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The outline of this supplement is as follows. First we recap the model, introducing notation that will be
needed. Next we prove versions of Theorems 1 and 3 from the main text, which do not require G to be
acyclic. After this we specialise to the acyclic case. Staying with the acyclic case we prove Theorem 2 from
the main text. Finally, how the path distribution is altered when cycles are permitted is considered.

S1 Model recap

We recap our framework. Our model is a specific form of multitype branching process [1] in which each
population will evolve according to a Markovian linear birth-death process with transitions. We will assume
each population is comprised of cells. As a conceptual framework we associate the multitype branching
process with a simple, finite, rooted, directed, graph G = (V,E) containing N vertices (N = |V |). Labels of
the vertices take values in {1, . . . , N} and E is a subset of the set of ordered pairs {(i, j) : i, j ∈ V, i 6= j}.
We shall often refer to vertex 1 as the root and vertex N as the target. Each vertex is reachable from the
root and the target is reachable from any other vertex. We further assume the root is a source vertex and the
target vertex is a sink. Letting the set of incoming neighbours for vertex i be N−(i) = {k ∈ V : (k, i) ∈ E}
and the set of outgoing neighbours N+(i) = {k ∈ V : (i, k) ∈ E}, the previous assumption is
N−(1) = N+(N) = ∅. Each type in the branching process is uniquely mapped to a vertex, and so the
number of types is N . Hence any cell may be described by its type or the vertex associated to that type.

Take any cell at vertex x. We assume this cell divides (replaced by two identical copies) at rate α(x), dies
(removed from system) at rate β(x) and transitions to a cell at vertex y (replaced by an identical copy and a
cell at vertex y) at rate ν(x, y) if edge (x, y) is contained in E. The growth rate of cells at vertex x will be
denoted λ(x) = α(x)− β(x). The parameters associated with the vertex 1 population feature prominently
and so for convenience we let α = α(1), β = β(1) and λ = λ(1). All cells are independent. We will focus on
the setting where the vertex 1 population is the most fit and has positive growth rate. Therefore, we
henceforth assume that λ > 0 and for 2 ≤ x ≤ N − 1, λ(x) < λ. We do not specify the relative fitness of the
vertex N population. The cell level dynamics may summarised as

(x)→


(x), (x) rate α(x)

∅ rate β(x)

(x), (y) rate ν(x, y) if (x, y) ∈ E
(S1)

where (x) represents a cell at vertex x and ∅ symbolises a dead cell. At a population level, the number of
cells at vertex x at time t will be denoted Zx(t). We shall always assume Zx(0) = zδx,1, where δx,y is the
Kronecker delta function. The population growth of the initial and intermediate vertices is crucial and so the
notation Z(t) = (Zx(t))1≤x≤N−1 will be used.
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We also recap some relevant definitions from the main text that will be used repeatedly. First, the target
hitting time is defined to be

T = inf{t ≥ 0 : ZN (t) > 0}. (S2)

Now let the set of paths between the root and any vertex x ∈ V be be denoted P1,x. Then we define the
weight of the path p ∈ P1,x to be

w(p) = ν(p1, p2)

l∏
i=2

ν(pi, pi+1)

λ− λ(pi)
, (S3)

Throughout the empty product is set to 1. Further, we let the total weight of the the vertex x be

φx =
∑

p∈P1,x

w(p). (S4)

S2 Population growth

In this section we prove Theorem 3 from the main text, but G is not assumed to be acyclic. Specialising to
the acyclic case is in Section S4.

As the root vertex is a source, and hence no type transitions into vertex 1 cells, Z1(t) follows a linear
birth-death process. Its asymptotic behaviour is described by the following classic result [1, 3].

Lemma S1.
lim
t→∞

Z1(t)e−λt = W a.s. (S5)

Here W is distributed as the sum of K independent exponential random variables with parameter λ/α, where
K is binomial with z trials and success probability λ/α.

W , as given in the above theorem, is positive if and only if the vertex 1 population survives (almost
surely). It will be convenient to define this event and so we let

S1 = {Z1(t) > 0 for all t ≥ 0}. (S6)

From the distribution of W , in particular using that P(S1) = P(W > 0) = P(K > 0) with K as in Lemma S1,
we immediately have

P(S1) = 1− (β/α)z. (S7)

To obtain a similar result to Lemma S1 for Z(t), we recall the N − 1×N − 1 matrix A from the Extension
section of the main text, with entries

aij =


λ(i) j = i

ν(j, i) if (j, i) ∈ E
0 otherwise.

(S8)

Note that the off diagonal elements of the transpose of A are positive whenever the corresponding element of
the adjacency matrix of G is one.

We will be using a result from [5] which holds when the largest real eigenvalue of A, λ∗, is simple (i.e. has
algebraic multiplicity 1) and equal to λ. Below we give two sufficient conditions for this to be true. The
second is motivated by applications when typically all transition rates are small.

Lemma S2. Two sufficient conditions such that λ∗ = λ and is simple are: 1) G is acyclic. 2) For all
2 ≤ i ≤ N − 1, λ(i) +

∑
k∈N−(i) ν(k, i) < λ.
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Proof. 1) As G is directed and acyclic, a relabelling of the vertices exists (often called the topological sorting,
see [2] chapter 22.4) such that the underlying adjacency matrix of the relabelled graph is upper triangular.
We use this relabelling with vertex 1 as first in the labelling, π. Thus π is a permutation of {1, . . . , N} with
π(1) = 1. The permutation matrix associated with π and its transpose are

P1 =

e
T
π(1)

...
eTπ(n)

 , PT
1 =

[
eπ(1), · · · , eπ(N)

]
. (S9)

Under π we have the new matrix
A′ = P1AP

−1
1 . (S10)

Due to the relation between the adjaceny matrix of G and A, we see A′ is lower triangular and has the λ(i)
as diagonal elements. Thus λ is the largest eigenvalue of A′. As A and A′ are similar matrices, and hence
share eigenvalues, we can conclude the statement.

2) By considering the left eigenvector eT1 , λ is indeed an eigenvalue. We now demonstrate all other
eigenvalues have real part smaller than λ, which implies λ is simple. Observe that the assumed condition
implies the bound on the row sums

N−1∑
j=1

ai,j < λ. (S11)

As A is reducible (due to the root being a source vertex) there exists a permutation matrix P2 such that

P2AP
−1
2 =


λ

R2,1 R2,2 0
...

. . .

RM,1 . . . RM,M

 (S12)

with each submatrix Ri,i square and irreducible and 2 ≤M ≤ N − 1 (see [7] section 2.3). The eigenvalues of

A comprise λ and the eigenvalues of the Ri,i. For any of the Ri,i let r
(i)
j be sum of the jth row of Ri,i. By

Gershgorin’s Disc Theorem ( [7] Theorem 1.5) the real part of the eigenvalues of Ri,i are bounded by

maxj{r(i)j }. Further, the bound (S11) is preserved under permutations and so each r
(i)
j < λ. As this holds

for each Ri,i the claim is shown.

Henceforth we assume either of the conditions given in Lemma S2 hold and thus λ∗ = λ and is simple.
Due to this assumption, results of [5] show that the vertex 1 cells drives the entire population growth. To
state this result, we introduce the vector ψ with

ψi = α(i) + β(i) +
∑

k∈N+(i)

ν(i, k). (S13)

Now let ũ, ṽ be the left and right eigenvectors of A corresponding to λ, scaled such that

ψ · ṽ = 1, ũ · ṽ = 1. (S14)

Note, from the structure of A, ũi > 0 if i = 1 and 0 otherwise. Further let

Φ = ũ1ṽ (S15)

Then the following result, which is the more general form of Theorem 3 in the main text, holds.

3



Theorem S1. With W as in Lemma S1,

lim
t→∞

e−λtZ(t) = W (Φx)N−1x=1 a.s. (S16)

Proof. We demonstrate how to apply the result in [5] to our setting. From Theorem 3.1 in [5], with
probability one

lim
t→∞

e−λtZ(t) = Ŵ ṽ (S17)

where Ŵ is a non-negative random variable, with as yet unknown distribution. However from Lemma S1
almost surely e−λtZ1(t)→W , with the distribution of W given in the lemma. This implies
Ŵ = W/ṽ1 = ũ1W with the last equality following from (S14) and that only the first entry of ũ is
positive.

The proof of Theorem S1 indicates our primary reason for taking the root vertex to be a source (no
incoming edges). If transitions were permitted into the vertex 1 population, but still λ∗ = λ and is simple,
then (S17) still applies but we do not know the distribution of Ŵ . Additionally, regardless of whether the
root is a source, if we consider the the more general offspring distribution discussed in the Extensions section
of the main text, we similarly would have no relevant knowledge of the distribution of Ŵ (the Laplace
transform of Ŵ is known to satisfy an implicit integral equation [1], but we cannot see how to use this
information here).

S3 Time until target vertex is populated: general case

We now turn our attention to T , the time at which the target population arises, as defined in (S2). So that
we can control all target seeding transition rates we let

ν∗ = max
i∈N−(N)

ν(i,N) (S18)

i.e. the largest of the transition rates into the target. We further give the definition of µ in this more general
setting as

µ =
1

λ
log

λ2

α
∑
i∈N−(N) ν(i,N)Φi

. (S19)

Then the following holds.

Theorem S2. Let W be as in Theorem S1, then with probability one

lim
ν∗→0

P(λ(T − µ) > t|(Z(t))t≥0)) = exp
(
−etWλ/α

)
. (S20)

It follows that

lim
ν∗→0

P(λ(T − µ) > t) =

(
λ/α

1 + et
+ β/α

)z
(S21)

Proof. Let

σ =
∑

i∈N−(N)

ν(i,N)Φi. (S22)

Then, as for given (Z(t))t≥0 immigration into vertex N occurs as a non-homogeneous Poisson process,

P(T − λ−1 log(σ−1) > t|(Z(t))t≥0) = exp

−∫ t+λ−1 log(σ−1)

0

∑
i∈N−(N)

ν(i,N)Zi(s) ds

 . (S23)
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The variable change u = s− λ−1 log(σ−1) yields

exp

−∫ t

−λ−1 log(σ−1)

∑
i∈N−(N)

ν(i,N)Zi(u+ λ−1 log(σ−1)) du

 . (S24)

Now observe that for any i ∈ N−(N), by multiplying by 1 = eλ(u+λ
−1 log(σ−1))

eλ(u+λ−1 log(σ−1))
,

ν(i,N)Zi(u+ λ−1 log(σ−1)) =
Zi(u+ λ−1 log(σ−1))

eλ(u+λ−1 log(σ−1))

ν(i,N)eλu

σ
. (S25)

Consider the limit of (S25) as ν∗ → 0, which results in log(σ−1)→∞. As the (Zi(t))i∈N−(N) are
independent of (ν(i,N))i∈N−(N), Theorem S1 informs us that, almost surely,

lim
ν∗→0

Zi(u+ λ−1 log(σ−1))

eλ(u+λ−1 log(σ−1))
= WeλuΦi (S26)

Upon considering (σ/ν(i,N))−1, we see ν(i,N)/σ <∞ for each i. Hence taking limits across (S25) yields,
with probability one,

lim
ν∗→0

∑
i∈N−(N)

Zi(u+ λ−1 log(σ−1))

eλ(u+λ−1 log(σ−1))

ν(i,N)eλu

σ
= Weλu lim

ν∗→0

∑
i∈N−(N)

ν(i,N)Φi
σ

. (S27)

By the definition of σ this last sum is one and hence

lim
ν∗→0

∑
i∈N−(N)

ν(i,N)Zi(u+ λ−1 log(σ−1)) = Weλu a.s. (S28)

We seek to apply the dominated convergence theorem to the integral in (S24). The limit demonstrated in
(S28) implies that for any realisation, we may find x such that for ν∗ ≤ x∑

i∈N−(N)

ν(i,N)Zi(u+ λ−1 log(σ−1)) ≤ 2Weλu (S29)

which is integrable over (−∞, t]. If ν∗ > x then σ > 0. Thus the interval [−λ−1 log(σ−1), t] is finite. As each
Zi(t) is cadlag, it is bounded over finite intervals. Hence for all (ν∗, u) the integrand is dominated by an
integrable function. Therefore, taking the limit of (S24) and using (S28) leads to, with probability one,

lim
ν∗→0

P(T − λ−1 log(σ−1) > t|(Z(t))t≥0) = exp
(
−Weλt/λ

)
. (S30)

Using that
µ = λ−1 log(λ2/α) + λ−1 log(σ−1) (S31)

so that we centre appropriately, leads to the first stated result.
For the second statement, we must derive an expression for

E
[
exp

(
−etWλ/α

)]
(S32)

From Lemma S1

Wλ/α
d
=

z∑
i=1

χiξ
′
i (S33)

where χi ∼ Bernoulli(λ/α), ξ′i ∼ Exponential(1) and are independent. Thus

E
[
exp

(
−etWλ/α

)]
=
(
E
[
exp

(
−etχ1ξ

′
1

)])z
. (S34)

Using a one-step conditioning argument on χ1 and considering the Laplace transform for a unit rate
exponential variable leads to the stated result.
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Before proceeding, we comment on a limitation of our proof approach. A key point in the proof of
Theorem S2 is that the stochastic process (Zi(t))1≤i≤N−1,t≥0 is independent of the target seeding transition
rates (ν(i,N))i∈N−(N). This permits the limit displayed in (S26) to hold. If we considered a limit where
transition rates associated with non-target adjacent edges also tended to 0, the limit (S26) would not hold.
This is as Theorem S1 is true for fixed (α(x))N−1x=1 , (β(x))N−1x=1 and transition rates associated with non-target
adjacent edges (the parameters controlling the growth of the populations at vertices 1, . . . , N − 1). Our
inability to alter these parameters is also the reason, that in a precise sense, our results do not cover the
formulation of transitions where type x divide at rate α′(x), and then with probability ν′(x, y) a transition
occurs to vertex y. In that formulation, taking the limit when ν′(x,N) tends to 0, for x ∈ N−(N), alters the
division rate of cells at vertices in N−(N), again forbidding the use of Theorem S1. We hope to improve
upon these limitations in future work.

The first statement in Theorem (S2) will be key to understanding the path distribution, discussed in the
Path distribution section of the main text, which justifies its prominence. As it implies that, with probability
one,

lim
ν∗→0

P(exp [λ(T − µ)] > t|(Z(t))t≥0)) = exp (−tWλ/α) , (S35)

the first statement in Theorem (S2) can be interpreted as indicating that if we consider the conditional
distribution of T around µ, then rescale time, an exponential distribution appears.

As discussed in the Time until target vertex is populated section of the main text, it is natural to consider
the distribution of T conditioned that it is finite (we cannot discuss which path populated the target vertex
if T =∞). However it is technically more convenient to condition on S1, defined in (S6). The following
proposition states that in many relevant cases, namely large initial population, low death rate or small
transition rates leaving vertex 1. these events are similar. Below, the superscript c denotes the complement
of the set.

Proposition S1.

P({T <∞}c ∩ S1) = 0. (S36)

P({T <∞} ∩ Sc1) ≤


O((β/α)z), β → 0

O((β/α)z), z →∞
O(ν1), ν1 → 0

(S37)

where ν1 =
∑
x∈N+(1) ν(1, x).

Proof. As P({T <∞}c ∩ S1) = P(T =∞|S1)P(S1) and P(S1) > 0 we initially demonstrate

P(T <∞|S1) = 1. (S38)

Firstly recall that with W as in Lemma S1, up to null events, {W > 0} = S1. Now T is the first arrival in a
Cox process with intensity

∑
x∈N−(N) ν(x,N)Zx(s), and hence T <∞ with probability 1 on S1 if∫ ∞

0

∑
x∈N−(N)

νx,NZx(s)ds =∞ (S39)

with probability 1 on S1. Observe that (S39) is true as, by Theorem S1, for any realisation we may find
t1 ≥ 0 such that ∫ ∞

t1

∑
x∈N−(N)

ν(x,N)Zx(s)ds ≥ 2−1
∫ ∞
t1

∑
x∈N−(N)

ν(x,N)WΦxe
λsds. (S40)
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As each Φx > 0, due to each entry of ṽ also being positive [5], the right hand side of the above inequality is
infinite a.s. on S1 which gives (S38). It remains to bound P({T <∞} ∩ Sc1).

Let us introduce Z∗(t) =
∑
i∈N+(1) Zi(t) and

τ = inf{t ≥ 0 : Z∗(t) > 0}. (S41)

Note that we cannot hope to populate the target vertex without Z∗(t) becoming positive. Therefore,
{T <∞} ⊆ {τ <∞} which implies

P({T <∞} ∩ Sc1) ≤ P({τ <∞} ∩ Sc1). (S42)

Hence our interest turns to the right hand side of the preceding inequality. The distribution of τ is invariant
to the growth at vertices i ∈ N+(1), and so we let α(i) = β(i) = 0 for such i. The process (Z1(t), Z∗(t)) is a
two-type branching process where cells of the second type (that contribute to Z∗(t)) simply accumulate. As

P({τ <∞} ∩ Sc1) = (1− P({τ =∞}|Sc1))P(Sc1) (S43)

= P(Sc1)− lim
t→∞

P(Z1(t) = 0, Z∗(t) = 0), (S44)

and from (S7) we know P(Sc1) = β/α, we now solve for the joint distribution of (Z1(t), Z∗(t)).
For now assume z = 1. We introduce the generating functions

G1(x, y, t) = E[xZ1(t)yZ
∗(t)|(Z1(0), Z∗(0)) = (1, 0)] (S45)

G∗(x, y, t) = E[xZ1(t)yZ
∗(t)|(Z1(0), Z∗(0)) = (0, 1)]. (S46)

Immediately G∗(x, y, t) = y for all t. The backward Kolmogorov equation for G1 is

∂

∂t
G1 = αG2

1 + β + ν1G1G
∗ − (α+ β + ν1)G1. (S47)

By solving this equation (separation of variables with a partial fraction decomposition), and using the initial
condition we find

P(Z1(t) = 0, Z∗(t) = 0) = G1(0, 0, t) =
r2(1− eα(r2−r1)t)

1− r2eα(r2−r1)t/r1
. (S48)

With

r1 =
1

2

(
1 + q1 + ν′1 +

√
(1 + q1 + ν′1)2 − 4q1

)
(S49)

r2 =
1

2

(
1 + q1 + ν′1 −

√
(1 + q1 + ν′1)2 − 4q1

)
(S50)

where q1 = β/α and ν′1 = ν1/α. Observe that (1 + q1 + ν′1)2 − 4q1 > (1− q1)2 which implies r2 − r1 < 0.
Hence

lim
t→∞

P(Z1(t) = 0, Z∗(t) = 0) = r2. (S51)

We now have expressions for the final terms in (S43) for z = 1. For z ≥ 1, we can use independence, and this
leads to

P({τ <∞} ∩ Sc1) = qz1 − rz2 . (S52)

By examining the leading order with respect to the relevant variables we can conclude.
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We remark that if we instead wish to look at the case when the vertex N population arises and does not
go extinct then P(All populations go extinct) = P(T̃ =∞) where T̃ is the first time the target is founded by
a cell whose progeny does not go extinct. Recall that our results for T hold identically for T̃ so long as the
mapping ν(x,N) 7→ ν(x,N)λ(x)/α(x) for all x ∈ N−(N) is applied . The probability of population
extinction is known to be given by an implicit equation involving the offspring distribution’s generating
function [1]. This was the approach taken by [4]. The approximate solution for small transition rates was
derived and agrees with the result presented above (see Eq. A.4a in Appendix A of [4]).

The above proposition yields P(T <∞) ≈ P(S1). Using this with (S7) gives Eq. 6 in the main text. We
now give consider the distribution of T given S1 (which we use as proxy for conditioning on a finite hitting
time).

Corollary S1. With the notation of Theorem S2,

lim
ν∗→0

P(λ(T − µ) > t|S1) =

[
λ/α(1 + et)−1 + β/α

]z − (β/α)z

1− (β/α)z
(S53)

Proof. Starting from the first statement in Theorem S2, we only need apply E[·|S1]. The distribution of
Wλ/α can be rewritten as

Wλ/α
d
=

K∑
i=1

ξ′i (S54)

where ξ′i are rate one exponential variables, and K ∼ Binomial(z, λ/α), independent of all ξ′i. Conditioning
on S1 ensures that K > 0.

Thus we must calculate

E
[
exp

(
−etWλ/α

)
|S1

]
= E

[
(1 + et)−K |K > 0

]
. (S55)

The binomial theorem leads to the stated expression.

We now prove a corollary regarding µ (defined in (S19)), which provides justification to Eq. 7 in the main
text.

Corollary S2. Let t1/2 be the median time for the vertex N population to arise, conditioned on S1. That is
t1/2 satisfies

P(T > t1/2|S1) =
1

2
. (S56)

Then
lim
ν∗→0

|t1/2 − (µ− h(z))| = 0 (S57)

where

h(z) = −λ−1 log

(
λ/α

2−1/z(1 + (β/α)z)1/z − β/α
− 1

)
. (S58)

This also implies t1/2 ∼ µ− h(z). Regarding h(z) we have

h(1) = 0, h(z) = λ−1 log

(
zλ

α

)
+O(z)−1, z →∞. (S59)

Proof. We firstly note, as is apparent from the cumulative distribution function of T (see (S23) for instance),
that t1/2 is monotone increasing as ν∗ decreases. By (S56)

1

2
= P(λ(T − µ) > λ(t1/2 − µ)|S1). (S60)
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Taking the ν∗ → 0 limit we find λ(t1/2 − µ)→ x, where the convergence is guaranteed as both t1/2, µ are
monotone increasing. Further, from Corollary S1, the limit x satisfies

[λ/α(1 + ex)−1 + β/α]z − (β/α)z

1− (β/α)z
=

1

2
. (S61)

Solving for x leads to x = −λh(z) as stated. For the asymptotic result we firstly consider

d(z) =
λ/α

2−1/z(1 + (β/α)z)1/z − β/α
− 2

α
λz (S62)

Expansions on the numerator and denominator show that d(z) is O(z−2). Then

−λh(z) = log(2
α
λz − 1 + d(z)) (S63)

= log(2
α
λz − 1) +

d(z)

2
α
λz − 1

+ . . . (S64)

As (2
α
λz − 1)−1 = O(z) we have shown the claimed asymptotic behaviour.

S4 Path graph and acyclic graphs

In this section we specialise the results of Sections S2 and S3 firstly to the case of a path graph and then to
acyclic graphs.

We first consider a path graph with N vertices and let p̃1:x = (1, 2, . . . x). In this setting the matrix A
from Section S2 has entries

aij =


λ(i) j = i

ν(j, i) j = i− 1

0 otherwise,

(S65)

and the vector ψ has entries ψi = α(i) + β(i) + ν(i, i+ 1) for i = 1, . . . , N − 1. We want a useful
representation of the sequence (Φx)N−1x=1 , which we recall is given in terms of the entries of the suitably
normalised left and right eigenvectors of A (see (S14)). Because they are easier to work with (i.e. check they
indeed are eigenvectors) we first introduce the unnormalised left and right vectors u′, v′ with entries

u′i =

{
1, i = 1

0 2 ≤ i ≤ N − 1
v′i =

i∏
j=2

ν(j − 1, j)

λ− λ(j)
, 1 ≤ i ≤ N − 1 (S66)

where the empty product is again set equal to 1. Note for 2 ≤ x ≤ N − 1 we have

v′x =
w(p̃1:x)

λ− λ(x)
, (S67)

here w(·) is again the path weight defined in (S3) . It may be directly verified that these are left and right
eigenvectors for A with eigenvalue λ (for v′ it is helpful to note that Av′ = λv′ implies
ν(i− 1, i)v′i−1 + λ(i)v′i = λv′i) . Now we normalise these, so that they agree with (S14) via

ũ =
ψ · v′

v′1
u′, ṽ =

1

ψ · v′
v′. (S68)

Our aim is to obtain Φ = ũ1ṽ, and as both u′1 = v′1 = 1, we see that Φ = v′ . Using this, the following
corollary demonstrates how the results of the previous section on population growth and time to reach the
target simplifies in the path graph setting.
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Corollary S3. The results of Sections S2 and S3 hold with the explicit representations

Φx =

{
1 x = 1
w(p̃1:x)
λ−λ(x) 2 ≤ x ≤ N − 1

(S69)

ν∗ = ν(N − 1, N), (S70)

and
µ = λ−1 log

[
λ2 (αφN )

−1
]
. (S71)

The appearance of φN in the expression for µ in Corollary (S3) is due to
φN = w(p̃1:N ) = ν(N − 1, N)ΦN−1 (to be compared with the general definition of µ (S19)). For referencing,
note the definition for the weight of a path p, w(p), and total weight of N , φN , are in (S3) and (S4). We now
move to the case where G is acyclic.

Recall the concept of vertex lineage from the Path distribution section in the main text (which for a
chosen cell, is a sequence recording the vertices of cells in the ancestral lineage of our chosen cell). We denote
the number of cells at time t with vertex lineage p as X(p, t). The number of cells at a vertex is related to
the cells with vertex lineages ending at that vertex via

Zx(t) =
∑

p∈P1,x

X(p, t). (S72)

For any path p, as above we let the first j terms in p be denoted p1:j . The process (X(p1:j , t))
l+1
j=1 is a

multitype branching process, and X(p1:j , t) represents the number of cells that have progressed to step j
along path p at time t. Births occur to individuals of type i at at rate α(pi), deaths at rate β(pi) and
individuals of type i transition to type i+ 1 at rate ν(pi, pi+1). Thus we may use our results for path graphs
with vertices labelled 1, . . . , l + 1. Hence via Theorem S1 and Corollary S3 we have the following.

Corollary S4.
lim
t→∞

e−λtX(p, t) = Ww(p) a.s. (S73)

where w(p) is the path weight given in (S3) and W is as in Lemma S1.

Analogously to Corollary S3 we have the following statement regarding the growth of the population at
the initial and intermediate vertices.

Corollary S5. The results of Sections S2 and S3 hold with the explicit representations

Φx =

{
1 x = 1

1
λ−λ(x)

∑
p∈P1,x

w(p) 2 ≤ x ≤ N − 1
(S74)

µ = λ−1 log

λ2
α ∑

p∈P1,N

w(p)

−1
 . (S75)

where w(p) is the path weight given in (S3).

Note that as the empty product is defined to be 1, φ1 = 1.
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Proof of Corollary S5. Due to Theorem S1 we must demonstrate

lim
t→∞

e−λtZx(t) = W
∑

p∈P1,x

w(p) a.s. (S76)

By (S72) it is enough to show

P

 ⋂
p∈P1,x

lim
t→∞

e−λtX(p, t) = W

 = 1. (S77)

Observe that for any events (Ai)
n
i=1 such that for all i, P(Ai) = 1 then P(∩ni Ai) = 1. Use this with events

Ap = {limt→∞ e−λtX(p, t) = W} to conclude.

One particular consequence, by coupling Corollaries S1 and S5 is that for ν∗ small

P(T > t|S1) ≈
[
λ/α(1 + eλtφNα/λ

2)−1 + β/α
]z − (β/α)z

1− (β/α)z
(S78)

which is the conditional version of Eq. 5 in the main text. Differentiating yields an approximation for the
conditional density

fT |T<∞(t) ≈
zeλtφN

(
λ/α

1+eλtφNα/λ2 + β/α
)z−1

(1− (β/α)z)
(

1 + αeλtφN
λ2

)2 . (S79)

S5 Distribution of the path to the target

We continue to take G acyclic. Note that |P1,N | is finite, and so we let n = |P1,N |. The elements of P1,N can
be enumerated and we use the following notation to do so P1,N = {p(1), . . . , p(n)}. For each p(i) ∈ P1,N we

let: the path lengths be l(i) = |p(i)| − 1, u(i) = ν(p
(i)

l(i)
, N) be the final transition rates, and η(i) = w(p(i))/u(i).

Consider p(i) ∈ P1,N and recall that X(p
(i)
1:j , t) represents the number of cells that have progressed to step j

along path i at time t. If we apply the first statement in Theorem S2 to the branching process

(X(p
(i)
1:j , t)))

l(i)+1
j=1 we can deduce that under a time rescaling, the time to traverse path i is approximately

exponentially distributed, conditional on the population growth along that path. Therefore the question of
which path the target population arises from becomes equivalent to the minimum of a set of exponential
random variables. To simplify notation we let,

T (i) = T (p(i)) = inf{t ≥ 0 : X(p(i), t) > 0}. (S80)

Also, from the Path distribution section of the main text, recall the notation

T (¬p) = min{T (q) : q ∈ P1,N\{p}}. (S81)

We can now prove the precise version of Theorem 2 in the main text.

Theorem S3. Assume the limits limν∗→0
u(i)

u(j) exist, but may be infinite, and further that there exists

i∗ ∈ {1, . . . , n} such that limν∗→0
u(i)

u(i∗) <∞ for all i = 1, . . . n. Then, for p ∈ P1,N and t ∈ R,

lim
ν∗→0

P(T (¬p)− T (p) > t|S1) = lim
ν∗→0

w(p)

w(p) + eλt
∑
q∈P1,N\{p} w(q)

. (S82)
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Proof. Consider initially the case when n = 2, that is there are only two paths from vertex 1 to vertex N .
These two paths must diverge before N . If the population growth along these paths until the target vertex
(but excluding the population growth at the target vertex itself) is given, then T (1) and T (2) are the first
arrival times in two independent non-homogeneous Poisson processes. Returning to arbitrary n, to use this
fact we define the population numbers along all the paths up until the target vertex as

X (s) = (X(p
(i)
1:j , s))

n,l(i)

i=1,j=1. (S83)

So that we can use this conditional independence, and prior results, we note

P(T (¬p)− T (p) > t|S1) =
E[IS1

P(T (¬p)− T (p) > t|(X (s))s≥0)]

P(S1)
. (S84)

We now focus on the argument of the above expectation. Let the path under consideration be path 1
(p = p(1)) and

κ(i) = lim
ν∗→0

u(i)

u(i∗)
. (S85)

We know, by Theorem S2, that each T (i) appropriately centred converges. If we centre each T (i) by the
same quantity, then the ordering is preserved. That is, clearly T (1) < T (2) ⇐⇒ T (1) − µ(i) < T (2) − µ(i) for
any µ(i). As T (i) is the target time along the path graph p(i), Corollary S3 gives the appropriate centring. In
particular with

µ(i) = λ−1 log(λ2[αη(i)u(i)]−1) (S86)

we have, by the first statement of Theorem S2 and Corollary S3,

lim
ν∗→0

P(λ(T (i) − µ(i)) > x|(X (s))s≥0) = exp(−exWλ/α) a.s. (S87)

For order preservation (of the T (i)s) we take µ(i∗) as a common centring of all T (i), and use
T (i) − µ(i∗) = T (i) − µ(i) + µ(i) − µ(i∗) and

lim
ν∗→0

µ(i) − µ(i∗) = λ−1 log

(
η(i
∗)

η(i)κ(i)

)
. (S88)

Note the above expression may be −∞. Using this, and exponentiating (which again preserves order), leads
to

lim
ν∗→0

P(exp[λ(T (i) − µ(i∗))] > t|(X (s))s≥0) = exp

(
− tWλη(i)κ(i)

αη(i∗)

)
a.s. (S89)

At this point we note that if κ(i) = 0, then for fixed (X (s))s≥0, the random variables exp[λ(T (i) − µ(i∗))]
converges to +∞ almost surely. Recall the T (i) are conditionally independent, and hence convergence of the
marginal distributions implies joint convergence. Therefore for (xj)

n
j=1 with each xj ≥ 0, almost surely we

have

lim
ν∗→0

P
[(

exp[λ(T (j) − µ(i∗))] > xj

)n
j=1
|(X (s))s≥0

]
=

n∏
j=1

exp

(
−xjWκ(j)η(j)λ

η(i∗)α

)
. (S90)

Including the shift t, we have for fixed (X (s))s≥0 the random vector
(exp[λ(T (1) + t− µ(i∗))], exp[λ(T (j) − µ(i∗))])nj=2 jointly tends in distribution to the random vector (Ui)

n
i=1.

Note that only T (1) is shifted, due to the path under consideration being p(1). If W = 0, all the Ui = +∞
a.s., instead if W > 0 each Ui is independent and for 2 ≤ i ≤ n has distribution

Ui
d
=

{
+∞ if κ(i) = 0

Ei if 0 < κ(i) <∞
(S91)
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where Ei is an exponential random variable with parameter Wκ(i)η(i)λ
η(i∗)α

. For i = 1, instead we have U1
d
= +∞

if κ(1) = 0, else U1 is distributed as an exponential with parameter e−λtWκ(1)η(1)λ
η(i∗)α

. As, up to null events,

{W > 0} = S1, and using standard results for the ordering of exponential variables (looking at the minimum
of the Ui), we have

lim
ν∗→0

IS1
P(T (p) + t < T (¬p)|(X (s))s≥0) = IS1

κ(1)η(1)

κ(1)η(1) + eλt
∑n
j=2 κ

(j)η(j)
. (S92)

The right hand side of (S92) is an element of [0, 1]. 0 is obtained when κ(1) = 0 (the final transition rate
along the path is small, in the sense of the limit (S85), relative to other paths) and 1 is obtained if κ(i) = δ1,i
(the final transition rate along the path is the largest relative to other paths). Coupling the above with (S84)
gives the result.

S6 Cyclic graphs

Suppose G is as before, but without the acyclic assumption. For cyclic graphs in place of P1,N we must
consider W1,N , which we define to be the set of walks between the root and vertex N . The definition of
vertex lineages holds identically for walks. Therefore for ω ∈ W1,N we let

T (ω) = inf{t ≥ 0 : X(ω, t) > 0} (S93)

where X(ω, t) is as given in the Path distribution section of the main text. Here we show that so long as the
number of transitions between vertices is finite, which corresponds to finitely many back transitions, we may
map a graph containing cycles to an acyclic one and then use the results given above.

The set of walks between the root and the target vertex of length at most i− 1 will be denoted

W(i)
1,N = {ω ∈ W1,N : |ω| ≤ i}. (S94)

Further for a graph G = (V,E), let the vertex parameters be the birth and death rates associated to the
vertices of G and the edge parameters the transition rates associated with the edges.

Proposition S2. For a given graph G = (V,E) with associated vertex and edge parameters, and i ≥ 1 which
is the upper-length of walks that we consider on G, we can construct an acyclic graph G′ = (V ′, E′)
(dependent on i), which coupled with appropriate vertex and edge parameters, permits a bijection

g :W(i)
1,N 7→ P ′1,|V ′|. This bijection possesses the property that for ω ∈ W(i)

1,N

T (ω)
d
=T ′(g(ω)) (S95)

where T ′(g(ω)) is defined as in (S93) but with the process on G′ with its associated parameters.

Before giving the proof we briefly demonstrate this on the graphs shown in Fig. A. This elucidates the
general idea.

Here
W(4)

1,N = {(1, 2, 4), (1, 2, 3, 4), (1, 3, 4), (1, 3, 2, 4)}. (S96)

It is clear these may be mapped to the paths in G′

P ′1,|V ′| = {(1, 2, 6), (1, 2, 3, 6), (1, 4, 6), (1, 4, 5, 6)}. (S97)

Further T ((1, 2, 4))
d
=T ′((1, 2, 6)) so long as the transition rates associated with edges (1, 2) and (2, 4) on G

are equal to the rates with (1, 2) and (2, 6) on G′ and that the birth and death rates at vertices 1 and 2 are
equal in both cases.
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Fig A. Mapping cyclic graphs to acyclic graphs

Proof of Proposition S2. To avoid cumbersome notation and as the idea is illustrated in Fig. A we sketch an

algorithm. We enumerate the set W(i)
1,N = {ω(1), ω(2), . . . ω(M)}, where M = |W(i)

1,N |. Again we use the

notation l(j) for the length of the jth walk, that is l(j) = |ω(j)| − 1. The graph G′ is constructed iteratively.
Let V ′1 = {1, 2, . . . , l(1), N ′}, where N ′ is a placeholder and will ultimately be |V ′|. Similarly
E′1 = {(1, 2), . . . , (l(1), N ′)} and p(1) = (1, 2, . . . , l(1), N ′).

Then for each further ω(j), 2 ≤ j ≤M, from the previously considered walks select the walk that is
identical to ω(j) for the greatest number of vertices, say ω(k), 1 ≤ k < j. If ω(j) and ω(k) agree up until their
mth element, and l(j) −m > 0 then add l(j) −m elements to V ′j−1 (new vertices starting with |V ′j−1|). This

creates V ′j . Denote the new vertices as (v
(j)
x )l

(j)−m
x=1 . As ω(k) has previously been considered it will have an

associated path p(k), whose final element we will require to construct Ej : to Ej−1 add the edges (p
(k)
m , v

(j)
1 ),

{(v(j)x , v
(j)
x+1)}l

(j)−m−1
x=1 and (v

(j)

l(j)−m, N
′). This creates Ej . For p(j) we let p

(j)
1:m = p

(k)
1:m and then add the new

vertices of V ′j , and terminate the path at N ′. If l(j) = m (and so the walk ω(j) agrees with ω(k) until its

penultimate element) let V ′j = V ′j−1 and add the edge (p
(k)
m , N ′) to E′j−1. Then p(j) is equal to p

(k)
1:m

concatenated with N ′. Finally our constructed graph is G′ = (V ′, E′) = (V ′M, E
′
M) with N ′ = |V ′|.

Identifying g(ω(j)) = p(j), we see that if ω(j), ω(k) agree until their mth element then so also will
g(ω(j)), g(ω(k)), but after this the paths diverge. We further require that the birth and death rates for the
population type represented by the kth element of ω should be the same as the kth element of g(ω).
Similarly for the transition rates between the kth and k + 1th element of ω and g(ω).

Coupling the above proposition with the results of Section S4 allows one to characterise

min
ω∈W(k)

1,N

T (ω) (S98)

in terms of the weights of the walks. Further for a set of walks W(i)
1,N , Theorem S3 holds but now with the

walk weights, defined analogously to the definition given in (S3). Note that the Proposition S2 holds
regardless of whether the root is a source vertex, or whether the vertex 1 population is the most fit. However,
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if transitions are permitted into the root vertex, then for any given walk, there is no guarantee that the cells
associated with the first element of that walk are the most fit. This would leave us unable to apply the
results derived in earlier sections.

While the above proposition allows us to consider back transitions, the following result demonstrates that
when the transition rates between vertices are small, the first initiation of the target is dominated by the
paths, as opposed to walks containing cycles. This offers a secondary justification for mainly focusing on
acyclic graphs. To state the result let us define q :W1,N 7→ P1,N as the operation reducing walks to their
respective paths. This may be accomplished recursively by searching for the first cycle in ω and replacing
this with the first element in the cycle. Then repeating the same procedure on the reduced walk until it is a
path. This operation is the same as that which maps trajectories to their corresponding trajectory class
in [6]. Further, for p ∈ P1,N let

W(i)[p] = {ω ∈ W(i)
1,N : q[ω] = p, ω 6= p} (S99)

that is the walks of length at most i− 1 which when reduced to paths are p, but excluding p itself. Then with

νmax = max{ν(i, j) : (i, j) ∈ E} (S100)

we have the following.

Proposition S3. For i ≥ 1, p ∈ P1,N such that W(i)[p] is non-empty, and all ω ∈ W(i)[p]

lim
νmax→0

lim
ν∗→0

P(T (p) < T (ω)|S1) = 1. (S101)

Proof. We construct an acyclic graph with appropriate vertex and edge parameters as in Proposition S2 and

use the mapping g from there with domain W(i)
1,N . As before let P ′1,|V ′| be the codomain of g. Then for path

p ∈ W(i)
1,N and walk ω ∈ W(i)[p], g(p), g(ω) ∈ P ′1,|V ′|. Note due to the manner in which the edge parameters

are chosen {ν(i,N) : i ∈ N−(N)} = {ν(i, |V ′|) : i ∈ N−(|V ′|)} and hence ν∗ remains unchanged. Similarly
νmax is unchanged. Therefore,

lim
ν∗→0

P(T (p) < T (ω)|S1) = lim
ν∗→0

P(T ′(g(p)) < T ′(g(ω))|S1). (S102)

Furthermore each vertex and edge in p is also present in ω. Hence the weight of g(ω) satisfies
w(g(ω)) = w(g(p))w̃(g(ω)) where w̃(g(ω)) is the product of transition rates along the edges existing in cycles
in ω divided by the costs of vertices in the cycles. Then by Theorem 5

lim
ν∗→0

P(T ′(g(p)) < T ′(g(ω))|S1) =
1

1 + w̃(g(ω))
. (S103)

As w̃(g(ω)) contains transition rates, this leads to the stated result upon taking νmax → 0.

S7 Simulation for alternative transition formulation

See Fig. B for a comparison of simulations with transitions following (x)→ (y) with the hitting time results
derived in the Results section of the main text.
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Fig B. Alternative transition formulation: Here we compare analogous simulations to Fig 3b in the main
text, except that transitions follow (x)→ (y), with the theoretical approximation of Eq. 5 in the main text.
Dashed lines give the theoretical result, joined lines represents the empirical distribution obtained from 1000
realisations. Despite Eq. 5 of the main text begin derived under the formulation when transitions follow
(x)→ (x), (y), there is excellent agreement between the simulations and theory. Parameters:
α = α(2) = α(3) = α(4) = 1, β = 0.4, β(2) = β(3) = 1.3, β(4) = 0.6, z = 1; legend displays value of
ν = ν(1, 2) = ν(2, 3) = ν(3, 4) used.

S8 Derivation of select formulas in the Imperfect drug
penetration: combination therapy section

Here we outline the derivation of the expressions contained in the Imperfect drug penetration: combination
therapy section of the main text, in particular formulas 16-18. These expressions were derived with the
assistance of the Mathemetica software [8].

We start with Eq. 16. Let the set of stepwise paths be PSE and the set of directed paths be PDE. For a
path p = (p1, . . . pl+1) with number of edges (path length) l, write c(p) =

∏l
i=2(λ− λ(pi)). Note for any path

considered here, if we follow the path on Fig. 7a, then c(p) is the product of the vertex labels, taken over all
intermediate vertices (excluding the root and the target). Further, let us introduce r = nD/nS and
f = (nD + nS)/nTot. This implies nDD = (1− f)nTot, nS = fnTot/(1 + r), nD = rfnTot/(1 + r). Then

φN =
nD

nD + nDD

nDD

nS + nDD
m2ν2

∑
p∈PSE

(c(p))−1 +
nDD

nDD + nD
ν2m

∑
p∈PDE

(c(p))−1 (S104)

=

[
1 +

(1− f)(1 + r)

rf

]−1 [
1 +

f

(1 + r)(1− f)

]−1
m2ν2

∑
p∈PSE

(c(p))−1 + (S105)

[
1 +

r

(1 + r)(1− f)

]−1
ν2m

∑
p∈PDE

(c(p))−1. (S106)

Using the approximation of Eq. 7 in the main text, we have t1/2(r) = −λ−1 log(λ−1φNz)). Also recall
z = γns = γfnTot/(1 + r). Differentiating t1/2(r) and evaluating at r = 0 leads to

d

dr
t1/2(0) =

1
1−f −

fm(d+s)3

ds(d2+3ds+s2)

λ
. (S107)
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Increasing the relative size of the single drug compartment speeds up resistance when d
dr t1/2(0) < 0 or

equivalently when
ds(d2 + 3ds+ s2)

1− f
> fm(d+ s)2. (S108)

Expansions in f and s/d (recall f � 1, s/d� 1), keeping only leading order terms and using the definition
of f leads to Eq. 16 in the main text.

Turning to Eq. 17 of the main text, we wish to find r such that d
dr t1/2(r) = 0. The numerator of

d
dr t1/2(r) is quadratic in r. After solving for both roots and expanding in powers of s/d, we see the leading
term for one of the roots is -1. Thus the root of interest is the other root, which to leading order is the
expression in Eq. 17.

For Eq. 18 of the main text, we use our main result of Theorem 2 in the main text. With φN as given
above in (S104), this yields

P(T SE < TDE) ≈
nD

nD+nDD

nDD

nS+nDD
m2ν2

∑
p∈PSE

(c(p))−1

φN
(S109)

=

(
1 +

(nDD + nS)

nDm

d3s+ 3s2d2 + ds3

(d+ s)3

)−1
. (S110)

Upon expanding in s/d, to leading order we have Eq. 18.
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