these variations. Notable genes that contribute to the 
loadings of the first principal component are the following: Irs4, Pak3, and Slc18a2 for I-15; 
Necab1, Cbln1, and Cbln2 for E-14; and Cd24a, Aqp4, and Mlc1 for ependymal cells. 
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Fig. S17. Spatial distribution of all neuronal clusters in two replicate animals. (A, B) Spatial 
distribution of all inhibitory (A) and excitatory (B) neuronal clusters for the twelve 1.8-mm × 
1.8-mm slices from the different anterior-posterior positions of the preoptic region for two 
replicate female animals. Red markers indicate cells of the specified neuronal clusters and gray 
markers indicate all other neurons. Slices progress from the anterior portion to the posterior 
portion of the preoptic region from left to right. The hybrid cluster, H-1 (originally I-28), is listed 
with the inhibitory neurons, as it was identified in the second round of clustering with inhibitory 
neurons. Results from 2 of the 9 measured animals are shown here. For some of the 9 animals, 
only a subset of the twelve slices were measured. We note that, despite our effort to measure ~1 
million cells and keep only stable clusters, a few of the identified clusters had extremely low 
abundance (e.g. I-38, I-39, E-31) and may not represent specific cell populations. In addition, we 
note that cluster I-1 is spread relatively uniformly throughout the imaged region and is devoid of 
marker genes other than the expression of Gad1, and thus may not represent a specific neuronal 
population.  
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Fig. S18. Density plots of all neuronal clusters. The density of each MERFISH neuronal 
cluster in each of the twelve 1.8-mm × 1.8-mm slices from the different anterior-posterior 
positions of the preoptic region for one female replicate (Animal 1 depicted in fig. 17). Slices are 
arrayed from the anterior on the left to the posterior on the right. Regions of low neuronal density 
are depicted in blue, and regions of high density are depicted in red. The density is normalized 
for each neuronal cluster to the maximum value observed across all slices, and the density scale 
is listed for each neuronal cluster. The density is estimated by convolving a gaussian distribution 
of 25-µm width with the location of each cell within a given neuronal cluster. The schematic 
lines indicating the boundaries of the nuclei for each slice are depicted in white. The nucleus 
boundaries are drawn based on Paxinos (45) and approximately aligned to the tissue section 
imaged based on the locations of landmarks, such as the anterior commissure, ventricle, and 
fornix. The nucleus identities are depicted in Fig. 5B. The resolution of the nuclei map along the 
anterior-posterior axis is not as fine as the distance between our slices; thus, individual nuclei 
maps have been repeated for different slices. 
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Fig. S19. Cluster I-2 partially overlaps in space with the sexually dimorphic nucleus of the 
pre-optic area (SDN-POA). Left panel: Spatial distribution of the neuronal cluster I-2 identified 
by MERFISH in a single slice, with neurons in I-2 depicted in blue and all other neurons in grey. 
Right panels: In situ hybridization with Moxd1 (red) and Cplx3 (green), and the overlay of these 
stains (yellow marks co-expression of these markers). Bottom: Zoom-in on the BNST-p region 
(red boxed region) and the SDN-POA region (blue boxed region). Moxd1 is a known marker of 
the SDN-POA. Cplx3 marks the MERFISH cluster I-2 and Moxd1, though not part of the 
MERFISH gene panel, marks the scRNA-seq cluster i-20 that corresponds to the MERFISH 
cluster I-2 (Table S9). Moxd1 and Cplx3 are co-expressed in cells in the SDN-POA, as well as 
in cells in the BNST-p region, and both the SDN-POA and BNST-p spatially overlap with I-2. 
The position of the depicted slice along the anterior-posterior axis is Bregma -0.15.  
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Fig. S20. cFos expression in neuronal clusters after specific social behaviors. (A) Average 
cFos expression level observed within each neuronal cluster in males and females after 
parenting, mating, and aggressive behavior. The cFos level is in arbitrary fluorescence intensity 
units and the scale is the same for all panels. (B) Fraction of all cFos-positive cells distributed 
among individual clusters. Error bars represent the standard error of the mean across replicate 
animals (N = 3 – 5 replicate animals). Red bars represent clusters that displayed a statistically 
significant enrichment in cFos-positive cells (binomial test, false discovery rate < 5%) as 
determined in Fig. 8A. Only clusters in which at least 10 cells are present in two or more 
replicates of each sex and behavioral stimulus are depicted.  
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Fig. S21. In situ hybridization images showing co-expression of cFos and markers of 
neuronal clusters activated by various behaviors. Representative two- or three-color in situ 
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hybridization images of 16-µm-thick sections from the preoptic region show co-localization of 
markers of the indicated neuronal clusters with cFos after various behaviors, including pup-
directed aggression in virgin males, adult-directed aggression in virgin males, mating in females, 
and mating in males. Regions in blue dashed boxes are magnified and shown on the right. Red, 
green, and blue mark the listed genes and white indicates co-expression in the overlay images. 
For I-2, only one marker gene Cplx3 (green) was imaged together with cFos (red) and yellow 
indicated co-expression in the overlay image. Among clusters that displayed an enrichment in 
cFos-positive cells after these behaviors (highlighted in red in Fig. 8A), only those clusters that 
can be distinguished by the combination of one to two marker genes and their spatial location are 
tested here. Images of sections are shown at different Bregma positions for different clusters to 
match the anterior-posterior positions of the clusters determined by MERFISH. The number of 
cFos-positive, Esr- and Slc18a2-expressing cells are relatively small in male-mating samples 
compare to female-mating samples, consistent with our observations that I-15 cells are less 
abundant in males than in females (Fig. 6H), that enrichment of cFos-positive cells in I-15 is 
weaker in males than in females (Fig. 8A), and that Slc18a2 shows a gradient of expression in I-
15 (fig. S16) and is expressed in only a fraction of I-15 cells (smaller fraction in males than in 
females). Scale bars: 200 µm. Scale bar for zoom-in: 50 µm. 
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Fig. S22. Comparison of the clusters identified here with published clusters from the mouse 
hypothalamus [Zeisel et al. (69)]. We compared the cell clusters that we identified for the 
preoptic region using scRNA-seq with published clusters found in the hypothalamus in a recent 
large-scale scRNA-seq study of the mouse brain (69). (A) Pairwise Pearson correlation 
coefficients between the average expression profiles for the non-neuronal clusters identified in 
our work and those for the comparable non-neuronal clusters from Zeisel et al (69) that were 
found in the entire central nervous system, including the hypothalamus. The average expression 
profiles are expressed in z-scores calculated for individual genes across all clusters. For the 
clusters identified in this work: Astro: astrocytes; Epen: ependymal; MG: microglia; Macro: 
macrophage; MO: mature oligodendrocytes; NFO: newly formed oligodendrocytes; OPC: 
oligodendrocyte precursor cells; Endo: endothelial cells. For the clusters published by Zeisel et 
al: ACTN: astrocytes; EPEN: ependymal; MGL: microglia; PVM: perivascular macrophages; 
MFOL: myelin forming oligodendrocytes; MOL: mature oligodendrocytes; NFOL: newly 
formed oligodendrocytes; COP: committed oligodendrocytes; OPC: oligodendrocyte precursor 
cells; PER: pericytes; VECC/VECV/VECA: vascular endothelial cells, VSMCA: vascular 
smooth muscle cells. (B) As in (A) but for all neuronal clusters identified from our scRNA-seq 
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data and the 15 published hypothalamic neuronal clusters identified from the ~2000 
hypothalamic neurons measured by Zeisel et al. (69). The cluster labels in Zeisel et al: DEGLU: 
diencephalon glutamatergic neuronal cluster; HYPEP: hypothalamus peptidergic neuronal 
cluster; DECHO: diencephalon cholinergic neuronal cluster; DEINH: diencephalon inhibitory 
neuronal cluster. (C-E) Scatter plots of the expression of genes within three example 
hypothalamic neuronal clusters identified by Zeisel et al. versus the corresponding gene 
expression observed in the most similar neuronal clusters described in our work. Expression is 
measured in z-score. The listed genes are among the top markers for each cluster. In general, our 
scRNA-seq data and those reported in Zeisel et al (69) are in good correlation. However, because 
we used ~10 times more neuronal scRNA-seq profiles to characterize about 1/5 of the whole 
hypothalamus (the preoptic region), and sequenced each cell to greater depth (we detected 1.6x 
more UMIs and genes per cell), we were able to analyze the preoptic region with a greater depth 
and thus gain substantially finer delineation of cell populations. Similar but moderately weaker 
correlations were observed between the expression profiles of our neuronal clusters and those of 
another scRNA-seq survey of the whole hypothalamus (68), perhaps because this older study 
contained only ~1,000 neurons from naïve animals.  
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Supplementary Tables 
 
Table S1. Clustering of scRNA-seq data (provided as a separate xls file). “Cell name” 
contains a unique ID for each measured cell; “Sex” indicates the sex of the animal from which 
each cell was derived; “Replicate number” indicates the replicate measurement from which each 
cell was derived; “Cell class” indicates the major cell class assigned to each cell. An entry of 
‘ambiguous’ indicates that the cell was marked as a putative doublet and was not further 
analyzed. An entry of ‘unstable’ indicates that the cell was not part of a stable cluster and was 
not further analyzed. “Non-neuronal cluster” indicates the distinct cluster within individual non-
neuronal cell class to which each cell was assigned. The assignment of cells to major cell classes 
and sub-divisions of non-neuronal cell classes was derived from clustering analysis of all cells. 
“Neuronal cluster” indicates the neuronal cluster to which each cell was assigned, and this 
assignment was derived from clustering analysis of inhibitory neurons and excitatory neurons 
separately. The gene expression profile of each cell is provided in GEO, GSE113576. 
 
Table S2. Gene expression in the neuronal clusters identified in scRNA-seq (provided as a 
separate xls file). Gene names are listed in the first column, and individual clusters are listed in 
subsequent columns. For each gene, the mean expression (“Mean expression”), the expression 
value corresponding to the 95% quantile (“95% quantile”), and the fraction of cells expressing at 
least one copy of that gene (“Fraction of cells expressing gene”) are provided for each cluster. In 
addition to the genes listed in Figs. 1, 2, S3, S4, S5, the provided genes are those used to cluster 
either the inhibitory or excitatory neurons as well as all genes measured with MERFISH. 
 
Table S3. Genes categories used for gene-set enrichment analysis (provided as a separate 
xls file). Individual columns contain gene names associated with the specified gene categories in 
Fig. 1E and fig. S6.  
 
  



 
 

 
 

61 

 
Region Abbreviation 

Anteroventral periventricular nucleus AvPe 
Bed nucleus of the anterior commissure BAC 
Bed nucleus of the stria terminalis BNST 
Bed nucleus of the stria terminalis, medial division, anterolateral part BNST-mal 
Bed nucleus of the stria terminalis, medial division, ventral part BNST-mv 
Bed nucleus of the stria terminalis, posterior part BNST-p 
Lateral preoptic area LPO 
Medial preoptic area MPA 
Medial preoptic nucleus MPN 
Median preoptic nucleus MnPO 
Nucleus of the horizontal limb of the diagonal band HDB 
Olfactory tubercle OT 
Parastrial nucleus PS 
Paraventricular hypothalamic nucleus, anterior parvicellular PaAP 
Paraventricular thalamic nucleus PVA 
Periventricular hypothalamic nucleus Pe 
Septohypothalamic nucleus SHy 
Sexually dimpophic nucleus of the preoptic area SDN-POA 
Striohypothalamic nucleus StHy 
Suprachiasmatic Nucleus SCN 
Ventrolateral preoptic nucleus VLPO 
Ventromedial preoptic nucleus VMPO 

 
Table S4. Abbreviations of hypothalamic nuclei. “Region” contains the full name of different 
hypothalamic nuclei mentioned in this work. “Abbreviation” lists the common abbreviation for 
each of these nuclei.  
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Category Function Region Marker genes Ref. 

REPRODUCTION 

Puberty  Preoptic region Gnrh1 (86) 

Puberty MPO Kisspeptin (87) 

Sex differentiation MPOA+BNST and 
other regions Aromatase (41, 

88) 

Sex differentiation MPOA+BNST and 
other regions Esr1 (41, 

89) 

Sex differentiation MPOA+BNST and 
other regions AR (90) 

SLEEP 
Sleep VLPO Galanin (91) 

Sleep VLPO and vicinity Cck, Crh, Tac1 (11) 

SOCIAL 
BEHAVIORS 

Male and female parenting MPOA Galanin (5) 

Female parenting AvPe Th  
(6) 

Male aggression AvPe Th  

Female sexual motivation MPOA Nts  (92) 

Male-typical mating in 
males and females MPOA Esr1 (64) 

Parenting in males and 
females (virgin and 

mothers) 
MPOA Esr1 

(63, 64) 

Female sexual behavior Rostral 
periventricular area Kiss1 (93) 

Several male and female 
behaviors 

MPOA/BNST and 
rest of hypothalamus 

Sexually dimorphic 
genes (42) 

HUNTING Hunting in males MPOA CamkIIalpha (94) 

FEEDING 
Feeding  MPOA Galanin (38) 

Feeding BNST VGAT (95) 

HOMEOSTASIS 

Warm sensing VMPO Adcyap1/Bdnf (8) 

Thirst MnPO Agtr1a, Nxph4, 
Nos1 

(9, 10, 
97) 

Hypothermia/drinking POA Vglut2 (96) 

Table S5. Summary of previous associations between marker genes and different 
hypothalamic nuclei and functions. “Category” summarizes the major functional role played 
by each neuronal population previously described. “Function” summarizes the biological 
function associated with each neuronal population. “Region” summarizes the hypothalamic 
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nuclei in which each neuronal population has been observed. “Marker genes” summarizes 
previously established marker genes for each population. “Ref.” summarizes the references 
associated with these previous observations.  
 
 
 
Table S6. Summary of genes included in the MERFISH measurements (provided as a 
separate xls file). “Gene name” is the common name associated with each gene. Blank 1-5 are 
five MERFISH barcodes that are not used for any genes, providing a measure of the false-
positive detection rate in MERFISH. “Barcode” represents the 16-bit binary barcode assigned to 
that gene or blank control for MERFISH measurements. An entry of ‘Sequential stain’ indicates 
that the given gene was measured in the non-combinatorial, sequential FISH imaging rounds 
after the combinatorial smFISH imaging run. “Readout probes” lists the names of the specific 
readout probes associated with each gene. The sequences of these probes are provided in Table 
S10. “Gene category” indicates whether the gene was selected based on prior biological 
knowledge or as derived from our scRNA-seq measurements.  
 
Table S7. Example MERFISH data. Properties of all measured cells in one example slice from 
an animal are included in this table. “Cell ID” is a unique ID associated with each cell. “Animal 
ID” is a unique ID associated with animal. “Animal sex” is the gender of the animal in which the 
cell was imaged. “Behavior” describes the behavioral treatment of the animal. ‘Naïve’ indicates 
that no treatment was performed. “Bregma” indicates the approximate location of the slice in 
bregma coordinates. “Centroid X” is the x coordinate of the centroid position for the cell in µm. 
“Centroid Y” is the y coordinate of the centroid position for the cell in µm. “Cell class” lists the 
major cell class to which a cell was assigned. A value of “Ambiguous” represents cells that were 
identified as putative doublets and were not further analyzed. “Neuron cluster_ID” represents the 
neuronal cluster to which a cell was assigned. This field is empty if the cell was not a neuron. 
Columns with a gene name, e.g. ‘Ace2’, contain the expression values for that gene in that cell. 
Expression values for the 135 genes measured in the combinatorial smFISH run were determined 
as the total counts per cell divided by the cell volume and scaled by 1000. Expression values for 
the 20 genes measured in the non-combinatorial, sequential FISH rounds were arbitrary 
fluorescence units per µm3, but the same scale is used for all cells. The 135 genes measured via 
combinatorial smFISH are listed first and the 20 genes measured in the non-combinatorial, 
sequential FISH rounds are listed last. Expression values have been batched corrected (29). A 
table containing these values for all cells measured via MERFISH for all replicates under all 
conditions is available on Dryad (doi:10.5061/dryad.8t8s248). 
 
Table S8. Gene expression in the neuronal clusters identified in MERFISH (provided as a 
separate xls file). Gene names are listed in the first column, and individual clusters are listed in 
subsequent columns. For each gene, the mean expression (“Mean expression”), the expression 
value corresponding to the 95% quantile (“95% quantile”), and the fraction of cells expressing at 
least one copy of that gene (“Fraction of cells expressing gene”) are provided for each cluster. 
All 155 genes measured with MERFISH are included. Note that genes measured during the 
combinatorial smFISH rounds (see Table S6) are measured in RNA counts per µm3 (scaled by 
1000) while RNAs measured in the non-combinatorial, sequential FISH rounds (see Table S6) 
are measured in arbitrary fluorescence units per µm3, but the same scale is used for all cells. 
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scRNA-seq clusters 

Notable genes observed in scRNA-seq 

MERFISH clusters 
Notable genes 

observed in 
MERFISH 

Pearson 
correlation 
coefficients 

Notes Behavioral 
activation 

Possible 
correspondence 
with previous 

functional 
studies 

Ref Not included in 
the MERFISH 

library 

Included in 
MERFISH 

library 

Excitatory clusters 
with putative 

correspondence 
between scRNA-

seq and 
MERFISH 

e2:Tac1/Fezf1 Fezf1 Trh, Tac1 E-13:BAC Trh, Tac1 0.58 

e3:Cartpt/Isl1 Cartpt, Isl1, Nts, 
Creb3l1 

E-8:MPN/Pe/VMPO Cartpt, Isl1, 
Nts, Creb3l1 0.58 Clusters E-8 and E-

15 are differentiated 
in part by Creb3l1 

expression 

Male 
mating 

E-15:MPN/VMPO Cartpt, Isl1, 
Nts 0.53 Male 

mating 
e4:Trh/Angpt1 Angpt1 Trh, Adcyap1 E-18:MPA/MPN Trh, Adcyap1 0.75 

e5:Adcyap1/Nkx2.1 Nkx2.1 Adcyap1, Crh 
low 

E-7:MPA/MPN/StHy Adcyap1 0.76 Clusters E-17 and 
E-31 are 

differentiated in 
part by Crh 
expression 

E-31:Crh Adcyap1, Crh 0.43 

e6:Nos1/Trp73 Trp73 Nos1, Sema3c 
E-6:MPA/PaAP/SHy Nos1, Sema3c 0.69 Clusters E-6 and E-

21 are differentiated 
in part by Nos1 

expression 
E-21:LPO/PS Sema3c 0.52 

e7:Reln/C1ql1 Reln, C1ql1, 
Agtr1a, Nxph4 

Onecut2, Bmp7, 
Etv1, Nos1 

E-2:AvPe/Pe/MnPO Onecut2, Etv1, 
Nos1 0.39 

Clusters E-2 and E-
11 are differentiated 
in part by Etv1 and 
Bmp7 expression. 

~25% of Cluster e7 
cells express 

Agtr1a.  

Agtr1a, Nxph4 
and Nos1 cells 

involved in 
thirst 

(9, 
10, 
97) 

E-11:Glut/Bmp7 Onecut2, 
Bmp7 0.7 

e8:Cck/Ebf3 Cck, Ebf3, Penk, 
low Slc17a7 

E-5:BNST Cck, Ebf3, 
Penk 0.72 

Clusters E-5 and E-
10 are differentiated 

in part by Cck 
expression, Cluster 

E-25 expresses 
Slc17a7 but not 

Cck, Ebf3 or Penk. E-10:BAC Ebf3, Penk 0.38 

E-25:BNST Slc17a7 0.5 

e10:Glut/Meis2 Meis2 Fst E-20:VLPO Fst 0.66 
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scRNA-seq clusters 

Notable genes observed in scRNA-seq 

MERFISH clusters 
Notable genes 

observed in 
MERFISH 

Pearson 
correlation 
coefficients 

Notes Behavioral 
activation 

Possible 
correspondence 
with previous 

functional 
studies 

Ref Not included in 
the MERFISH 

library 

Included in 
MERFISH 

library 

Excitatory 
clusters with 

putative 
correspondence 

between 
scRNA-seq and 

MERFISH 

e11:Glut/Shox2 Shox2 Ntng1, low Cck 
E-9:PVA Ntng1 0.6 

 
Clusters E-9 and E-
14 are differentiated 

in part by Cck 
expression 

   

E-14:PVA Ntng1, Cck 0.71 

e12:Nos1/Foxp2 Foxp2 Nos1 E-4:AvPe/Pe/MnPO/MPA Nos1 0.55     

 
e13:Ghrh/C1ql1 

 
Ghrh, C1ql1 

Nup62cl, 
Onecut2 E-3:AvPe/Pe/VMPO/VLPO Nup62cl, 

Onecut2 0.83   

Adcyap1 cells 
involved in 

warm sensing, 
Tac3R/Kiss1R 
cells involved 
in hot flashes 

(8, 
58) 

e15:Ucn3/Brs3  Brs3, Ucn3 low E-1:AvPe/Pe/MnPO/VMPO Brs3, Ucn3 
low 0.77  Maternal   

e16:Sst/Cartpt  Sst, Cartpt E-23:PaAP/Pe Sst, Cartpt 0.39     

e17:Th/Adcyap1  Trh, Th, Omp, 
Adcyap1 E-16:MPN/PaAP/StHy 

Trh, Th, 
Omp, 

Adcyap1 
0.77     

e19:Ghrh/Trh Ghrh Cartpt, Trh, 
Onecut2 E-19:Cartpt/Trh Cartpt, Trh, 

Onecut2 0.68     

e22:Gal/Ucn3  Gal, Ucn3, Trh, 
Etv1 E-28:PaAP Ucn3, Gal, 

Trh, Etv1 0.77     

e24:Gal/Rxfp1  Gal, Rxfp1, Etv1 E-26:Pe Gal, Rxfp1, 
Etv1 0.67     

Excitatory 
clusters without 
correspondence 

e1:Glut Nkx2.1         

e9:Glut/Tcf7l2 Tcf7l2         

e23:Reln/Etv1 Reln Etv1        

   E-12:MPA/MPN/StHy Tac2, Nts, 
Mc4r 

     

   E-17:MPN Ntsr1, Gda, 
Crhr1 

     

   E-22:Ndnf/Cplx3 Ndnf, Cplx3      

   E-24:MPA/VLPO Col25a1, 
Crhr2 

     

   E-27:Glut/Necab1 Necab1, 
Tacr1, Crhr2 

     

   E-29:Sst Sst, Gem, 
Tacr3 

     

   E-30:Gnrh1 Gnrh1, Isl1    
Gnrh cells of 
the preoptic 

area 
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scRNA-seq clusters 

Notable genes observed in scRNA-seq 

MERFISH clusters 
Notable genes 

observed in 
MERFISH 

Pearson 
correlation 
coefficients 

Notes Behavioral 
activation 

Possible 
correspondence 
with previous 

functional 
studies 

Ref Not included in 
the MERFISH 

library 

Included in 
MERFISH 

library 

Excitatory 
clusters outside 

of the region 
imaged by 
MERFISH 

e20:Crh  Crh        

e21:Glut/Rxfp3 Rxfp3         

Inhibitory 
clusters with 

putative 
correspondence 

between 
scRNA-seq and 

MERFISH 

i2:Tac1/Pdyn  
Pdyn  

Tac1, Ano3 

I-17:Tac1 (HDB) Tac1, Ano3 

0.74(i2) 

Cluster I-17 does 
not split perhaps 
due to the lack of 
Pdyn, Drd1, and 

Prok2 in the 
MERFISH library.  

 

This cluster 
may correspond 

to neurons 
manipulated by 
Chung et al, as 

sleep 
promoting.  

(11) 

i10:Tac1/Nts Drd1,  
Nts, Pdyn Tac1, Ano3 0.72(i10) 

i26:Tac1/Prok2 Prok2 Tac1, Ano3 0.51(i26) 

i4:Gaba/Mylk  Penk, Sp9 I-9:BNST Penk, Sp9 0.49     

 
 

i5:Gaba/Pou3f3 

 
 

Satb1, 
Pou3f3 

 
 

Sox6, Necab1, 
Tac1 

 
 

I-20:VLPO 

 
 

Sox6 

 
 

0.37 Clusters I-20 and I-
26 are differentiated 
in part by Necab1 

and Tac1 
expression 

   

I-26:VLPO Sox6, 
Necab1, Tac1 0.7  

This cluster 
may correspond 

to neurons 
manipulated by 
Chung et al, as 

sleep 
promoting.  

(11) 

i7:Gaba  Scgn I-23:BNST Scgn 0.38     

 
 

i8:Gal/Amigo2 
 

 
 

Gal, Amigo2 

I-7:MPN/VMPO Gal, Amigo2, 
Dgkk 0.76 Clusters I-7 and I-

31 are differentiated 
in part by Tac2 and 

Dgkk expression 

 
Galanin cells 
involved in 

sleep 
(91) 

I-31:LPO Gal, Amigo2, 
Tac2 0.36    

i9:Gaba  Ttn, Onecut2 I-30:AvPe/Pe/MnPO Ttn, Onecut2 0.71     
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scRNA-seq clusters 

Notable genes observed in scRNA-seq 

MERFISH clusters 
Notable genes 

observed in 
MERFISH 

Pearson 
correlation 
coefficients 

Notes Behavioral 
activation 

Possible 
correspondence 
with previous 

functional 
studies 

Ref Not included in 
the MERFISH 

library 

Included in 
MERFISH 

library 

Inhibitory 
clusters with 

putative 
correspondence 

between 
scRNA-seq and 

MERFISH i16:Gal/Th Gal, Th, Calcr, 
Brs3 

I-14:MPA/MPN/StHy Gal, Calcr, 
Brs3 0.4 Clusters I-14 and 

I-16 are 
differentiated in 
part by Th and 

Calcr/Brs3 
expression 

Virgin female 
maternal, 
maternal, 
paternal,  

male mating 

Galanin cells 
involved in 
parenting 

(5) 

I-16:AvPe/Pe/SHy Gal, Th 0.61 

Paternal, 
inter-male 
aggression, 

pup-directed 
aggression, 

female mating 

Th cells 
involved in 

maternal 
behavior /Male 

aggression 

(6) 

i17:Th/Nos1 Th, Nos1 I-3:BNST/SHy/PaAP/PS Th, Nos1 0.79 

i18:Gal/Tac2 Gal, Tac2, Nts 

I-11:MPN/StHy Gal 0.63 
Clusters I-11, I-

12, I-15, and I-24 
are differentiated 

in part by 
expression of 

Gal, Nts, Egr2, 
and Tac2 

Male mating 

I-12:MPA/MPN/StHy Nts 0.74 

I-15:AvPe/Pe/VMPO Egr2 0.46 
Male mating, 

Female 
mating 

I-24:BNST Tac2 0.4 Pup-directed 
aggression 

i20:Gal/Moxd1 Moxd1 

Cplx3, 
Aromatase, low 
Cck, low Gal, 

low Cartpt 

I-2:BNST/StHy/MPN Cplx3, 
Aromatase 0.77 Clusters I-32, I-2 

and I-34 are 
differentiated in 
part by Gal and 

Cartpt expression 

Paternal, 
inter-male 
aggression, 

Male mating 

Aromatase 
neurons of the 

sexually 
dimorphic 

nucleus 

(39, 
41, 
46) 

I-32:BNST Cplx3, Cck, 
Cartpt 0.38 

I-34:MPN/StHy Cplx3, Gal 0.51 

i21:Sst/Pou3f3 Pou3f3 Sst low, Npy2,r I-5:VLPO Sst low, 
Npy2r 0.6 

i22:Gal/Pmaip1 Pmaip1 Gal, Slc18a2 I-22:MnPO/Pe Gal, Slc18a2 0.46 

i23:Crh/Nts Crh, Nts I-10:MPA/PaAP/SHy Crh, Nts 0.56 Maternal, 
paternal 

i24:Nmu Nmu Penk, Serpinb1b I-4:MPA/PaAP/SHy/VLPO Penk, 
Serpinb1b 0.84 

i25:Npy/Etv1 Npy Etv1, Crhbp I-29:Gaba/Etv1 Etv1, Crhbp 0.66 

i29:Pnoc/Igsf1 Igsf1 Pnoc, Sytl4 I-13:BNST/StHy Pnoc, Sytl4 0.72 

i32:Sst/Npy Npy Sst, Nos1 I-25:BNST/Pe Sst, Nos1 0.68 

i37:Bdnf/Chrm2 Bdnf, Pchd11x I-8:MPA/SHy Bdnf, 
Pchd11x 0.73 



 
 

 
 

68 

  

scRNA-seq clusters 

Notable genes observed in scRNA-seq 

MERFISH clusters 
Notable genes 

observed in 
MERFISH 

Pearson 
correlation 
coefficients 

Notes Behavioral 
activation 

Possible 
correspondence 
with previous 

functional 
studies 

Ref Not included in 
the MERFISH 

library 

Included in 
MERFISH 

library 

Inhibitory 
clusters without 
correspondence 

i1:Gaba      

This cluster is 
defined by a lack of 
markers and might 

represent a 
population of cells 
that have not been 
properly resolved 

   

i11:Gaba Nrgn Nts, Penk        

i12:Pnoc Serpinb1b Pnoc        

i13:Gaba Lhx8, Lypd6         

i15:Gaba  Nr4a2, Fbxw13 Pnoc, Amigo2         

i38:Kiss1/Th Kiss1 Th      

Kiss1 Neurons 
involved in 
puberty and 

female sexual 
behavior 

(87, 
93) 

i39:Gaba Lypd1, Pax6         

i40:Sst/Reln Reln Sst        

i41:Npy/Penk Npy Penk        

i45:Bdnf/Pmaip1 Pmaip1 Bdnf        

   I-1:Gaba   

This cluster is 
defined by a lack of 
markers and might 

represent a 
population of cells 
that have not been 
properly resolved 

   

   I-6:LPO/PS/SHy Pnoc, Vgf, 
Tacr3 

     

   I-18:BNST Cxcl14, 
Col25a, Sp91 

     

   I-19:AvPe/Pe/MnPO Crhr2, 
Gpr165 

     

   I-21:Trh/Nts Trh, Nts, 
Bmp7 

     

   I-27:BNST Crh, Vgf, 
Cck, Creb3l1 

  Maternal   

   I-33:Gal/Cartpt  Gal, Cartpt, 
Galr1, Npy1r 

  Male 
mating 
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scRNA-seq clusters 

Notable genes observed in scRNA-seq 

MERFISH clusters 
Notable genes 

observed in 
MERFISH 

Pearson 
correlation 
coefficients 

Notes Behavioral 
activation 

Possible 
correspondence 
with previous 

functional 
studies 

Ref Not included in 
the MERFISH 

library 

Included in 
MERFISH 

library 

Inhibitory 
clusters without 
correspondence 

   I-35:Gaba/Rxfp1 Rxfp1, Oxtr      

   I-36:Crh/Tac1 
Crh, Tac1, 

Pnoc, Cckar, 
Cckbr 

     

   I-37:Gaba/Chat  Chat , Htr2c, 
Ntsr1 

     

   I-38:Gaba/Fbxw13 Fbxw13, 
Fezf1 

     

   I-39:Cartpt/Penk  Cartpt, Penk, 
Igf1r, Igf2r  

     

Inhibitory 
clusters outside 

of the region 
imaged by 
MERFISH  

i3:Penk/Nts  Nts, Penk        

i6:Avp/Nms Avp, Nms         

i14:Avp/Cck Avp Cck, Vgf        

i27:Th/Trh  Trh Th        

i28:Gaba/Six6 Six6         

i30:Vip Vip         

i31:Calca Calca         

i35:Crh/Tac2 Pde11a Crh, Tac2        

i42:Pthlh Pthlh         

i43:Chat Ntrk1, Slc18a3 Chat 
    

 
  

i44:Th/Cxcl14 Cxcl14 Th        

Hybrid clusters h1:Gaba/Slc17a6 Nr2f2 Slc17a6, Gad1        

h2:Nts/Slc17a8  Nts, Slc17a8, 
Gad1 H-1:BNST Nts, Slc17a8, 

Gad1 0.78     

Hybrid clusters 
outside of the 
region imaged 
by MERFISH  

h3:Slc32a1/Gsc Gsc, Slc32a1 

     

 

  

 
Table S9. Summary of properties of all neuronal clusters identified with scRNA-seq and MERFISH. “scRNA-seq clusters” represents the name 
of the scRNA-seq cluster. “Notable genes observed in scRNA-seq” lists notable genes expressed within each scRNA-seq cluster with genes divided 
into genes that were or were not included in the MERFISH panel. “MERFISH clusters” represents the name of the MERFISH cluster. “Notable genes 
observed in MERFISH” lists notable genes expressed within each MERFISH cluster. The most similar scRNA-seq and MERFISH clusters have been 
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grouped in the same row. Situations in which a single scRNA-seq cluster corresponds to multiple MERFISH clusters, or vice versa, are denoted by 
grouped rows that are colored identically (gray or white). “Pearson correlation coefficients” lists the Pearson correlation coefficients between the 
expression profiles of these most similar clusters. “Notes” provides a description of notable genes that differentiate multiple MERFISH clusters that 
are most similar to a single scRNA-seq cluster, or vice versa. The listed genes are only a subset of the genes that are differentially expressed and, 
thus, distinguish these clusters. “Behavioral activation” summarizes the behavioral condition in which each neuron was activated as identified in this 
work. “Possible correspondence with functional studies” lists possible associations with previously annotated neuronal populations. “Ref” provides 
the appropriate references for these previous populations. Excitatory, inhibitory, and hybrid clusters that do or do not have a correspondence between 
scRNA-seq and MERFISH as well as scRNA-seq clusters that are outside of the region imaged with MERFISH are grouped. We note that although 
we name the clusters by no more than two marker genes, these two-gene combinations do not always uniquely distinguish the cluster. For example, 
both e7:Reln/C1ql1 and e13:Ghrh/C1ql1express both Reln and C1ql1, and e7 is distinguished from e13, by the absence of Ghrh. See Materials and 
Methods (29) for detailed description of our naming strategy. In addition, we note that some of the MERFISH clusters still contain substantial 
representations in the most anterior or most posterior slice imaged, suggesting that their spatial distributions likely extend to nuclei outside the region 
imaged in this work, which are not represented in the spatial names provided for MERFISH clusters here. MERFISH cluster I-17:Tac1 (HDB) is 
localized at the edges of the imaged region and falls outside of the boundaries of the nearest imaged nuclei, the VLPO. Given its location, it is likely 
located within the HDB, a nuclei which is immediately next to but largely outside of the imaged region. 
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Table S10. Sequences of encoding probes used for MERFISH imaging (provided as a 
separate xls file). “Gene” contains the common gene name. “Isoform” contains the specific 
isoform ID used. Entries that list different isoform IDs for the same gene represent isoforms that 
could not be distinguished via bulk RNA-sequencing (29). “Probe” is the sequence of each 
encoding probe designed to the given gene.  
 
Table S11. Sequences of readout probes used in the MERFISH measurements (provided as 
a separate xls file). “Readout probe name” is the name of each readout probe. “Sequence” is the 
sequence of each probe. “Fluorophore” is the name of the fluorophore attached to each probe. 
“Purpose” is a summary of what each readout probe is used to measure, either a specific bit 
associated with MERFISH barcodes used in the combinatorial smFISH run or an individual gene 
measured during the non-combinatorial, sequential FISH rounds.  
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