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S1 Machine Learning Methods

S1.1 Neural Network Structures and Training

The neural networks (SorbNet, p–v mapping network, dense network, shallow network) were im-

plemented using the KerasS1 (2.1.4) framework with TensorFlowS2 (1.6.0) backend. Exponen-

tial linear unit (ELU) activation functionsS3 were used throughout the hidden layers of all neural

networks, and the sigmoid activation function was used on the output layer in neural networks

predicting the equilibrium sorption loading. The p–v mapping network does not have an activa-

tion function on the output layer. Weight matrices of all neural networks were initialized using

the Xavier initialization methodS4 and biases were initialized as zeros. The neural networks were

trained using the Adam optimizerS5 at an initial learning rate of 0.002 and an exponential decay

of 0.002 per epoch. The binary cross-entropy loss function was used to train networks for sorption

loading prediction, and the mean square error loss was used to train the p–v network. No regu-

larization algorithm (weight decay, dropout, etc.) was applied in the training process. Except for

the pre-training for only 200 epochs in transfer learning applications on temperature-dependence

prediction, each neural network was trained for 500 epochs on the simulation data of a sorption

system.

The neural network codes and dataset are available at

https://github.com/SiepmannGroup/desorption

and

https://github.com/SiepmannGroup/MCCCS_DB/tree/master/diol-desorption

respectively.

S1.2 Variable Transformations

Variable transformations were performed when training the neural network. The volumes selected

to perform the simulations were uniformly distributed in logarithmic space, therefore the relative

volume v as the vapor volume per zeolite unit cell was transformed into − log10 v in the training
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process. Following chemical intuition, inverse temperatures instead of absolute temperatures were

used as the training feature. The transformation of T to 1000/T was used to make all training

features (n1,n2,− log10 v,1000/T ) distribute in similar numerical ranges and to agree with engi-

neering conventions in representing temperature dependence. Preliminary training results showed

that using inverse temperature resulted in a lower error compared with directly scaling the tem-

perature, and further shifting or scaling [e.g., zero-mean or normalize to (0, 1)] of the features

did not substantially improve the model performance. Hence, the transformed training features

(n1,n2,− log10 v,1000/T ) were used without further modifications.
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S2 Simulation Details

Monte Carlo simulations were performed here in the isochoric–isothermal version of the Gibbs

ensembleS6,S7 using a set-up with two simulation boxes. These simulations model the desorptive

drying stage in the separation of a diol/water using an adsorption–drying–desorption process. An

illustration of such a process for the MFI-C5-W system is shown in Figure S1.

The TIP4P model for waterS8 and the united-atom version of the TraPPE force field for ethanol,

butane-1,4-diol, and pentane-1,5-diol,S9,S10 and the TraPPE-zeo force field for all-silica zeolite

framework atomsS11 were used. Following the TraPPE–UA force field for ethers and glycols,S12

intramolecular Coulombic interactions between pseudo-atoms separated by three bonds (for α-

and ω-CH2 groups in 1,4-butanediol) were scaled by a factor of 1/2. The Coulomb and Lennard-

Jones interactions of sorbate molecules with the rigid zeolite framework were determined using

pretabulation and interpolationS13,S14 with a grid spacing of 0.1 Å. The vapor phase was treated as

a real gas with a cutoff distance at L/2 and a volume of L3, while the cutoff distance in each zeolite

phase was 14.0 Å. Analytical tail correctionsS15 were used to estimate Lennard-Jones interactions

beyond these cutoff distances. Coulomb interactions were described using the Ewald summation

methodS15 with a screening parameter of κ = 3.2/rcut and an upper bound of the reciprocal space

summation at Kmax = dκLboxe.

This work considered the all-silica forms of zeolites MFI and LTA using the structures deter-

mined by van Konigsveld et al.S16 and by Boal et al.,S17 respectively. The MFI and LTA zeolites

were treated as rigid frameworks. The unit cell parameters and number of replications in a, b,

and c used to obtain simulation boxes with linear dimensions larger than 28.0 Å are presented in

Table S1.

Table S1: Structures of All-Silica Zeolites

Framework a b c α β γ Replications
[Å] [Å] [Å] [◦] [◦] [◦] a×b× c

MFI 20.022 19.899 13.383 90.000 90.000 90.000 2×2×3
LTA 11.857 11.857 11.857 90.000 90.000 90.000 3×3×3
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T (K) 323 323 323 323 403 403 403
Z1 / 0 95.996 � 0.003 96 96 93.7 ± 0.4 93
Z2 / 0 9.6 � 1.3 10 10 0.004 ± 0.004 0
B1 / 0 17.0 ± 1.8 / / / /
B2 / 0 31 ± 3 / / / /
L1 128 128 15.0 ± 1.8 / / / /
L2 968 968 927 ± 2 / / / /
G1 / / / / 0 2.3 ± 0.4 /
G2 / / / / 0 9.996 ± 0.004 /
N1 128 128 128 96 96 96 93
N2 968 968 968 10 10 10 0
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Figure S1: Adsorptive separation of a 1,5-pentanediol (1) / water (2) mixture in the MFI zeolite. The top
part shows a schematic for the three-stage separation process of a diol/solvent mixture. The first two stages
are of interest here because they involve mixtures, whereas the final desorption stage involves essentially
only the diol. The middle part shows the GEMC simulation setups for the solution-phase adsorption stage
and the desorptive drying stage: (a) an aqueous solution of diol is represented by a liquid simulation box
L. (b) L is coupled with an empty zeolite simulation box Z to simulate the adsorption from the solution. A
vapor transfer medium B is used to facilitate particle exchange between solution-phase and zeolite. (c) The
solution phase has reached equilibrium with the zeolite phase where the zeolite is highly selective for the
diol. (d) L and B are removed, leaving Z loaded with both diol and water. (e) An empty vapor simulation
box G is coupled with Z to simulate the desorption into a gas phase. (f) The vapor phase has reached
equilibrium with the zeolite phase during which water is selectively desorbed. (g) G is removed, leaving
Z with extremely enriched diol. Light yellow stripes among simulation boxes indicate the establishment
of equilibrium. Double-headed blue arrows denote particle exchanges between two simulation boxes. The
table at the bottom provides information on the numbers of molecules found in the individual simulation
boxes and in the entire system (N) where subscripts 1 and 2 denote diol (1) and water (2), respectively.
Dimensions of Z are given in Table S1. For the example shown here, the average box lengths of L and B
in the adsorption simulation were 31.47± 0.13 Å and 6727.289± 0.014 Å, respectively. The volume of
B was maintained through incorporation of 6917465 non-interacting particles. The box length of G in the
desorption simulations was fixed at 1024 Å.
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Figure S2: Solution-phase adsorption isotherms of C5 (1) and W (2) in the MFI-C5-W system
(data taken from DeJaco et al.S18). Filled symbols denote the initial loadings used in the desorptive
drying simulations listed in Table S2.

For each of the four zeolite-diol-solvent system, four different compositions (numbers of diol

and solvent molecules) were investigated that correspond to zeolite loadings observed during

solution-phase adsorption simulations.S18 The solution-phase adsorption isotherms and initial load-

ings for vapor-phase desorption in the MFI-C5-W system are illustrated in Figure S2. The simula-

tions in the present work were started with all diol and solvent molecules in the zeolite phase, and

information on these loadings is summarized in Table S2. For each of these 16 system/composition

combinations, 256 temperature/volume combinations were investigated as follows: a set of 16 tem-

peratures (T = 343, 353, 363, 373, 383, 393, 403, 413, 423, 433, 443, 453, 463, 473, 483, and

493 K) and a set of 16 vapor-phase boxlengths (L = 24, 48, 64, 128, 256, 512, 1024, 2048, 4096,

8192, 16384, 32768, 65536, 131072, 262144, and 524288 Å).

S7



Table S2: State Points used for Adsorption Simulations, Numbers of Molecules in the System and
Per Unit Cell and Lengths of Production Periods for the Desorptive Drying Simulations

Adsorptiona Desorptive Drying
Zeolite-Diol-Solvent Cads [g/mL] Ndiol Nsolvent ndiol nsolvent 103 MCCs

MFI-C5-W 0.083±0.009 96 10 8.00 0.83 21–50
MFI-C5-W 0.0033±0.0010 95 11 7.92 0.92 21–50
MFI-C5-W 0.00019±0.00003 64 25 5.33 2.08 24–68
MFI-C5-W 0.00014±0.00005 32 23 2.67 1.92 42–100
MFI-C4-W 0.4731±0.0014 105 16 8.75 1.33 20–47
MFI-C4-W 0.041±0.005 105 13 8.75 1.08 21–50
MFI-C4-W 0.009±0.002 95 29 7.92 2.42 19–48
MFI-C4-W 0.0033±0.0009 60 30 5.00 2.50 27–76
MFI-C5-E 0.647±0.011 84 23 7.00 1.92 22–49
MFI-C5-E 0.559±0.014 66 56 5.50 4.67 19–45
MFI-C5-E 0.37±0.02 61 66 5.08 5.50 19–45
MFI-C5-E 0.197±0.011 41 98 3.42 8.17 19–46
LTA-C5-W 0.420±0.007 75 34 2.78 1.26 18–54
LTA-C5-W 0.214±0.009 72 42 2.67 1.56 18–52
LTA-C5-W 0.085±0.011 58 77 2.15 2.85 16–48
LTA-C5-W 0.024±0.003 56 77 2.07 2.85 16–50

a All adsorption state points were conducted at Tads = 323 K and pads = 1.0 bar.

For all simulations, the set of trial moves included rigid-body translations and rotations around

the center-of-mass for all sorbate molecules, and coupled-decoupled configurational-bias Monte

Carlo (CD-CBMC) movesS19 for all sorbate types except water. CD-CBMC strategies were also

employed for particle transfer moves between the two phases.S19,S20 A total of 32 independent

simulations were used at each state point investigated. All simulations were wrapped in a job sub-

mission on Mira, a leadership-class supercomputer at Argonne National Laboratory. The equili-

bration period consisted of a 6 h job followed by a 12 h job. The production period consisted of two

sequential 12 h jobs. The number of Monte Carlo cycles (where a cycle consists of Ndiol +Nsolvent

randomly selected moves) completed during the 24 h production period ranged from 16000 to

100000 depending on the total number of diol and solvent molecules, the number of interaction

sites (4 for water and ethanol, 8 for 1,4-butanediol, and 9 for 1,5-pentanediol), and the distribu-

tion of these molecules over the two simulation boxes. The specific ranges for each of the 16

system/composition combinations are provided in Table S2.
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S3 Isotherm Predictions by SorbNet

Figures S3–S5 show the SorbNet predictions and isotherm curves for the other three sorption

systems (MFI-C4-W, MFI-C5-E, LTA-C5-W). For all sorption systems, a sigmoid-like isotherm

shape was observed for the diol, and an increasing loading with a low-volume onset was observed

for the solvents.

At the smallest volume and the highest temperature, the alkanediol loading shows a slight

decrease instead of reaching saturation (see Figures S4 and S5). This erroneous result can be

attributed to the partial condensation in the reservoir phase when the number density approaches 2

molecules per nm3. The droplet formation lowers the chemical potentials of diol and solvent in the

spinodally decomposed reservoir phase. As a result, the loading in the zeolite phase is decreased.
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Figure S3: (a-b) Scatter plot of SorbNet predictions of C4 (a) and W (b) fractional loadings for
training and test temperatures (ŷi) versus fractional loadings obtained from simulations (yi) in the
MFI-C4-W system. (c-d) Loading–volume sorption isotherms for 1,4-butanediol (c) and water (d)
in the MFI-C4-W system at test set temperatures and an initial sorbate loading of C4:W = 5.00:2.50
(molec/uc). Symbols denote simulation data and lines denote neural network predictions.
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Figure S4: (a-b) Scatter plot of SorbNet predictions of C5 (a) and E (b) fractional loadings for train-
ing and test temperatures (ŷi) versus fractional loadings obtained from simulations (yi) in the MFI-
C5-E system. (c-d) Loading–volume sorption isotherms for 1,5-pentanediol (c) and ethanol (d) in
the MFI-C5-E system at test set temperatures and an initial sorbate loading of C5:E = 5.50:4.67
(molec/uc). Symbols denote simulation data and lines denote neural network predictions.
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Figure S5: (a-b) Scatter plot of SorbNet predictions of C5 (a) and W (b) fractional loadings for
training and test temperatures (ŷi) versus fractional loadings obtained from simulations (yi) in the
LTA-C5-W system. (c-d) Loading–volume sorption isotherms for 1,5-pentanediol (c) and water (d)
in the LTA-C5-W system at test set temperatures and an initial sorbate loading of C5:W = 2.07:2.85
(molec/uc). Symbols denote simulation data and lines denote neural network predictions.
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S4 Uncertainty Estimation by SorbNet Ensemble

The information obtained from multiple independent simulations can be utilized to train an ensem-

ble of multiple neural networks for uncertainty estimation. To be distinguished from the statistical

mechanical ensemble in molecular simulation, ensemble in this section refers to a collection of

multiple machine learning models.S21 In the present work, ensemble learning on independent sim-

ulation data was carried out by dividing the full simulation dataset into 32 distinct subsets, then

training 32 SorbNets each on a subset of the simulation data. Each subset of simulation data

contained one independent simulation at all 1024 state points, and predictions by the SorbNet en-

semble were obtained by averaging 32 individual outputs of the neural networks. The SorbNet

ensemble is also able to estimate the uncertainty of its predictions as the standard deviation of 32

individual outputs. Trained on the MFI-C5-W system, the SorbNet ensemble uncertainty qualita-

tively agrees with the simulation uncertainty which is highest when loading changes rapidly with

log-volume (see Figure S6a) due to break-up of the cooperative hydrogen-bonding network formed

in particular by 1,5-pentanediol in MFI at high loading (e.g., near 8 molecules per unit cell).S18

In addition, the prediction of water loading becomes less confident when extrapolating to smaller

vapor volumes as the neural networks do not see evident saturation of water at T = 343 K (see

Figure S6b). Therefore, performing multiple simulations not only improves the accuracy of sim-

ulation results within the given walltime, but also provides machine learning with the potential to

estimate uncertainties of the predictions.
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a) b)

Figure S6: (a) Scatter plot with uncertainty estimation of SorbNet predictions for C5 and W frac-
tional loadings for training and test temperatures versus fractional loadings obtained from simula-
tions for the MFI-C5-W system. Horizontal error bars denote the standard deviation from 32 inde-
pendent simulations and vertical error bars denote the standard deviation predicted by the SorbNet
ensemble. (b) Loading–volume sorption isotherms with uncertainty estimation of the MFI-C5-W
system at T = 343 K and an initial loading of C5:W = 2.67:1.92 molec/uc. Symbols with error
bars denote simulation data and lines with shaded region denote predictions by the SorbNet ensem-
ble. Error bars and shaded regions correspond to 3 times the standard deviation to better visualize
uncertainties.
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S5 Desorption Temperature Optimization

The “ground-truth” values of the vapor pressures were calculated from the total number density

in the vapor-phase simulation box assuming ideal gas behavior. Due to the large additional com-

putational cost in Monte Carlo simulations, direct calculations of the vapor pressure using the

virial equationS15 throughout the simulations was not conducted. In the pressure calculation and

subsequent prediction tasks, simulation results corresponding to less than 0.1 molecules in the

vapor-phase simulation box were removed to minimize the effects of large relative uncertainties.

Another neural network to map pressure from vapor volume was used instead of directly training

the SorbNet on the pressure variable. This is because the already trained SorbNet has encoded in-

formation about the sorption system, and directly using pressure to predict sorption loading worked

much more poorly as simulations were not conditioned on the vapor pressure. After generating the

loading surface and isobaric adsorption curves, the optimal temperature is found by a linear search

in 0.2 K intervals for the maximum diol/solvent molar ratio in the zeolite phase with the constraint

of the adsorbed diol mole fraction being no smaller than 99%. The pressure dependence of the

optimal temperature was obtained by performing searches between 10−3 kPa and 102 kPa in the

logarithmic space. Since neural networks are trained in a gradient-based nature, the brute-force

search method employed in this work can be readily improved by using gradient information pro-

duced by neural network training to optimize any operation condition.
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