SUPPLEMENTARY MATERIAL

A bifunctional UDP-sugar 4-epimerase supports biosynthesis of multiple cell surface polysaccharides in *Sinorhizobium meliloti*

Simon Schäper^{1,2}, Heiko Wendt^{1,2}, Jan Bamberger^{1,3}, Volker Sieber⁴, Jochen Schmid⁵, Anke Becker^{1,2}

¹LOEWE Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Marburg, Germany;

²Faculty of Biology, Philipps University Marburg, Marburg, Germany;

³Faculty of Chemistry, Philipps University Marburg, Marburg, Germany;

⁴Chemistry of Biogenic Resources, Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Straubing, Germany;

⁵Bioprocess Engineering, Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Straubing, Germany

Media compositions

TY medium (5 g/l tryptone, 3 g/l yeast extract, 0.4 g/l CaCl₂×2H₂O).

LB medium (10 g/l tryptone, 5 g/l yeast extract, 5 g/l NaCl).

MOPS-buffered minimal medium (MM) (10 g/I MOPS, 10 g/I mannitol, 3.55 g/I sodium glutamate, 0.246 g/I MgSO₄×7H₂O, 0.25 mM CaCl₂, 2 mM K₂HPO₄, 10 mg/I FeCl₃×6H₂O, 1 mg/I biotin, 3 mg/I H₃BO₃, 2.23 mg/I MnSO₄×H₂O, 0.287 mg/I ZnSO₄×7H₂O, 0.125 mg/I CuSO₄×5H₂O, 0.065 mg/I CoCl₂×6H₂O, 0.12 mg/I Na₂MoO₄×2H₂O, pH 7.2).

Supplementary tables

Strain	Properties	Reference		
S. meliloti				
Rm2011	wild type, Str ^r	1		
ΔexoB	Rm2011 with markerless deletion of exoB	2		
Rm2011 ΔXVI	Rm2011 with 16 deletions of GGDEF domain-encoding genes (c-di-GMP ⁰)	3		
uppE ⁻	Rm2011 <i>uppE</i> ::pK19mob2ΩHMB- <i>uppE</i> , Km ^r	3		
bgsA	Rm2011 <i>SMb20391</i> ::pK19mob2ΩHMB- <i>SMb20391,</i> Km ^r	This work		
ΔexoP-Z	Rm2011 with markerless deletion of the <i>exo</i> gene cluster from <i>exoP</i> to <i>exoZ</i>	This work		
∆exoP-Z wgeB ⁻	Δ <i>exoP-Z wgeB</i> ::pK18mob2- <i>wgeB</i> -mCh, Km ^r	This work		
$\Delta exoP-Z wgeB^{-}$	ΔexoP-Z wgeB::pK18mob2-wgeB-mCh with markerless deletion of	This was also		
Δuxs1-apsH2	the APS biosynthesis gene cluster (<i>uxs1-apsH2</i>), Km ^r	I NIS WORK		
Δuxs1-apsH2	Rm2011 with markerless deletion of the APS biosynthesis gene cluster (<i>uxs1-apsH2</i>)	This work		
∆exoB uxe ⁻	Δ <i>exoB uxe</i> ::pK19mob2ΩHMB- <i>uxe</i> , Km ^r	This work		
Δuxs1	Rm2011 with markerless deletion of uxs1	This work		
Δuxe	Rm2011 with markerless deletion of uxe	This work		
ΔapsS	Rm2011 with markerless deletion of SMb20460 (apsS)	This work		
ΔapsH1	Rm2011 with markerless deletion of SMb20461 (apsH1)	This work		
ΔapsE	Rm2011 with markerless deletion of SMb20462 (apsE)	This work		
∆apsH2	Rm2011 with markerless deletion of SMb20463 (apsH2)	This work		
∆apsH1 ∆apsH2	Rm2011 with markerless deletions of <i>SMb20461</i> (<i>apsH1</i>) and <i>SMb20463</i> (<i>apsH2</i>)	This work		
∆uxs1 uppE [¯]	Δ <i>uxs1 uppE</i> ::pK19mob2ΩHMB- <i>uppE</i> , Km ^r	This work		
∆uxe uppE ⁻	Δ <i>uxe uppE</i> ::pK19mob2ΩHMB- <i>uppE</i> , Km ^r	This work		
$\Delta apsS uppE^{-}$	$\Delta a psS uppE::pK19mob2\Omega HMB-uppE, Kmr$	This work		
$\Delta apsH1 uppE^{-}$	Δ <i>apsH1 uppE</i> ::pK19mob2ΩHMB- <i>uppE</i> , Km ^r	This work		
AapsEuppE	$\Delta a \rho s E u \rho \rho E$::pK19mob2 Ω HMB- $u \rho \rho E$. Km ^r	This work		
$\Delta a p s = a p p = \Delta a n s H 2 \mu n n F$	AapsH2 uppE::pK19mob2OHMB-uppE. Km ^r	This work		
AansH1 AansH2 unnE	AansH1 AansH2 unnE···nK19moh2OHMB-unnE Km ^r	This work		
	Aurs1_arsH2 uppE::pK19mob2OHMB_uppE_Km ^r	This work		
Δuxs1-upsπ2 uppe	Bm2011 with markerless deletion of cuvP	This work		
AcuxR c-di-GMP ⁰	Rm2011 AXVI with markerless deletion of $cuxR$	This work		
	Rm2011 with markerless deletion of $mucR$	This work		
Δημές Λημές Λεμχ	$\Delta m_{\mu c} R$ with markerless deletion of $c_{\mu c} R$	This work		
$\Delta mucR \Delta cuxR$ c-di-GMP ⁰	$\Delta cuxR$ c-di-GMP ⁰ with markerless deletion of mucR	This work		
Rm2011 P_{nptll} -dgcA-	Rm2011 pSM- <i>dgcA-cuxR</i> integrated into the chromosome, Gm ^r	This work		
ΔexoP-Z P _{nptII} -dgcA- cuxR	Δ <i>exoP-Z</i> containing pSM- <i>dgcA-cuxR</i> integrated into the chromosome. Gm ^r	This work		
	-/ -			
E. coli				
BL21(DE3)	F ⁻ ompT gal dcm lon hsdS _B ($r_B m_B$) λ(DE3 [lacl lacUV5-T7p07 ind1 sam7 nin5]) [malB ⁺] _{K-12} (λ ^S)	New England Biolabs		
DH5a	F ⁻ endA1 glnV44 thi-1 recA1 relA1 gyrA96 deoR nupG purB20 φ80dlacZΔM15 Δ(lacZYA-argF)U169, hsdR17($r_{\kappa}^{-}m_{\kappa}^{+}$), λ^{-}	4		
S17-1	5			

Table S1. Strains and plasmids used in this study.

Plasmids

pABC2S-mob	variant of mobilizable <i>repABC</i> -based mini-replicon, single-copy in	6
nK19mahaanD	S. Memori, spec	7
pRISITIODSACB	suicide vector, <i>lucz</i> , <i>lilob</i> , suc <i>B</i> , Kill	/
pk_egjp	reporter rusion plasmid carrying P _{syn} for constitutive expression, it	0
pSRK	<i>lac</i> promoter lacking the <i>lacl</i> operator, Km ^r	8
pSRKGm	pBBR1MCS-5-derived broad-host-range expression vector containing <i>lac</i> promoter, Gm ^r	9
pWBT	pSRKGm carrying T5 promoter, Gm ^r	M. McIntosh
pWH844	expression vector carrying 6×his and T5 promoter, Amp ^r	10
pSM10	S. meliloti integrative vector containing partial recA and alaS	11
nK10mah20UMP	sequences and <i>liptil</i> promoter for constitutive expression, diff	
SMb20391	pK19mob2ΩHMB containing internal fragment of SMb20391 (bgsA)	12
pK19mob2ΩHMB- <i>uxe</i>	pK19mob2ΩHMB containing internal fragment of <i>uxe</i>	12
pK18mob- <i>wgeB</i> -mCh	pK18mob2-mCh carrying internal fragment of wgeB	P. Charoenpanich
nDUUL221 aafa	broad-host-range low copy expression vector containing egfp, used	M Malatach
pph0231-egjp	for generating promoter- <i>egfp</i> fusions, Tc ^r	
pPHU231-PrpsB-egfp	pPHU231- <i>egfp</i> containing <i>rpsB</i> promoter transcriptionally fused to <i>eafn</i>	E. Krol
nK19moh2OHMB-unnE	nK19moh20HMB containing internal fragment of SMc01792 (unpF)	3
nWRT-nleD-cuxR	nWBT containing <i>nleD</i> and <i>cuxR</i> coding sequences	13
nSBKGm-uxs1-	problementaring preb and easil county sequences	15
SMb20463	pSRKGm containing the APS biosynthesis gene cluster (<i>uxs1-apsH2</i>)	13
pWH844 <i>-mucR</i>	pWH844 containing mucR coding sequence	H. Meier
pK18mobsacB- <i>mucR</i>	pK18mobsacB containing flanking regions of mucR	H. Meier
pSRK- <i>uxe</i>	pSRK containing uxe coding sequence	This work
pWH844 <i>-uxe</i>	pWH844 containing <i>uxe</i> coding sequence excluding the start codon	This work
pWH844 <i>-exoB</i>	pWH844 containing <i>exoB</i> coding sequence excluding the start codon	This work
pSRKGm- <i>egfp</i>	pSRKGm containing <i>egfp</i>	This work
pSRKGm-P <i>uxs1-egfp</i>	pSRKGm containing uxs1 promoter transcriptionally fused to egfp	This work
pSRKGm-P <i>cuxR-egfp</i>	pSRKGm containing <i>cuxR</i> promoter transcriptionally fused to <i>egfp</i>	This work
pPHU231-P <i>mucR-egfp</i>	pPHU231- <i>egfp</i> containing <i>mucR</i> promoter transcriptionally fused to <i>eafn</i>	This work
pSM-dacA-cuxR	pSM10 containing <i>dacA</i> (<i>C. crescentus</i>) and <i>cuxR</i> coding sequences	This work
pABC-P _{syn}	pABC2S-mob containing P_{syn} from pR <i>eqfp</i>	This work
pABC-P _{cup} -cuxR	pABC-P _{cup} containing cuxR coding sequence	This work
pK18mobsacB- <i>exoP-Z</i>	pK18mobsacB containing downstream flanking regions of <i>exoP</i> and	This work
nK18mohsacB-uxs1	nK18mohsacB containing flanking regions of uxs1	This work
nK18mohsacB-uxe	nK18mohsacB containing flanking regions of use	This work
nK18mohsacB-ans	pK18mobsacB containing flanking regions of SMb20460 (ansS)	This work
pK18mobsacB-aps5	pK18mobsacB containing flanking regions of SMb20460 (dps5)	This work
pK10mobsacB-upSH1	pK18mobsacB containing flanking regions of SMb20462 (aps71)	This work
pK101100SaCB-upsE	pK18mobsacB containing flanking regions of SMb20462 (upse)	This work
pK10mobsacB-upsh2	pK18mobsacB containing marking regions of SWb20405 (upsile)	
prionousace-uxsi-	pk1811005aCB containing upstream hanking region of uxs1 and	This work
upsnz	adwinstream nanking region of <i>SWD20463</i> (<i>upsH2</i>)	This work
PRIMUUSACB-CUXK	prionousaub containing nanking regions of <i>cuxk</i>	
ph-uxs1	ph_egjp containing uxor coding sequence	
ph-uxe	pr_eyjp containing use couling sequence	
рк-ехов	pk_eyjp containing exos coding sequence	
рк- <i>арѕн</i> 1	pk_egjp containing SiVib20461 (apsH1) coding sequence	inis work

Table S2. Oligonucleotides used in this study.

Name	Sequence	Purpose		
uxe TIR-	ATATTCTAGAGGATCCTGATTAACTTTATAAGGAG			
RBS Xba Bam fwd	GAAAAACATATGGTTGCGCCACGTATCCT	Construction of pSRK-uxe and pR-uxe		
uxe Nhe rev	ATATGCTAGCTCATGACCGGACCTCCAGC			
uve -start BamHL fwd				
uxe HindIII rev		Construction of pWH844-uxe		
excB Bam fund				
exoB_bani_iwd		Construction of pWH844-exoB		
Demb20459 Hind f				
Psillb20456_fillfu_f		Construction of pSRKGm-Puxs1-egfp		
Psmb20457_Hind_f		Construction of aCDKCm Douve onfo		
Demb20457 Vba r		Construction of pskkGm-Pcuxk-egjp		
		Construction of pABC-P _{syn} -cuxR;		
Plac_Nnel_rev		pR_egjp used as template		
Smb20457 NheI fwd	ATATGCTAGCATTAAAGAGGAGAAAGGTACCATG			
		Construction of pABC-P _{syn} -cuxR		
Smb20457_Scal_rev	ATATAGTACTTCATCCTTGAACCGATTTGAGC			
exodel-1-f-Hind	CTGAAAGCTTGCAAAGGGTTACCAACCCGTC			
exodel-1-r-Xba	CTGTCTAGAGCGCCTTGAGGAAAAGGCT	Construction of pK18mobsacB-exoP-Z		
exodel2-f-Xba	CAGTCTAGATCAAGCCTTGCGGCGATCGAC			
exodel2-r-Eco	GAAGGAATTCTCCGACCTCGACGTGAAG			
uxs1-750-l-E_f	ATATGAATTCTGCGAAAGAGGCCGACGTT			
uxs1-750-l-K r	ATATGGTACCGGAATATTCCTCACACTATCTGCTA	Construction of nK18mobsacB-uxs1 and		
ux317501K_1	AC	nK18mobsacB-uxs1-ansH2		
uxs1-754-r-K_f	ATATGGTACCATGGTTGCGCCACGTATCCT			
uxs1-754-r-S_r	ATATCCCGGGTGAGCGCGACGTTCCCGC			
uxe-762-l-E_f	ATATGAATTCATCTATAACCTGGCCTGCCCG			
uxe-762-l-K_r	ATATGGTACCTCAGACCAGCTCCGCACTTT	Construction of pK19mobsacP uva		
uxe-771-r-K_f	ATATGGTACCATGACCGTCCTTTCCACCAAT	Construction of presenousace-use		
uxe-771-r-S_r	ATATCCCGGGGTATCCGGCCTGGAGAGCC			
smb20460-733-I-B_f	ATATGGATCCCGCCGATCCCGCGAAATACTA			
smb20460-733-I-X_r	ATATTCTAGATCATGACCGGACCTCCAGC	Construction of pK19mobsacP and		
smb20460-705-r-X_f	ATATTCTAGAGAACATGAGAGTGAAAGTCCCATTC	Construction of presenousace-upss		
smb20460-705-r-P_r	ATATCTGCAGGATACCCCGCGGCATATTG			
smb20461-755-I-B_f	ATATGGATCCGTTTGCAATGCCGATCATCG			
smb20461-755-l-X_r	ATATTCTAGATCTCATGTTCCTATCCCCTCTCTAA	Construction of nK18mohsocp ansH1		
smb20461-758-r-X_f	ATATTCTAGAATGAACAGGAAATCAAAGGCCA			
smb20461-758-r-P_r	ATATCTGCAGTTTCCGTAGTTCATCACCCGG			
smb20462-742-I-B_f	ATATGGATCCGAAGAGCGCTATGCGGTGG			
smb20462-742-I-X_r	ATATTCTAGATCATTGAACACCTCCAACCGCGT			
	ATATTCTAGAATGAAATCGATATATCGAGGAATAC	Construction of pK18mobsacB-apsE		
smb20462-723-r-X_t	СТ			
smb20462-723-r-P r	ATATCTGCAGCACCTCGCGCTGCTTCCTT			
smb20463-738-I-B f	ATATGGATCCGACGTCGATCTGTCGACGCT			
smb20463-738-I-X r	ATATTCTAGATCACATGCCTCCATCGGG	Construction of pK18mobsacB-apsH2		
smb20463-763-r-X f	ATATTCTAGACCACCGGCCGGGAAGGGGTT	and pK18mobsacB-uxs1-apsH2		
	ATATCTGCAGAAGGTCTGTCGCAGATACCCTTCGT			
smb20457-750-I-E f	ATATGAATTCCAGCCAGATCGAGGAGGTTGA			
	ATATGGTACCGCAACCCTCCAGCGAAATG			
	ATATGGTACCGGGTTGAGCCGCGTACCC	Construction of pK18mobsacB-cuxR		
	ATATCCCGGGAGAGGCTTGCTCTGGAGGGG			
uxs1 TIR-	ATATGGATCCTGATTAACTTTATAAGGAGGAAAA			
_ RBS_Bam_fwd	ACATATGAATTATTTTAGAAATGACTTCAGGGG	Construction of pR-uxs1		

uxs1_Nhe_rev	ATATGCTAGCTCAGACCAGCTCCGCACTTT				
exoB_TIR-	ATATGGATCCTGATTAACTTTATAAGGAGGAAAA				
RBS_Bam_fwd	ACATATGCAGAACAACAACATTCTCGTGGTC	Construction of pR-exoB			
exoB_Nhe_rev	ATATGCTAGCTCAGCCGCCCTGATTTCTG				
SMb20461_TIR-	ATATGGATCCTGATTAACTTTATAAGGAGGAAAA				
RBS_Bam_fwd	ACATATGAAAGTCCCATTCTTCGGGAA	Construction of pR-apsH1			
SMb20461_Nhe_rev	ATATGCTAGCTCATTGAACACCTCCAACCG				
dgcA_TIR-	ATATCCCGGGTGATTAACTTTATAAGGAGGAAAA				
RBS_Sma_fwd	ACATATGAAAATCTCAGGCGCCC				
dgcA-r	ATATAAGCTTTCAAGCGCTCCTGCGCTTG	Construction of pSM- <i>dgcA-cuxR</i>			
smb20457-Hind-Xba_f	ATATAAGCTTATTAAAGAGGAGAAATCTAGAATG ACGAAGGACTCCGGATCA				
smb20457 Bam rev	ATATGGATCCTCATCCTTGAACCGATTTGAGC				
PmucR500-HindIII fwd	ATATAAGCTTTATTGGCAAAAGCCGCGCAT				
PmucR0-Xbal-rev	ATATTCTAGACTCTGTCATTTCTTTCTCCTATCG	Construction of pPHU231-PmucR-egfp			
rspBupHindIII	GGCAAAGCTTGGATCTCACCATGGACTACGG	Amplification of <i>rpsB</i> upstream region for EMSA; pPHU231-P <i>rpsB-egfp</i> used as template			
PmucR330-HindIII-fwd	ATATAAGCTTGCTGCATGCCGTTAAATTTATG	Amplification of <i>mucR</i> upstream region for EMSA; pPHU231-P <i>mucR-egfp</i> used as template			
Psmb20458_Hind_f	ATATAAGCTTGCAACCCTCCAGCGAAAT	Amplification of cuxR-uxs1 intergenic			
Psmb20458 196_Hind_f	ATATAAGCTTTGCACGGCGGGATAACAAT	region and 196 bp <i>uxs1</i> upstream region for EMSA; pSRKGm-P <i>uxs1-egfp</i> used as template			
Cy3-egfp-28-rev	TGAACAGCTCCTCGCCCTT	Cy3-labeled egfp reverse primer for amplification of DNA used in EMSA			
PCR1	CGGGCCTCTTCGCTATT	standard sequencing primer 1			
PCR2	TTAGCTCACTCATTAGG	standard sequencing primer 2			
egfp_rev	ACTTCAGGGTCAGCTTGCCGTA	standard sequencing primer 3			
405	GATCCGGCAAACAAACCACC	standard sequencing primer 4			
456	CGCTCTCCTGAGTAGGACAAA	standard sequencing primer 5			

Table S	3 3.	HPLC	gradient	for	the fraction	nation	of UE)P-gl	ucos	se and	UDP	-galactose.
Solution	A:	water	Solution	B:	water/0.3%	formic	acid	(pH	9).	Solution	C:	acetonitrile.
Solution	D:	79.95%	acetonitri	le/1	9.95% water	/0.1% T	FA.					

Time (min)	Solution A (%)	Solution B (%)	Solution C (%)	Solution D (%)
0	53	42	5	0
15	50	32.5	17.5	0
15.1	5	5	90	0
22	5	5	90	0
22.1	5	0	0	95
52.1	5	0	0	95
52.2	53	42	5	0
82.2	53	42	5	0

Supplementary references

- 1. Casse F, Boucher C, Julliot J, Michel M, Dénarié J. 1979. Identification and Characterization of Large Plasmids in *Rhizobium meliloti* using Agarose Gel Electrophoresis. Microbiology 113:229-242.
- 2. Charoenpanich P, Soto MJ, Becker A, McIntosh M. 2015. Quorum sensing restrains growth and is rapidly inactivated during domestication of *Sinorhizobium meliloti*. Environ Microbiol Rep 7:373-382.
- 3. Schäper S, Krol E, Skotnicka D, Kaever V, Hilker R, Søgaard-Andersen L, Becker A. 2016. Cyclic Di-GMP Regulates Multiple Cellular Functions in the Symbiotic Alphaproteobacterium *Sinorhizobium meliloti*. J Bacteriol 198:521-535.
- 4. Grant SG, Jessee J, Bloom FR, Hanahan D. 1990. Differential plasmid rescue from transgenic mouse DNAs into *Escherichia coli* methylation-restriction mutants. Proc Natl Acad Sci U S A 87:4645-4649.
- 5. Simon R, Priefer U, Pühler A. 1983. A broad host range mobilization system for *in vivo* genetic engineering: transposon mutagenesis in gram-negative bacteria. Nature Biotechnology 1:784-791.
- 6. Döhlemann J, Wagner M, Happel C, Carillo M, Sobetzko P, Erb TJ, Thanbichler M, Becker A. 2017. A family of single copy *repABC*-type shuttle vectors stably maintained in the alpha-proteobacterium *Sinorhizobium meliloti*. ACS Synth Biol 6:968-984.
- 7. Schäfer A, Tauch A, Jäger W, Kalinowski J, Thierbach G, Pühler A. 1994. Small mobilizable multi-purpose cloning vectors derived from the *Escherichia coli* plasmids pK18 and pK19: selection of defined deletions in the chromosome of *Corynebacterium glutamicum*. Gene 145:69-73.
- 8. Torres-Quesada O, Millán V, Nisa-Martínez R, Bardou F, Crespi M, Toro N, Jiménez-Zurdo JI. 2013. Independent activity of the homologous small regulatory RNAs AbcR1 and AbcR2 in the legume symbiont *Sinorhizobium meliloti*. PLoS One 8:e68147.
- 9. Khan SR, Gaines J, Roop RM, Farrand SK. 2008. Broad-host-range expression vectors with tightly regulated promoters and their use to examine the influence of TraR and TraM expression on Ti plasmid quorum sensing. Appl Environ Microbiol 74:5053-5062.
- 10. Schirmer F, Ehrt S, Hillen W. 1997. Expression, inducer spectrum, domain structure, and function of MopR, the regulator of phenol degradation in *Acinetobacter calcoaceticus* NCIB8250. J Bacteriol 179:1329-1336.
- 11. Selbitschka W, Dresing U, Hagen M, Niemann S, Pühler A. 1995. A biological containment system for *Rhizobium meliloti* based on the use of recombination-deficient (*recA*⁻) strains. FEMS Microbiology Ecology 16:223-232.
- Becker A, Barnett MJ, Capela D, Dondrup M, Kamp PB, Krol E, Linke B, Rüberg S, Runte K, Schroeder BK, Weidner S, Yurgel SN, Batut J, Long SR, Pühler A, Goesmann A. 2009. A portal for rhizobial genomes: RhizoGATE integrates a *Sinorhizobium meliloti* genome annotation update with postgenome data. J Biotechnol 140:45-50.
- Schäper S, Steinchen W, Krol E, Altegoer F, Skotnicka D, Søgaard-Andersen L, Bange G, Becker A. 2017. AraC-like transcriptional activator CuxR binds c-di-GMP by a PilZlike mechanism to regulate extracellular polysaccharide production. Proc Natl Acad Sci U S A 114:E4822-E4831.
- 14. Sharypova LA, Niehaus K, Scheidle H, Holst O, Becker A. 2003. *Sinorhizobium meliloti acpXL* mutant lacks the C28 hydroxylated fatty acid moiety of lipid A and does not express a slow migrating form of lipopolysaccharide. J Biol Chem 278:12946-12954.
- 15. Gu X, Lee SG, Bar-Peled M. 2011. Biosynthesis of UDP-xylose and UDP-arabinose in *Sinorhizobium meliloti* 1021: first characterization of a bacterial UDP-xylose synthase, and UDP-xylose 4-epimerase. Microbiology 157:260-269.
- 16. Bahlawane C, McIntosh M, Krol E, Becker A. 2008. *Sinorhizobium meliloti* regulator MucR couples exopolysaccharide synthesis and motility. Mol Plant Microbe Interact 21:1498-1509.
- 17. Schlüter JP, Reinkensmeier J, Barnett MJ, Lang C, Krol E, Giegerich R, Long SR,

Becker A. 2013. Global mapping of transcription start sites and promoter motifs in the symbiotic α -proteobacterium *Sinorhizobium meliloti* 1021. BMC Genomics 14:156.

- Sallet E, Roux B, Sauviac L, Jardinaud MF, Carrère S, Faraut T, de Carvalho-Niebel F, Gouzy J, Gamas P, Capela D, Bruand C, Schiex T. 2013. Next-generation annotation of prokaryotic genomes with EuGene-P: application to *Sinorhizobium meliloti* 2011. DNA Res 20:339-354.
- 19. Schlüter JP, Reinkensmeier J, Daschkey S, Evguenieva-Hackenberg E, Janssen S, Jänicke S, Becker JD, Giegerich R, Becker A. 2010. A genome-wide survey of sRNAs in the symbiotic nitrogen-fixing alpha-proteobacterium *Sinorhizobium meliloti*. BMC Genomics 11:245.

Supplementary figures

Fig S1. Determination of total sugar content in *S. meliloti* **culture supernatants.** *S. melilioti* Rm2011 mutants lacking the succinoglycan biosynthesis gene cluster ($\Delta exoP$ -*Z*), carrying a plasmid insertion inside the *wgeB* gene of the galactoglucan biosynthesis gene cluster (*wgeB*⁻), containing a deletion of the *exoB* gene and/or lacking the APS biosynthesis gene cluster ($\Delta uxs1$ -*apsH2*) were used to determine total sugar contents in culture supernatants. Strains harbored either empty vector pWBT or pWBT-*pleD*-*cuxR* and were grown in liquid MM supplemented with IPTG. Error bars represent the standard deviation of three biological replicates.

Fig S2. Chromatogram of the APS analysis on a Rezex ROA-H⁺ column. An overlay of standards (glucose, xylose, and arabinose; black line) and the dialyzed APS sample (see table 1; blue line) is shown.

Fig S3. Architecture and homology of the *aps* gene cluster. Homology of the *aps* gene cluster from *S. meliloti* to gene clusters in species identified with BlastN. Percent numbers indicate nucleotide sequence identities between *S. meliloti* genes and the corresponding genes (colour-coded) from different rhizobial species. Homologs of the *S. meliloti cuxR* gene, encoding AraC-type transcriptional regulators encoded upstream of the *aps* gene clusters, are also shown.

Fig S4. Complementation of *S. meliloti* deletion strains. *S. meliloti* Rm2011 wild type and indicated deletion strains, ectopically expressing *pleD* and *cuxR* from an IPTG-inducible promoter and harboring either empty vector pR_*egfp*, pR-*uxe*, pR-*exoB*, pR-*uxs1* or pR-*apsH1*, grown on MM agar supplemented with Congo red and IPTG.

Fig S6. *uxe* complements defects in LPS structure and plant nodulation of a *S. meliloti* exoB mutant. (A) Silver-stained LPS separated in a 16% acrylamide gel and extracted from *S. meliloti* Rm2011 and $\Delta exoB$, both either harboring empty vector pSRK or constitutively expressing *uxe* from pSRK-*uxe*. Arrows indicate the slow migrating and fast migrating forms of *S. meliloti* LPS (corresponding to LPS profiles in 14). $\Delta exoB$ manifested only the fast migrating band of LPS. (B) Total number of nodules on 48 *M. sativa* roots counted in one-day intervals after inoculation and for each bacterial strain described in panel A. dpi, days post-inoculation.

Fig S7. Stimulated APS production does not suppress symbiotic phenotype of a succinoglycan-deficient *S. meliloti* mutant. (A) Plant shoots and roots of *M. sativa* inoculated with Rm2011 wild type and *exoP-Z* deletion strains, carrying either empty vector pSM10 or pSM-*dgcA-cuxR*. Congo red- and Calcofluor-stained macro-colonies of these strains grown on TY agar and LB agar, respectively, are shown in addition. NI, not inoculated. Bars, 1 cm.

Fig S8. SDS-PAGE analysis of purified proteins. His_6 -ExoB, His_6 -Uxe and His_6 -MucR (respective calculated molecular weights: 37.4, 36.6 and 17.1 kDa) elution fractions resolved by SDS-PAGE and stained with Coomassie Brilliant Blue. Indicated fractions were pooled and used for *in vitro* reactions. M, protein size marker.

Fig S9. Uxe UDP-glucose 4-epimerase activity in vitro under various reaction conditions. (A) HPLC profiles of UDP-sugars after incubation of 1 mM of either UDP-glucose or UDP-galactose with 10 μ M of either His₆-Uxe or His₆-ExoB in presence or absence of 0.5 mM NAD⁺ for 120 min at 30°C. (B) HPLC profiles of UDP-sugars after incubation of 0.5 mM UDP-glucose with 0.5 μ M of either His₆-Uxe or His₆-ExoB and in presence of 0.5 mM NAD⁺ for 15 min at 37°C (corresponding to reaction conditions in 15). His₆-ExoB served as positive control. UDP-glucose and UDP-galactose standards were used at 0.1 mM.

Fig S10. *In silico*-deduced binding motif of MucR. (A) Multiple sequence alignment of previously identified MucR binding sites (16) and a putative MucR binding site identified in the *cuxR-uxs1* intergenic region. DNA motif was generated with MEME. Numbers refer to the distance in nucleotides to the start codon of the corresponding genes. (B) Rm2011 genomic sequence between divergently transcribed *cuxR* and *uxs1* with indicated translational start sites, putative transcriptional start sites (TSS), a direct repeat element identified as CuxR binding site (underlined; 13) and the putative MucR binding site (shaded in blue). 1, *cuxR* translational start site. 2, *cuxR* putative TSS (17). 3, *cuxR* putative TSS (18). 4, *uxs1* putative TSS (19). 5, *uxs1* putative TSS (18). 6, *uxs1* translational start site.