Supplementary Information

In Vivo Rendezvous of Small Nucleic Acid Drugs with Charge-Matched Block Catiomers to Target Cancers

Sumiyo Watanabe^{1,2,3}, Kotaro Hayashi⁴, Kazuko Toh⁴, Hyun Jin Kim¹, Xueying Liu⁴,

Hiroyuki Chaya^{1,5}, Shigeto Fukushima⁴, Keisuke Katsushima⁶, Yutaka Kondo⁶, Satoshi Uchida⁷, Satomi Ogura^{4,5},

Takahiro Nomoto⁸, Hiroyasu Takemoto⁸, Horacio Cabral⁷, Hiroaki Kinoh⁴, Hiroyoshi Y. Tanaka⁹,

Mitsunobu R. Kano^{9,10}, Yu Matsumoto¹, Hiroshi Fukuhara¹¹, Shunya Uchida², Masaomi Nangaku³,

Kensuke Osada⁷, Nobuhiro Nishiyama⁸, Kanjiro Miyata^{1,5}, and Kazunori Kataoka^{4,12}

- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
- 2. Division of Internal Medicine, School of Medicine, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8606, Japan.
- 3. Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8544, Japan.
- 4. Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan.
- 5. Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
- 6. Division of Cancer Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
- 7. Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, R1-11, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan.
- 9. Department of Pharmaceutical Biomedicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi, Okayama Prefecture 700-8530, Japan.
- Department of Pharmaceutical Biomedicine, Okayama University Graduate School of Interdisciplinary Science and Engineering in Health Systems, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi, Okayama Prefecture 700-8530, Japan.
- 11. Department of Urology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8544, Japan.
- 12. Policy Alternatives Research Institute, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.

S. Watanabe, K. Hayashi, K. Toh, and H. J. Kim contributed equally. K. Miyata and K. Kataoka jointly supervised this work. Correspondence and requests for materials should be addressed to K.M. (miyata@bmw.t.u-tokyo.ac.jp) and K.Kata. (kataoka@pari.u-tokyo.ac.jp).

Supplementary Figure 1 | **Characterisation of YBC. a**, SEC chart of YBC. **b**, ¹H-NMR spectrum of YBC (polymer concentration: 10 mg mL⁻¹, solvent: D₂O, temperature: 20 °C).

Supplementary Figure 2 | Schematic illustration of multimolecular assemblies from PEG-block-catiomers and aniomers. Micellar PICs are formed from a pair of oppositely charged block-ionomers and homo-ionomers. Charge-neutralised minimal pairs, termed uPICs, are assumed to form in the initial stage of association, followed by the secondary process of multimolecular assembly.

Supplementary Figure 3 | MW of uPICs prepared at varying A/P ratios. The MW was determined by SE-AUC. The uPIC (600 nM siRNA) was ultracentrifuged for over two days until an equilibrium was reached between sedimentation and diffusion, and the siRNA absorbance (260 nm) was measured as a function of centrifugal radii. The data obtained were analysed to determine the apparent MW of uPIC. Data represent the means \pm s.d. for 3 replicate measurements.

Supplementary Figure 4 | Dynamic equilibrium of uPIC with free YBC (divided images of Supplementary Movie 1).

Supplementary Figure 5 | FRET analysis of siRNA integrity. a, Schematic illustration of FRET analysis of siRNA integrity. Intact FRET-siRNA generates significant FRET signal through the proximate dyes, whereas siRNA degradation elicits the loss of FRET signal due to the dye separation. b, FRET signal of FRET-siRNA before and after treatment with RNase A (1 μ g mL⁻¹, 37 °C, 9 h). The FRET signal was defined as a fluorescence intensity ratio: [intensity at 669 nm]/[intensity at 622 nm] under excitation at 561 nm.

Supplementary Figure 6 | Effect of free YBC on the blood circulation property of A647-siRNA/uPICs. a, Blood circulation properties of a series of uPICs prepared at varying A/P ratios were evaluated based on the fluorescence of A647-siRNA using an IVCLSM. Each A647-siRNA/uPIC was intravenously injected from the tail vein of mouse at 2 nmol A647-siRNA per mouse, similar to Figure 3e. b, Blood circulation property of naked A647-siRNA (2 nmol per mouse) and free A647-YBC (40 nmol per mouse) after systemic administration into the tail vein of mouse. These dosages correspond to those of uPIC prepared at A/P = 10.

Supplementary Figure 7 | Blood circulation of A647-siRNA/uPIC comprising varying PEG chains. The blood circulation property of a series of uPICs was evaluated based on the fluorescence of A647-siRNA using an IVCLSM. Each A647-siRNA/uPIC was intravenously injected from the tail vein of mouse at 24 μ g A647-siRNA per mouse, similar to Figure 3e. Control block catiomers comprising two-armed PEG with MW = 2 × 21 kDa or linear PEG with MW = 73 kDa were synthesised through a synthetic route similar to YBC with MW = 2 × 37 kDa using the corresponding PEG molecule as a macroinitiator.

Supplementary Figure 8 | **Synthesis of PEG-siRNA. a**, α-Methoxy-ω-amino-two-armed PEG (PEG-NH₂, MW = 2 × 37 kDa) (190 mg, NOF) and azido succinimidyl acetic acid NHS (5.3 mg, Nanocs, New York, NY, USA) were dissolved in DMF and stirred for 4 h at 45 °C under Ar. *N*,*N*-Diisopropylethylamine (1.7 mg, Sigma-Aldrich) was then added to the mixture and further stirred overnight. The mixture was precipitated in diethyl ether, and α-methoxy-ω-azide-two-armed PEG (PEG-N₃) was obtained as a white powder. siRNA modified with a dibenzylcyclooctyne moiety at both 5' ends (DBCO-siRNA) was purchased from Hokkaido System Science. DBCO-siRNA (50 µM, 100 µL in deionised water) was mixed with PEG-N₃ dissolved in deionised water (36 mg, 900 µL) and stirred at 40 °C for 2 days. The conjugate between DBCO-siRNA and PEG-N₃ was purified using AKTA explorer 10S equipped with a Superdex 200 10/300 column (GE Healthcare) eluted with 10 mM sodium phosphate buffer (pH 7.4) containing 150 mM NaCl. The product was desalted and then lyophilised. **b**, SEC charts of PEG-siRNA before and after purification. The sample was eluted in a Superdex 200 column (flow rate 0.5 mL min⁻¹, 10 mM sodium phosphate containing 150 mM NaCl, pH 7.4). The PEG-siRNA was collected as a fraction between 8 mL and 8.5 mL in the elution volume.

Supplementary Figure 9 | **Resistance of uPIC to RNase attack**. Naked siRNA, uPIC (A/P = 1), and PEG-siRNA (5 μ M, 2 μ L) were independently treated with RNase A (1 μ M, 1 μ L) for 30 min at ambient temperature. Each sample was further treated with an RNase inhibitor (4 μ L, Nacalai Tesque) for 5 min, followed by a 5-min incubation with sodium dextran sulphate (50 mg mL⁻¹, 3 μ L) for siRNA release from uPIC. The sample solutions were analysed by electrophoresis on 1% agarose gel with ethidium bromide visually using Molecular Imager FX (Bio-Rad) (**a**) and by fluorescence of SYBR Green I (Lonza) quantitatively using a fluorospectrometer, NanoDrop 3300 (**b**). The fluorescence intensity was normalised to that obtained from non-treated control samples. Data represent the means ± s.d. *n* = 3.

Supplementary Figure 10 | Biodistribution of naked Cy5-siRNA and Cy5-siRNA/uPIC after systemic administration. At 48 h after systemic administration (72 µg Cy5-siRNA per mouse), fluorescence intensities from the excised organs were determined using an IVIS instrument. Data represent the means (bars) \pm s.e.m. with individual data points. n = 4. n.s.: not significant (P > 0.05).

Supplementary Figure 11 | Distribution profiles of naked Cy5-siRNA, Cy5-siRNA/uPIC, and Cy5-siRNA/LNP in tumour tissue. IVCLSM images of subcutaneous GFP-BxPC3 tumour tissues after intravenous injection of Cy5-siRNA in the forms of naked (a), uPIC (b), and Invivofectamine[®] (c) (24 μ g siRNA per mouse, scale bar: 100 μ m). GFP and Cy5 signals are shown in green and red, respectively. Cancer cell nests are indicated by a dashed white line, as defined by the GFP signal derived from GFP-BxPC3 cells. Regions enclosed by the magenta solid line in the upper-most images (0 h) indicate the ROI used for the quantitative analysis of time-dependent changes in Cy5 fluorescence in the cancer cell nest (Fig. 3h).

Supplementary Figure 12 | siVEGF/uPIC treatment of a subcutaneous BxPC3 tumour model. a, Antitumour activity of siVEGF/uPIC against subcutaneous BxPC3 tumours. siVEGF or siLuc/uPIC was intravenously injected on each measurement day into tumour-bearing mice, as indicated by arrows. Tumour size was determined by the following equation: (length of major axis) × (length of minor axis) × (height) × $\pi/6$. Data represent the means \pm s.e.m. n = 7. b, Body weights of tumour-bearing mice treated with siVEGF or siLuc/uPIC described in (a). Data represent the means \pm s.e.m. n = 7.

Supplementary Figure 13 | Luminescence intensity in a spontaneous pancreatic tumour model. The luminescence intensity from luciferase-expressing pancreatic tumours was measured using an IVIS instrument before and 24 h after systemic injection of PBS (**a**), siScr/uPIC (**b**), or siLuc/uPIC (**c**). uPIC solutions were prepared at A/P = 10 and the dosage of siRNA was 1.2 mg kg⁻¹.

Supplementary Figure 14 | uPIC formation between ASO and YBC. a, Agarose gel retardation analysis of PIC samples prepared with ASO at varying A/P ratios. b, Hydrodynamic diameter of A647-ASO complexed with YBC at varying A/P ratios, and the corresponding association number of ASO per PIC, as determined by FCS. Data represent the means \pm s.d. for 5 replicate measurements.

Supplementary Figure 15 | FRET analysis of the dynamic ion-pairing of ASO/uPIC with free YBC. a, Change in FRET signal of A594-YBC in buffer solution. b, Time-dependent change in FRET signal obtained from IVCLSM observation of the bloodstream injected sequentially with A594-YBC, A647-ASO, and N-YBC.

Supplementary Figure 16 | **Blood circulation properties of ASO/uPIC.** Time-dependent change in A647 fluorescence determined by quantitative analysis of IVCLSM data.

Supplementary Figure 17 | Accumulation profiles of naked ASO and ASO/uPIC in orthotopic brain tumours. Time-dependent change in A647 fluorescence in tumour-bearing mice was monitored using an IVIS instrument. These images were used for the quantitative analysis of ASO accumulation in brain tumours.

Supplementary Figure 18 | Magnified images of representative HE-stained whole brain sections shown in Figure 5c. The tumour areas are surrounded by the red dotted line. The scale bars indicate 1 mm and 20 μ m in the left whole brain images and the right magnified images, respectively. The brain was harvested from the mouse treated with asLuc/uPIC (a) or asTUG1/uPIC (b).

Supplementary Figure 19 | Expression profiles of stemness-associated genes (SOX2 and MYC) and neuronal differentiation-associated genes (BDNF, NGF, and NTF3) in orthotopic brain tumour tissues after treatment with asLuc/uPIC or asTUG1/uPIC. Data represent the means \pm s.d. n = 3. *P < 0.01.

Supplementary Figure 20 | Uncropped images of western blotting gels. a,b, Unprocessed images of western blotting gels stained for *PLK1* protein (a) and β -actin protein (b) in the subcutaneous pancreatic tumour tissues. c, Slightly processed image of western blotting gel stained for β -actin protein.

Туре	Name ^ª	Sense Sequence (5' to 3') ^b	Antisense Sequence (5' to 3') ^b	Ref
siRNA	siLuc °	CUU ACG CUG AGU ACU UCG Att	UCG AAG UAC UCA GCG UAA Gtt	1
	sihPLK1	AGA U_M CA CCC U_M CC UU_M A AA U_M AUU	UAU UUA AG _M G AGG GUG AU _M C UUU	2
	simPLK1	GCA GCA GGA AAC CUC UCA Att	UUG AGA GGU UUC CUG CUG Ctt	3
	siVEGF	GGA GUA CCC UGA UGA GAU Ctt	GAU CUC AUC AGG GUA CUC Ctt	4
	siScr	UUC UCC GAA CGU GUC ACG Utt	ACG UGA CAC GUU CGG AGA Att	-
ASO	asLuc ^c	_	T*C*G*A*a*g*t*a*c*t*c*a*g*c*g*t*a*a*G*T*T	1
	asTUG1	_	T*G*A*A*t*t*t*c*a*a*t*c*a*t*t*t*g*a*G*A*T	5

Supplementary Table 1. Structural information of siRNA and ASO used in this study

^a Luc: luciferase, h/mPLK1: human/mouse polo-like kinase 1, VEGF: vascular endothelial growth factor, Scr: scramble, TUG1: taurine upregulated gene 1.

^b Uppercase: RNA, Lowercase: DNA, X_M: 2'-O-methyl-modified RNA, Bold uppercase: LNA, asterisk: phosphorothiolate.

^c siLuc and asLuc were used as fluorescently labelled nucleic acids. Cy5- and A647-siRNA: Cy5 and Alexa Fluor 647 dyes were attached to the 5' end of the sense strand of siLuc. FRET-siRNA: Alexa Fluor 594 and 647 dyes were attached to the 3' and 5' ends of the antisense strand of siLuc. A647-ASO: Alexa Fluor 647 dye was attached to the 5' end of asLuc.

Townshipson	Assay ID in TaqMan [™] Gene expression Assay	Primer sequence (5' to 3')		
Target gene		Forward	Reverse	
hPLK1	Hs00153444_m1			
18S rRNA	Hs99999901_s1			
TUG1		AGGTAGAACCTCTATGCATTTTGTG	ACTCTTGCTTCACTACTTCATCCAG	
SOX2		AAGAAAGGGAGAGAAGTTTGAGCC	GGCTCCGCGAGGAAAATC	
МҮС		GCTGCTTAGACGCTGGATTT	CACCGAGTCGTAGTCGAGGT	
BDNF		ATTTTGGGTTAGGAGAAGTCAAGTT	GTGATCACTAACATTTTCAGGTGTG	
NGF		GGACCCAATAACAGTTTTACCAAG	ACATTGCTCTCTGAGTGTGGTTC	
NTF3		ACAATATTTTTATGAAACGCGATGT	CCACGAGTTTATTGTTCTCTGAAGT	
GAPDH		CCTCCCGCTTCGCTCTCT	GGCGACGCAAAAGAAGATG	

Supplementary Table 2. List of primers used in this study

References

- 1. Elbashir, S. M. *et al.* Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. *Nature* **411**, 494–498 (2001).
- 2. Judge, A. D. *et al.* Confirming the RNAi-mediated mechanism of action of siRNA-based cancer therapeutics in mice. *J. Clin. Invest.* **119**, 661–673 (2009).
- 3. Raab, M. et al. Toxicity modelling of Plk1-targeted therapies in genetically engineered mice and cultured primary mammalian cells. *Nature Commun.* **2**, 395 (2011).
- 4. Takei, Y., Kadomatsu, K., Yuzawa, Y., Matsuo, S. & Muramatsu, T. A small interfering RNA targeting vascular endothelial growth factor as cancer therapeutics. *Cancer Res.* **64**, 3365–3370 (2004).
- 5. Katsushima, K. *et al.* Targeting the notch-regulated non-coding RNA TUG1 for glioma treatment. *Nature Commun.* **7**, 13616 (2016).