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Figure S1. Characterization of Mouse CDCs and Human EXOs. (A) Representative flow cytometry
dot plot indicating the abundance of selected surface markers. CDCs are negative for hematopoietic
surface makers and positive for known CDC surface antigens. (B) Representative histogram from
nanoparticle tracking analysis using dynamic light scattering to measure exosome concentration and
size. (C) Immunoblot for common exosomal markers from CDCs and their exosomes.
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Figure S2. RNA-Sequencing Analysis of mdx Hearts. (A) Volcano plot depicting differentially
expressed genes in vehicle-treated mdx hearts relative to wild-type hearts. (B) Kyoto Encyclopedia of
Genes and Genomes enrichment analysis of pathways activated in vehicle-treated mdx hearts. (C)
Gene Ontology enrichment analysis of biological processes, cellular components, and molecular
function of CDC-treated mdx hearts.
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Figure S3. RNA-Sequencing Analysis of EXO Treated mdx Hearts. Gene Ontology enrichment
analysis of biological processes, cellular components, and molecular function of EXO-treated mdx
hearts.
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Figure S4. Biological Effects of CDC or EXO Treatment in mdx Mouse Skeletal Muscle. (A) In
vitro force-frequency relationship of wild-type, vehicle, CDC-, and EXO-treated mdx diaphragms (n =
5 — 8 per group). CDC treatment shifted the force-frequency curve up and to the left. (B) Twitch and
(C) tetanic force derived from A demonstrate CDC and EXO treatment boosts the developed force by
mdx diaphragms (n =5 — 8 per group). (D) Colorimetric analysis of protein-carbonyl adducts reveal
normalization by CDC treatment in mdx solei (n =7 — 8 per group). (E) Volcano plot depicting
differentially expressed genes in vehicle-treated mdx solei relative to wild-type solei. (F) Kyoto
Encyclopedia of Genes and Genomes enrichment analysis of pathways activated in vehicle-treated mdx
solei. (G) Custom pathway analysis using IPA assigning genes differentially expressed by CDC
treatment in mdx solei. (H) Gene Ontology enrichment analysis of biological processes, cellular
components, and molecular function of EXO-treated mdx solei. Statistical significance was determined
by Analysis of Variance (ANOVA) with p < 0.05. When appropriate, a Newman-Keuls correction for
multiple comparisons was applied. *statistically different from baseline, #statistically different from
vehicle.
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Figure S5. Inhibition of Exosome Biosynthesis Renders CDCs Ineffective. (A) Schematic of
exosome biosynthesis blockade. (B) Exercise capacity, as determined by a graded exercise test, was not
improved in CDC-GW4869 treated mdx mice after 3 weeks (n =8 — 10 per group). (C) Representative
echocardiogram tracings. Cardiac function, as measured by transthoracic echocardiography, was
modestly increased in CDC-GW4869 treated mdx mice after 3 weeks (n =5 — 8 per group). (D) In vitro
force-frequency relationship of wild-type, CDC, and CDC-GW4869 treated mdx diaphragms (n=15— 8
per group). (E) Twitch and (F) tetanic force derived from D demonstrate that GW4869 blocks the
functional improvements of CDCs in the mdx mouse diaphragm. (G) In vitro force-frequency
relationship of wild-type, CDC, and CDC-GW4869 treated mdx solei (n = 5 — 9 per group). (H) Twitch
and (I) tetanic force derived from G demonstrate that GW4869 does not block the functional
improvements of CDCs in the mdx mouse soleus. Bar graphs depict mean + SEM. Statistical
significance was determined by an analysis of variance (ANOVA) with p < 0.05. When appropriate, a
Newman-Keuls correction for multiple comparisons was applied. *statistically different from baseline,
#statistically different from vehicle. The vehicle control and CDC-treated data are shared from figures
in the main text and supplement, but experiments were conducted contemporaneously. Comparisons
were made between three groups.
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Figure S6. Dystrophin expression in EXO-treated mdx skeletal muscle. Immunoblot of the full-
length dystrophin protein in the mdx soleus (A) and diaphragm (B). 4 — 0.5% represents a titration of
wild-type dystrophin levels for each muscle.



