1	Supplementary Information for
2	Connected partner-switches control the life style of <i>Pseudomonas</i>
4	aeruginosa through RpoS regulation
5	
6	
7	
8	Sophie Bouillet ^a , Moly Ba ^b , Laetitia Houot ^b , Chantal Iobbi-Nivol ^{a1} and
9	Christophe Bordi ^{b1}
10	
11	
12	
13	
14	^o Aix Marseille Univ, CNRS, BIP, Marseille, France
15	^b Aix Marseille Univ, CNRS, LISM, Marseille, France
16	
17	
18	
19 20	
20 21	
22	
23	¹ To whom correspondence should be addressed; e-mail: bordi@imm.cnrs.fr,
24	iobbi@imm.cnrs.fr
25	
26	
27	
28 20	This DDF file includes:
29 30	This I DF me metudes.
31	Figs. S1 to S6
32	Tables S1 and S2
33	Supplementary references
34	

35

36 Fig. S1 Domain organization of CrsR and HsbR response regulators.

Schematic representation of the three domains of CrsR and HsbR. CrsR contains 565 amino acids and HsbR 571. The N-terminal regulatory receiver domain (D1, residues 1–118 and 13-125 for CrsR and HsbR, respectively), the central PP2C phosphatase domain (D2, residues 193– 391 and 188-336 for CrsR and HsbR, respectively), and the C-terminal GHKL (gyrase, Hsp90, histidine kinase, MutL) ATPase and anti-sigma factor domain (D3, residues 407–565 and 445-563 for CrsR and HsbR, respectively) are shown. The level of identity between homologous domains (in %) is indicated. Domains were defined using Pfam database.

45 Fig S2. Control of *in vivo* interaction by a two-hybrid assay.

Each fusion protein in both T18 and T25 vectors were tested against the empty counterpart
vector. Positive (T18zip/T25zip) and negative (empty vectors) controls were added.
Galactosidase activities are expressed in miller units. The data from three replicates are
presented as means S.D.

50

Fig S3. Statistical analysis of *PrsmY–lacZ* transcriptional fusion in various *P. aeruginosa* strains. Activity was recorded after 6 and 8 hours of growth. Corresponding β -galactosidase activities are expressed in Miller units and correspond to mean values (with error bars) obtained from three independent experiments. Wilcoxon-Mann-Whitney tests were performed, and *, ** and *** referred to p<0.05, p<0.01 and p<0.001, respectively.

56

57 Fig S4. Growth curves of the *P. aeruginosa* strains used to study *PrsmY-lacZ* 58 transcriptional expression.

For each strain the OD₆₀₀ nm value correspond to mean values (with error bars) obtained from
three independent experiments

61

62 Fig. S5 Expression of *PrsmY-lacZ* transcriptional fusion in PAK, PAKΔ*hptB*, PAKΔ*fliA*

or PAK Δ *hptBfliA* strains. Activity was recorded after 4h growth. Corresponding β galactosidase activities are expressed in Miller units and correspond to mean values (with error bars) obtained from three independent experiments. Wilcoxon-Mann-Whitney tests were performed, and ns referred to nonsignificant difference. Fig. S6 Biofilm formation in PAK and PAK∆*rpoS* at different growth stages. (A) Biofilm production monitored at different growth stages in glass tubes (upper panel) and quantified after Crystal Violet-staining (lower panel). Corresponding levels of biofilm production represent mean values and standard deviations obtained from six independent experiments. (B) Biofilm formation is monitored by confocal laser scanning microscopy at the time indicated in the figure. The extracted z images and their respective xy and xz planes are shown.

Strains	Relevant characteristics*	Source
E. coli		
DH5a	endA1 hsdR17 supE44 thi-1 recA1 gyrA relA1 ∆(lacZYA-argF)U169 deoR (phi	Lab collection
D 4 4 50	$80lacZ \Delta M15$	
BA159	BTH101 (F- cya-99 araD139 galE15 galK16 rpsL1 (Sm ⁴) hsdR2 mcrA1 mcrB1)	(1)
CC118(1 min)	clpXP::cat rpo5::tet	Lab collection
CC118(Apii)	Host strain for pKNG101 replication, $\Delta(ara-leu)$ araD $\Delta lacX74$ galE galK phoA20	Lab collection
	thi-1 rpsE rpoB argE(Am) recA1 Rf ^R (λpir)	
P. aeruginosa		
PAK	Wild-type	(2)
$PAK\Delta htpB$	PAK deletion mutant for <i>hptB</i> gene	(3)
PAK _{\Delta} rpoS	PAK deletion mutant for <i>rpoS</i> gene	This study
$PAK\Delta hsbD$	PAK deletion mutant for <i>hsbD</i> gene	This study
$PAK\Delta htp B\Delta rpoS$	PAK deletion mutant for <i>hptB</i> and <i>rpos</i> genes	This study
PAKAnsbDArpos	PAK deletion mutant for hab D and typos genes	This study
$PAR\Delta npi B\Delta ns DD$ $PAK \Delta hpt B \Delta hsh D \Delta rpo S$	PAK deletion mutant for <i>hntB hsbD</i> and <i>rnoS</i> genes	This study
FAKAnpibAnsoDArpos	PAK deletion mutant for npib, nsoD and rpos genes	This study
ΡΑΚΛ <i>hshA</i>	PAK deletion mutant for <i>hsbA</i> gene	(3)
PAKAfliA	PAK deletion mutant for fliA gene	This study
$PAK\Lambda htn R\Lambda fliA$	PAK deletion mutant for <i>hntB</i> and <i>fliA</i> genes	This study
PAKattBrsmY-lacZ	PAK strain with rsmY-lacZ inserted at attB sites	(4)
PAKArpoSattR::rsmY-lac7	PAKArnoS strain with rsmV-lacZ inserted at attR sites	This study
PAKAhtnBattB.:rsmY-lacZ	PAK $\Delta htpB$ strain with rsmY-lacZ inserted at attB sites	This study
$PAK\Lambda htpB\Lambda rpoSattB \cdot rsmY-lacZ$	PAK $\Delta htpB\Delta rpoS$ strain with rsmY-lacZ inserted at attB sites	This study
PAKAgacAattB:: rsmY-lacZ	PAKA <i>gacA</i> strain with $rsmY$ -lacZ inserted at <i>attB</i> sites	(4)
<u>8</u>		
Plasmid	Relevant characteristics	Source
i iusiind		Source
pUT18C	Two-hybrid plasmid. cvaAT18 fusion. Ap ^R	(5)
pUT18C-crsRD3	Two-hybrid plasmid containing $cyaATI8$ -crsR D3 domain fusion An ^R	(6)
pUT18C-hshRD3	Two-hybrid plasmid containing $cyaTI8$, $hshR$ D3 domain fusion, Ap^R	(3)
pUTISC moSso	Two hybrid plasmid containing cyaAT18 rpoS S oneidensis fusion	(5)
p0118C- <i>1p0380</i>	An ^R	(0)
pUT19C masna	Ap Two hybrid plasmid containing $cua AT18$ mass P actualized domain	This study
pullac- <i>rpospa</i>	I wo-nyona piasinia containing cyaA116- rpos P. aeruginosa domain	This study
	fusion, Ap ^x	(-)
pK125	Two-hybrid plasmid, <i>cyaA125</i> fusion, Km ^K	(5)
pK125-crsRD3	Two-hybrid plasmid containing $cyaAT25 - crsR$ D3 domain fusion, Km ^R	(6)
pKT25-hsbRD3	Two-hybrid plasmid containing <i>cyaAT25– hsbR</i> D3 domain fusion,	(7)
	Km ^R	
pKT25-rpoSso	Two-hybrid plasmid containing cyaAT25- rpoS S. oneidensis fusion,	This study
	Km ^R	
pKT25- rpoSpa	Two-hybrid plasmid containing cyaAT25– rpoS P. aeruginosa fusion,	This study
	Km ^R	•
miniCTX-lacZ	$Tc^{r} lacZ^{+}$: self-proficient integration vector with <i>tet</i> . V-FRT-attPMCS.	(8)
	ori int and oriT	(0)
miniCTX_rsmV_lac7	Promoter region of $r_{sm}V$ gene inserted into miniCTX-lacZ Tc ^R	(4)
nBRPMCS5	Broad host range plasmid Gm ^R	(1) (8)
PDDRMC55	nBBRMCS5 carrying the <i>rnoS</i> gene. Gm ^R	(0) This study
pBBR-rpos	P 11 (1 A R	
PBBKNICS4	Broad nost range plasmid, Ap"	(8)
pBBR-hsbA	pBBKMCS4 carrying the <i>hsbA</i> gene, Ap ^{κ}	(3)
pBBR-hsbAss6A	pBBRMCS4 carrying the <i>hsbA</i> gene with $_{S56A}$ substitution, Ap ^R	This study
pBBR-hsbAss6D	pBBRMCS4 carrying the <i>hsbA</i> gene with <i>ss6D</i> substitution, Ap ^R	This study
pRK2013	$Tra^+ Mob^+ Km^R$	Lab collection
pKNG101∆ <i>rpoS</i>	Mutator plasmid for <i>rpoS</i> deletion Sm ^R	This study
pKNG101 $\Delta fliA$	Mutator plasmid for <i>fliA</i> deletion Sm ^R	This study
pJN105	araC-pBAD expression vector, Gm ^R	Lab collection
pJN-RpoS	nJN105 carrying the $rnoS$ gene. Gm ^R	This study

76 Table S1: Strains and plasmids used in this study

* Sm^R, streptomycin resistance, Gm^R gentamicin resistance, Ap^R ampicillin resistance, Km^R kanamycin resistance and Tc^R tetracycline resistance

77 78 79

80 Table S2: Oligonucleotides used in this study

Names	Oligonucleotides $(5' \rightarrow 3')$			
Two-Hybrid DH_PAK UP_RpoS DH_PAK Do_RpoS DH SO UP RpoS DH SO DO RpoS	CCTCTAGAGATGGCACTCAAAAAAGAAGGG GGGGTACCTCACTGGAACAGCGCGTCACTCG TAGAATTCATGAGCCGCATAAATAGCACTG TACTCGAGTTAATTTCTAAATAGAGCCTC			
Gene Deletion				
UpUFliA	CCGGATCCGCACCTCTCGCCGATGCAGC			
UpDFliA	TGGCCGGAGCTGGCACGGCCGAACCTGTCGCGGG			
DnUFliA	AGGTTCGGCCGTACCGGCCTCGACCGCAGC			
DnDFliA	GGACTAGTCACCGCCTGCTGGAAGTGCC			
UpURpoS	CCCCCCCTGCAGGTCGACGGATCCTACGTCGGTACCTGCCAAGC			
UpDRpoS	GGTCTAAGGTTTTCCGTCACCATGTCGTTATCCCTTGCATGAGTTCG			
DnURpoS	TGCAAGGGATAACGACATGGTGACGGAAAACCTTAGACCC			
DnDRpoS	TTCTACTTATGGTACCCGGGGATCCGAGAAGAAGGATGCCCTG			
UpUHsbD	CCCTGCAGGTCGACGGATGCGCTCGCTATCCGACATGG			
UpDHsbD	TGCGCCATGGACTCACACCTCTTCTCTTGGAGGGCTTGG			
DnUHsbD	CCAAGAGAAGAGGTGTGAGTCCATGGCCGATTTTGTCC			
DnDHsbD	CTTATGGTACCCGGGGATCCGGTTCTCCAGGCGTAGCAGG			
Quick change mutations				
HsbA-S56A-QC-F	ACTTACCTGGACGCGTCGGCCCTCGGC			
HsbA-S56A-QC-R	GCCGAGGGCCGACGCGTCCAGGTAAGT			
HsbA-S56D-QC-F	ACTTACCTGGACGATTCGGCCCTCGGC			
HsbA-S56D-QC-R	GCCGAGGGCCGAATCGTCCAGGTAAGT			
Gene expression				
Up_RopS_prod	TTCCTGCAGCCCGGGGGATCTCCAGCGGGAAAGGAATCGC			
Do_RpoS_prod	GCCGCTCTAGAACTAGTGGATCTGTAAGTTAATGCTTACAAGAGC			
81				
82				

83		Supplementary references
84		
85		
86	1.	Battesti A, Bouveret E (2012) The bacterial two-hybrid system based on adenylate
87		cyclase reconstitution in Escherichia coli. <i>Methods</i> 58(4):325–34.
88	2.	Sastry PA, Pearlstone JR, Smillie LB, Paranchych W (1983) Amino acid sequence of
89		pilin isolated from pseudomonas aeruginosa PAK. FEBS Lett 151(2):253-6.
90	3.	Bordi C, et al. (2010) Regulatory RNAs and the HptB/RetS signalling pathways fine-
91		tune Pseudomonas aeruginosa pathogenesis. Mol Microbiol 76(6):1427–1443.
92	4.	Chambonnier G, et al. (2016) The Hybrid Histidine Kinase LadS Forms a
93		Multicomponent Signal Transduction System with the GacS/GacA Two-Component
94		System in Pseudomonas aeruginosa. PLOS Genet 12(5):e1006032.
95	5.	Karimova G, Ullmann A, Ladant D (2000) A bacterial two-hybrid system that exploits
96		a cAMP signaling cascade in Escherichia coli. <i>Methods Enzymol</i> 328:59–73.
97	6.	Bouillet S, et al. (2016) The General Stress Response σ S Is Regulated by a Partner
98		Switch in the Gram-negative Bacterium Shewanella oneidensis. J Biol Chem
99		291(50):26151–26163.
100	7.	Houot L, Fanni A, de Bentzmann S, Bordi C (2012) A bacterial two-hybrid genome
101		fragment library for deciphering regulatory networks of the opportunistic pathogen
102		Pseudomonas aeruginosa. <i>Microbiology</i> 158(Pt_8):1964–1971.
103	8.	Hoang TT, Kutchma AJ, Becher A, Schweizer HP (2000) Integration-proficient
104		plasmids for Pseudomonas aeruginosa: site-specific integration and use for engineering
105		of reporter and expression strains. <i>Plasmid</i> 43(1):59–72.
106		

Β.

