						-	
$\Lambda f = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1$	1 .			· · · · · · · · · · · · · · · · · · ·		- 6 +	
Willitimedia A	nnendix I.	Bariatric surge	rv smnies	INVOIVINO	anaivses	OT TISSUP	ninnsies
munituni	ppenuin 1.	Duriuuric Surge	i y studies	mouving	unuryses	or hostic	Diopsics.
	11	0					1

Study	Comparison	Tissue	Time point	Key message
	groups		(postoperatively	
)	
Ranlov et al,	Before vs after	Liver	12 months	Occurrence of steatosis fell
1990 [23]	RYGB			from 73% to 40%
				postoperatively, with
				concurrent improvements in
				inflammatory and
				granulomatous changes. No
				patients in the study had
				evidence of liver fibrosis.
Friedman et	Before vs after	Skeletal muscle	15-24 months	Glucose disposal rate, as a
al, 1992 [24]	RYGB			measure of whole-body
				insulin sensitivity, increased
				in all patients after RYGB.
				Hepatic insulin sensitivity
				was not assessed. Ex-vivo
				study of muscle biopsies
				revealed increased insulin-
				induced 2-deoxyglucose
				transport after surgery.
De Almeida	Patients with	Liver	23.5±8.4 months	Steatosis, necroinflammatory
et al, 2006	NASH, before			activity, and hepatic fibrosis
[25]	vs after RYGB			were improved after surgery.
				NAFLD resolved in 93.7% of
				patients.
Klein et al,	Before vs after	Liver	1 year	RYGB reduced hepatic
2006 [26]	RYGB			steatosis but did not change
				assessments of inflammation
				and fibrosis. However,
				expression of genes
				regulating hepatic

				fibrogenesis and
				inflammation were reduced.
Park et al,	Before vs after	Skeletal muscle	1 year	After RYGB, muscle
2006 [22]	RYGB			exhibited differential
				expression of genes linked to
				processes important for
				modulating insulin signaling
				and triglyceride synthesis.
Furuya et al,	Patients with	Liver	2 years	NAFLD including
2007 [27]	NAFLD,			steatohepatitis improved by 2
	before vs after			years after RYGB. Steatosis
	RYGB			resolved in 84% and fibrosis
				in 75% of patients.
Gastaldi et	Before vs after	Skeletal muscle	3 months and 1	Expression of PGC1 α and its
al, 2007 [28]	RYGB		year	target mitofusin-2 (MFN2) in
				skeletal muscle were
				increased at both
				postoperative follow-up
				visits. Glucose disposal rate
				increased sequentially over
				the follow-up period, and
				MFN2 expression correlated
				positively with insulin
				sensitivity.
Sainsbury et	Before vs after	Rectum	6 months	Rectal tissue from obese
al, 2008 [29]	RYGB, vs lean			patients exhibited increased
	controls			mitosis, crypt area, and crypt
				branching as compared with
				lean controls, but mitosis was
				further increased after RYGB,
				with reduction in epithelial
				cell apoptosis.
Gregor et al,	Before vs after	Subcutaneous	1 year	Markers of ER stress in

2009 [30]	RYGB	adipose tissue,		adipose tissue and liver
		liver		biopsies were reduced after
				RYGB. Clamp study of these
				patients showed that both
				glucose disposal and hepatic
				insulin sensitivity index
				improved after surgery, with a
				larger relative effect of the
				former.
Savu et al,	Before vs after	Subcutaneous	2-5 months and	After 20% postoperative
2009 [31]	RYGB	adipose tissue	during weight	weight loss, adipose
			maintenance	expression of adiponectin and
				the adiponectin receptors,
				AdipoR1 and AdipoR2, were
				increased and remained
				increased with no further
				change at a later time point
				defined by steady-state
				weight loss achieved (defined
				as <2% change in body
				weight in a 3-month period).
Spak et al,	Before vs after	Jejunum	6-8 months	Protein expression of
2010 [5]	RYGB (some			NADPH-oxidase,
	after			myeloperoxidase, and the Ang
	conversion			II type 1 receptor were
	from VBG)			increased in jejunum after
				surgery.
Kant et al,	Before vs after	Rectum	3 years	Rectal epithelial cell mitosis
2011 [32]	RYGB			and crypt size were increased
				3 years after RYGB as
				compared with preoperative
				biopsies
Tamboli et	Before vs after	Skeletal muscle	6 and 12 months	Omentectomy in association

al, 2011 [33]	RYGB, ±			with RYGB resulted in a
	omentectomy			greater reduction in
				expression of genes
				associated with muscle
				inflammation, as compared
				with RYGB alone. Genes
				driving protein turnover were
				altered in both groups
				postoperatively.
Bradley et	Before vs after	Subcutaneous	After 20%	Adipose tissue expression of
al, 2012 [34]	RYGB	adipose tissue,	weight loss	proinflammatory macrophage
		skeletal muscle	achieved	cell surface markers was
				reduced after RYGB, and the
				expression of the anti-
				inflammatory cytokine, IL-10,
				was increased. Weight loss
				did not reduce
				intramyocellular DAG or
				ceramide content, suggesting
				that these metabolites do not
				mediate the improvements in
				peripheral insulin sensitivity
				observed in this study using
				hyperinsulinemic-euglycemic
				clamp.
Ahrens et al,	Before vs after	Liver	5-9 months	NAFLD was associated with
2013 [21]	RYGB, vs lean			a signature methylation
	controls			pattern in liver tissue; this
				was partially reversed after
				RYGB.
Barres et al,	Before vs after	Skeletal muscle	6 months	Obesity was associated with a
2013 [35]	RYGB, vs lean			specific gene expression and
	controls			methylation pattern in skeletal

				muscle, and this was
				normalized after RYGB.
Kong et al,	Before vs after	Subcutaneous	3 months	This study correlated changes
2013 [36]	RYGB	adipose tissue		in the gut microbial profile
				after RYGB with changes in
				WAT gene expression, finding
				that variations in bacterial
				genera correlated with WAT
				gene expression changes.
Andersson	Before vs after	Subcutaneous	2 years	Reduction in abdominal
et al, 2014	RYGB	adipose tissue		subcutaneous fat cell volume
[37]				correlates more strongly with
				improvements to insulin
				sensitivity than to fat mass.
Ferrer et al,	Before vs after	Subcutaneous	6 and 12 months	Activity of lipoprotein lipase
2014 [38]	RYGB, vs lean	adipose tissue		and hormone sensitive lipase
	controls			in subcutaneous adipose
				tissue were reduced after
				RYGB, approximating that of
				lean controls by 12 months
				postoperatively.
Marambio et	Before vs after	Proximal	6 months	Immunohistochemistry
al, 2014 [39]	RYGB	jejunum		showed increased staining for
				the iron transported DMT1 in
				enterocytes located at the tips
				of villi but less staining
				overall.
Albers et al,	Before vs after	Subcutaneous	1 week, 3	Insulin-induced
2015 [40]	RYGB	adipose tissue,	months, 12	phosphorylation of Akt was
		skeletal muscle	months	increased in both muscle and
				adipose 12 months after
				surgery, among other
				molecular changes interpreted

				to signify improved insulin
				sensitivity in both tissues.
Casselbrant	Before vs after	Jejunum	6-8 months	Jejunal mucosal surface area
et al, 2015	RYGB			was increased after surgery.
[41]				Increased protein-level
				expression of claudin-3 and
				claudin-4 and reduced
				expression of occludin and
				zona occludens-1 might
				signify reduced paracellular
				permeability.
Chen et al,	Before vs after	Skeletal muscle	6.8±1.2 months	Insulin-induced
2015 [42]	RYGB, vs lean			phosphorylation of skeletal
	controls			muscle Akt at Thr308 and
				Ser473 was enhanced after
				RYGB and normalized
				relative to lean controls.
Coen et al,	Before vs after	Skeletal muscle	1-3 months, 7-9	In contrast to education alone,
2015 [43]	RYGB; before		months	exercise increased
	vs after			mitochondrial respiration in
	intensive			muscle and reduced levels of
	exercise/health			certain sphingolipids. This
	counseling			was associated with improved
	program vs			whole-body insulin sensitivity
	health			as assessed by IV GTT.
	education			
	counseling			
	only			
Nascimento	Before vs after	Skeletal muscle	6 months	Myoblasts derived from
et al, 2015	RYGB			muscle biopsies exhibited
[44]				increased expression of
				myogenic markers. Study of
				cultured cells derived from

				these biopsies showed
				increased glycogen synthesis
				and increased insulin-
				stimulated phosphorylation of
				Akt and PKB, as markers of
				muscle insulin sensitivity.
Nergard et	Before vs after	Proximal	12 months	Density of GLP-1, GIP, and
al, 2015 [45]	RYGB	jejunum,		PYY cells increased
		stomach/pouch		postoperatively. There was no
				change in villi length or in the
				density of other
				enteroendocrine cells
				including those expressing
				ghrelin, CCK, neurotensin,
				secretin, or serotonin. Neither
				mucosal height nor densities
				of ghrelin, histamine,
				serotonin, and somatostatin-
				producing cells were altered
				by RYGB.
Su et al,	Before vs after	Subcutaneous	1 year	Adipose tissue levels of
2015 [46]	RYGB, vs lean	adipose tissue		monomethyl branched-chain
	controls			amino acids were lower in
				obese vs lean patients but
				increased substantially after
				RYGB. This was associated
				with improved glucose
				disposal during the clamp.
Campbell et	Before vs after	Skeletal muscle	3 months	Obesity affected proteomic
al, 2016 [47]	RYGB, vs lean			and gene expression patterns
	controls			in muscle; this was partially
				reversed by RYGB.
González-	Before vs after	Subcutaneous	2 years	Weight loss was stable by 2

Plaza et al,	RYGB	adipose tissue		years postoperatively.
2016 [48]				Adipose gene expression
				revealed an induction, relative
				to the preoperative time point,
				in genes involved in
				regulation of lipid metabolism
				and downregulation of
				immune/inflammatory
				processes.
Severino et	Before vs after	Skeletal muscle	4 weeks	Insulin sensitivity improved
al, 2016 [49]	RYGB			after RYGB as compared with
				preoperatively but was not
				normalized as compared with
				healthy control patients.
				Study of muscle biopsies
				demonstrated
				hyperphosphorylation of
				pAKT on Ser473 residues
				preoperatively as compared
				with controls; this normalized
				after surgery and is
				hypothesized to underlie the
				improved insulin resistance
				observed in this study.
Hoffstedt et	Before vs after	Subcutaneous	2 and 5 years	Adipose cell size and lipolysis
al, 2017 [50]	RYGB	adipose tissue		decreased by the 2-year
				postoperative time point, with
				no change in adipocyte
				number. By 5 years after
				surgery, average BMI was
				higher and adipocytes were
				more abundant but unchanged
				in size. Adipose-secreted
				adiponectin levels were

				increased 2 years after
				surgery and did not change
				between the 2- and 5-year
				postoperative time points.
Sala et al,	Before vs after	Duodenum,	3 months	Expression of regenerating
2017 [51]	RYGB	jejunum, and		pancreatic islet-derived
		ileum		protein-encoding genes was
				increased in the intestine after
				RYGB. This phenomenon is
				postulated to contribute to
				T2D remission after surgery
Hinkley et	Before vs after	Skeletal muscle	1 month	After RYGB, contraction
al, 2017 [52]	RYGB			enhanced insulin-stimulated
				glycogen synthesis and basal
				glucose oxidation in skeletal
				muscle
Hinkley et	Before vs after	Skeletal muscle	1 and 7 months	Differentiated myotubes
al, 2017 [53]	RYGB			developed from muscle
				biopsies demonstrated
				increased insulin-stimulated
				glycogen synthesis and
				glucose oxidation after
				surgery. In addition, muscle
				glycogen levels were lower
				and phosphorylation of acetyl
				coA carboxylase 2 was
				increased in muscle 1 month
				after surgery, whereas both
				returned to baseline levels by
				7 months postoperatively.
				$PGC1\alpha$ protein content was
				increased in myotubes 7
				months after RYGB.
1	1			

Day et al,	Before vs after	Skeletal muscle	3 months	Reduced methylation of the
2017 [54]	RYGB			SORBS3 gene promotor was
				demonstrated, in tandem with
				increased expression of the
				transcript and altered reporter
				gene expression in vitro.
				Changes in SORBS3
				expression correlated with
				clinical outcomes including
				obesity measures and fasting
				insulin levels in patients.
Parker et al,	Before vs after	Liver	Not specified;	Nine of 13 patients with fatty
2017 [55]	RYGB		for larger study,	liver disease before RYGB
			average of	exhibited normalization after
			487±86 days	weight loss. The other 4
				patients exhibited
				stabilization or improvement
				in histology.
Afshar et al,	Before vs after	Rectal mucosa	Median of 6.5	RYGB did not increase
2018 [56]	RYGB		months	expression of
				proinflammatory genes in
				rectal mucosa, and COX-1
				expression was reduced.
				Additionally, the number of
				mitoses per crypt was reduced
				in rectal biopsies after
				surgery.
Fonseca et	Before vs after	Stomach	3 months	Ghrelin gene expression was
al, 2018 [57]	RYGB			increased in stomach tissue
				after RYGB, without
				increasing plasma ghrelin
				levels.
Schwenger	Before vs after	Liver	12 months	RYGB improved histologic

et al, 2018	RYGB			evidence of NAFLD.
[58]				
Von	Before vs after	Liver	Median of 192	Retrospective analysis of liver
Schönfels et	RYGB		days	biopsy samples collected in
al, 2018 [59]				patients before and after
				RYGB demonstrated
				improvement in NAFLD
				score based on liver histology.

References:

- **23.** Ranlov I, Hardt F. Regression of liver steatosis following gastroplasty or gastric bypass for morbid obesity. *Digestion*. 1990;47(4):208-214.
- 24. Friedman JE, Dohm GL, Leggett-Frazier N, et al. Restoration of insulin responsiveness in skeletal muscle of morbidly obese patients after weight loss. Effect on muscle glucose transport and glucose transporter GLUT4. *The Journal of clinical investigation*. Feb 1992;89(2):701-705.
- **25.** de Almeida SR, Rocha PR, Sanches MD, et al. Roux-en-Y gastric bypass improves the nonalcoholic steatohepatitis (NASH) of morbid obesity. *Obesity surgery*. Mar 2006;16(3):270-278.
- **26.** Klein S, Mittendorfer B, Eagon JC, et al. Gastric bypass surgery improves metabolic and hepatic abnormalities associated with nonalcoholic fatty liver disease. *Gastroenterology*. May 2006;130(6):1564-1572.
- **22.** Park JJ, Berggren JR, Hulver MW, Houmard JA, Hoffman EP. GRB14, GPD1, and GDF8 as potential network collaborators in weight loss-induced improvements in insulin action in human skeletal muscle. *Physiological genomics*. Oct 11 2006;27(2):114-121.
- **27.** Furuya CK, Jr., de Oliveira CP, de Mello ES, et al. Effects of bariatric surgery on nonalcoholic fatty liver disease: preliminary findings after 2 years. *Journal of gastroenterology and hepatology*. Apr 2007;22(4):510-514.
- **28.** Gastaldi G, Russell A, Golay A, et al. Upregulation of peroxisome proliferator-activated receptor gamma coactivator gene (PGC1A) during weight loss is related to insulin sensitivity but not to energy expenditure. *Diabetologia*. Nov 2007;50(11):2348-2355.
- **29.** Sainsbury A, Goodlad RA, Perry SL, Pollard SG, Robins GG, Hull MA. Increased colorectal epithelial cell proliferation and crypt fission associated with obesity and roux-en-Y gastric bypass. *Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology.* Jun 2008;17(6):1401-1410.
- **30.** Gregor MF, Yang L, Fabbrini E, et al. Endoplasmic reticulum stress is reduced in tissues of obese subjects after weight loss. *Diabetes*. Mar 2009;58(3):693-700.
- **31.** Savu MK, Phillips SA, Oh DK, et al. Response of adiponectin and its receptors to changes in metabolic state after gastric bypass surgery: dissociation between adipose tissue expression and circulating levels. *Surgery for obesity and related diseases : official journal of the American Society for Bariatric Surgery*. Mar-Apr 2009;5(2):172-180.
- **5.** Spak E, Bjorklund P, Helander HF, et al. Changes in the mucosa of the Roux-limb after gastric bypass surgery. *Histopathology*. Nov 2010;57(5):680-688.

- **32.** Kant P, Sainsbury A, Reed KR, et al. Rectal epithelial cell mitosis and expression of macrophage migration inhibitory factor are increased 3 years after Roux-en-Y gastric bypass (RYGB) for morbid obesity: implications for long-term neoplastic risk following RYGB. *Gut.* Jul 2011;60(7):893-901.
- **33.** Tamboli RA, Hajri T, Jiang A, et al. Reduction in inflammatory gene expression in skeletal muscle from Roux-en-Y gastric bypass patients randomized to omentectomy. *PloS one*. 2011;6(12):e28577.
- **34.** Bradley D, Conte C, Mittendorfer B, et al. Gastric bypass and banding equally improve insulin sensitivity and beta cell function. *The Journal of clinical investigation*. Dec 2012;122(12):4667-4674.
- **21.** Ahrens M, Ammerpohl O, von Schonfels W, et al. DNA methylation analysis in nonalcoholic fatty liver disease suggests distinct disease-specific and remodeling signatures after bariatric surgery. *Cell metabolism.* Aug 06 2013;18(2):296-302.
- **35.** Barres R, Kirchner H, Rasmussen M, et al. Weight loss after gastric bypass surgery in human obesity remodels promoter methylation. *Cell reports*. Apr 25 2013;3(4):1020-1027.
- **36.** Kong LC, Tap J, Aron-Wisnewsky J, et al. Gut microbiota after gastric bypass in human obesity: increased richness and associations of bacterial genera with adipose tissue genes. *The American journal of clinical nutrition*. Jul 2013;98(1):16-24.
- **37.** Andersson DP, Eriksson Hogling D, Thorell A, et al. Changes in subcutaneous fat cell volume and insulin sensitivity after weight loss. *Diabetes care*. Jul 2014;37(7):1831-1836.
- **38.** Ferrer R, Pardina E, Rossell J, et al. Decreased lipases and fatty acid and glycerol transporter could explain reduced fat in diabetic morbidly obese. *Obesity*. Nov 2014;22(11):2379-2387.
- **39.** Marambio A, Watkins G, Castro F, et al. Changes in iron transporter divalent metal transporter 1 in proximal jejunum after gastric bypass. *World journal of gastroenterology*. Jun 07 2014;20(21):6534-6540.
- **40.** Albers PH, Bojsen-Moller KN, Dirksen C, et al. Enhanced insulin signaling in human skeletal muscle and adipose tissue following gastric bypass surgery. *American journal of physiology. Regulatory, integrative and comparative physiology.* Sep 2015;309(5):R510-524.
- **41.** Casselbrant A, Elias E, Fandriks L, Wallenius V. Expression of tight-junction proteins in human proximal small intestinal mucosa before and after Roux-en-Y gastric bypass surgery. *Surgery for obesity and related diseases : official journal of the American Society for Bariatric Surgery*. Jan-Feb 2015;11(1):45-53.
- **42.** Chen MZ, Hudson CA, Vincent EE, et al. Bariatric surgery in morbidly obese insulin resistant humans normalises insulin signalling but not insulin-stimulated glucose disposal. *PloS one*. 2015;10(4):e0120084.
- **43.** Coen PM, Menshikova EV, Distefano G, et al. Exercise and Weight Loss Improve Muscle Mitochondrial Respiration, Lipid Partitioning, and Insulin Sensitivity After Gastric Bypass Surgery. *Diabetes*. Nov 2015;64(11):3737-3750.
- **44.** Nascimento EB, Riedl I, Jiang LQ, Kulkarni SS, Naslund E, Krook A. Enhanced glucose metabolism in cultured human skeletal muscle after Roux-en-Y gastric bypass surgery. *Surgery for obesity and related diseases : official journal of the American Society for Bariatric Surgery*. May-Jun 2015;11(3):592-601.
- **45.** Nergard BJ, Lindqvist A, Gislason HG, et al. Mucosal glucagon-like peptide-1 and glucosedependent insulinotropic polypeptide cell numbers in the super-obese human foregut after gastric bypass. Surgery for obesity and related diseases : official journal of the American Society for Bariatric Surgery. Nov-Dec 2015;11(6):1237-1246.
- **46.** Su X, Magkos F, Zhou D, et al. Adipose tissue monomethyl branched-chain fatty acids and insulin sensitivity: Effects of obesity and weight loss. *Obesity*. Feb 2015;23(2):329-334.

- **47.** Campbell LE, Langlais PR, Day SE, et al. Identification of Novel Changes in Human Skeletal Muscle Proteome After Roux-en-Y Gastric Bypass Surgery. *Diabetes*. Sep 2016;65(9):2724-2731.
- **48.** Gonzalez-Plaza JJ, Gutierrez-Repiso C, Garcia-Serrano S, et al. Effect of Roux-en-Y gastric bypassinduced weight loss on the transcriptomic profiling of subcutaneous adipose tissue. *Surgery for obesity and related diseases : official journal of the American Society for Bariatric Surgery.* Feb 2016;12(2):257-263.
- **49.** Severino A, Castagneto-Gissey L, Raffaelli M, et al. Early effect of Roux-en-Y gastric bypass on insulin sensitivity and signaling. *Surgery for obesity and related diseases : official journal of the American Society for Bariatric Surgery*. Jan 2016;12(1):42-47.
- **50.** Hoffstedt J, Andersson DP, Eriksson Hogling D, et al. Long-term Protective Changes in Adipose Tissue After Gastric Bypass. *Diabetes care*. Jan 2017;40(1):77-84.
- **51.** Sala P, Torrinhas RS, Fonseca DC, Heymsfield S, Giannella-Neto D, Waitzberg DL. Type 2 Diabetes Remission After Roux-en-Y Gastric Bypass: Evidence for Increased Expression of Jejunal Genes Encoding Regenerating Pancreatic Islet-Derived Proteins as a Potential Mechanism. *Obesity surgery*. Apr 2017;27(4):1123-1127.
- **52.** Hinkley JM, Zou K, Park S, Turner K, Zheng D, Houmard JA. Roux-en-Y gastric bypass surgery enhances contraction-mediated glucose metabolism in primary human myotubes. *American journal of physiology. Endocrinology and metabolism.* Aug 1 2017;313(2):E195-E202.
- **53.** Hinkley JM, Zou K, Park S, Zheng D, Dohm GL, Houmard JA. Differential acute and chronic responses in insulin action in cultured myotubes following from nondiabetic severely obese humans following gastric bypass surgery. *Surgery for Obesity and Related Diseases*. 2017;13(11):1853-1862.
- **54.** Day SE, Garcia LA, Coletta RL, et al. Alterations of sorbin and SH3 domain containing 3 (SORBS3) in human skeletal muscle following Roux-en-Y gastric bypass surgery. *Clinical epigenetics*. 2017;9:96.
- **55.** Parker BM, Wu J, You J, et al. Reversal of fibrosis in patients with nonalcoholic steatohepatosis after gastric bypass surgery. *BMC obesity*. 2017;4:32.
- **56.** Afshar S, Malcomson F, Kelly SB, Seymour K, Woodcock S, Mathers JC. Biomarkers of Colorectal Cancer Risk Decrease 6 months After Roux-en-Y Gastric Bypass Surgery. *Obesity surgery*. Apr 2018;28(4):945-954.
- **57.** Fonseca DC, Sala P, Singer J, Singer P, Torrinhas RS, Waitzberg DL. Upregulation of Ghrelin Gene Expression in the Excluded Stomach of Obese Women with Type 2 Diabetes After Roux-en-Y Gastric Bypass in the SURMetaGIT Study. *Obesity surgery*. Mar 2018;28(3):877-880.
- **59.** Schwenger KJP, Fischer SE, Jackson T, Okrainec A, Allard JP. In nonalcoholic fatty liver disease, Roux-en-Y gastric bypass improves liver histology while persistent disease is associated with lower improvements in waist circumference and glycemic control. *Surgery for obesity and related diseases : official journal of the American Society for Bariatric Surgery.* Sep 2018;14(9):1233-1239.
- **59.** von Schonfels W, Beckmann JH, Ahrens M, et al. Histologic improvement of NAFLD in patients with obesity after bariatric surgery based on standardized NAS (NAFLD activity score). *Surgery for obesity and related diseases : official journal of the American Society for Bariatric Surgery*. Oct 2018;14(10):1607-1616.