

Figure S1. Related to Figure 1.

(A) Schematic of strain construction at the *YBR209W* locus. Lines with arrows indicate selection after transformation. The sequence at the *YBR209W* locus is indicated.

(B) The *loxP* variants used in this study. Three groups of *loxP* variants, which have different "core" regions, have a low rate of recombination with each other. The stars indicate mutations in the palindromic arms. The suffixes "71" and "66" in a *loxP* variant name (e.g. *lox71* or *lox2272/66*) indicate mutations in left and right arms, respectively.

Figure S2. Related to Figure 1.

(A) Barcoded plasmids containing various size of inserts were pooled and integrated into yeast at the lox5171 site. Violin plots shows the distribution of barcode counts for each plasmid size. Each plasmid size contains at least 6,000 double barcodes. The width of each violin is fixed and violin areas are not proportional to the number of barcodes.
(B-D). Number of insertion events from transformations into yeast containing either 5 ' or 3 ' half of *NatMX*_{A1} (B), *KanMX*_{A1} (C), or *HphMX*_{A1} (D) with plasmids containing either a full or half marker. 1st and 2nd indicates the order in which markers are inserted into the landing pad.

Figure S3. Related to Figure 2. REcombination-Directed Indexing (REDI) of complex yeast libraries. (1) Barcode plasmid libraries are integrated into the yeast genome at the landing pad locus via *Cre-loxP* recombination. (2) Successful transformants are picked and arrayed into multi-well plates. (3) Each transformant (containing an unknown barcode) mates with at least one strain containing a known barcode on YPD. (4) Recombination between homologous chromosome arms is induced and double barcode recombinants are selected. (5) Recombinants are pooled, genomic DNA is isolated, and double barcode sequenced. (6) The known barcode sequence identifies the unknown barcode partner in each double barcode read. (7) After filtering out duplicate barcodes or wells that contain multiple unknown barcodes, each barcode is re-arrayed to form an arrayed strain collection.

(A) Strains from the double barcoder collection (generated here) are pairwise mated to PCA strains from the protein interactome collection (Tarassov *et al*, 2008) and the resulting diploids are sporulated. Haploids of a specific mating type containing both the barcode and the PCA construct are selected for using a dual-SGA reporter (Tong *et al*, 2004), and selectable marker adjacent to the PCA construct and barcode. *MATa* and *MATa* haploids are mated in pairs. Recombination is induced in diploids to bring the

two barcodes to the same chromosome and reconstitute the split *URA3* selectable marker. Barcoded positive (+mDHFR) and negative (-mDHFR) control strains are generated separately and spiked into the pool prior to competitive growth.

(B-D) Lineage trajectories of spiked-in positive (purple, 10 replicates) and negative (black, 100 replicates) control strains (B), and a set of 70 positive reference protein pairs (C, PRS) and 67 random reference protein pairs (D, RRS), each with 2-8 barcode replicates (Yu *et al*, 2008). Color for the PRS and RRS trajectories is the estimated fitness.

(E-H) Lineage trajectories of in the absence of methotrexate of 10 mDHFR+ positive control strains (E), 100 mDHFR- negative control strains (F), 69 positive reference protein pairs, PRS (G), and 67 random reference protein pairs, RRS (H). Each strain has 2-8 barcode replicates. Color of each trajectory indicates the estimated fitness.

(I) Scatter plot of the estimated fitnesses from replicate growth cultures in the presence of methotrexate (Pearson's r = 0.997).

(J) Scatter plot of the estimated fitnesses from replicate growth cultures in the absence of methotrexate (Pearson's r = 0.997). (K) Scatter plot of the estimated fitnesses from replicate barcodes within a single culture that mark the same protein pair

(Pearson's r = 0.961).

(L) Bar plot of the fraction of PRS and RRS protein pairs called as a PPI by yeast two-hybrid (Yu *et al*, 2008), traditional PCA (Tarassov *et al*, 2008), and iSeq. These values are rough estimates for the true positive and false positive rates of each assay, respectively.

Figure S5. Related to Figure 2.

(A-B) Scatter plots of fitnesses estimated from replicate cultures in all 12 growth conditions for diploid (A) and haploid (B) libraries. r is the Pearson correlation coefficient.

(C-D) Heatmaps of the mean estimated fitness in diploid (C) and haploid (D) cells of each ORF pair in 12 growth conditions. Dendrograms are from hierarchical clustering.

(E-F) Hexmaps of fitnesses between yeast strains that carry different double barcodes but the same combination of ORFs for haploid libraries. Comparisons are within the same culture and between ORF pairs that are integrated at the iSeq landing pad in the same (E) or opposite (F) orientations

(G-H) Hexmaps of fitnesses between yeast strains that carry different double barcodes but the same combination of ORFs for diploid libraries. Comparisons are within the same culture and between ORF pairs that are integrated at the iSeq landing pad in the same (G) or opposite (H) orientations.

Table S1. Related to Figure 1. Sequences of loxP variants used in this study.

loxP variant	Spacer (5'- 3')	Left inverted repeat sequence	Right inverted repeat sequence
loxP	ATAACTTCGTATA	ATGTATGC	TATACGAAGTTAT
lox71	taccgTTCGTATA	ATGTATGC	TATACGAAGTTAT
lox66	ATAACTTCGTATA	ATGTATGC	TATACGAAcggta
lox5171	ATAACTTCGTATA	ATGTgTaC	TATACGAAGTTAT
lox5171/71	taccgTTCGTATA	ATGTgTaC	TATACGAAGTTAT
lox5171/66	ATAACTTCGTATA	ATGTgTaC	TATACGAAcggta
lox2272	ATAACTTCGTATA	AaGTATcC	TATACGAAGTTAT
lox2272/71	taccgTTCGTATA	AaGTATcC	TATACGAAGTTAT
lox2272/66	ATAACTTCGTATA	AaGTATcC	TATACGAAcggta

Table S2. Related to Figure 2. Barcoded plasmid libraries.

Plasmid library	loxP variant	Full marker	Half marker	Half marker exon length (bp)	Library size (x 10 ⁶)
pBAR6-L1	lox5171/66	KanMX	3'URA3 _{AI}	615	1.6
pBAR20-L1	lox66	KanMX	$5' URA3_{AI}$	189	2.8
pBAR7-L1	lox66	HphMX	$5'URA3_{AI}$	189	3.3
pBAR8-L1	lox5171/66	NatMX	3'KanMX _{AI}	216	0.38
pBAR9-L1	lox5171/66	NatMX	3'HphMX _{AI}	453	3.3
pBAR10-L1	lox66	NatMX	5 'KanMX _{AI}	594	3.2
pBAR11-L1	lox66	NatMX	5 'HphMX _{AI}	498	3.5
pBAR12-L1	lox66	KanMX	5'HphMX _{AI}	498	0.64
pBAR13-L1	lox66	KanMX	5 'NatMX _{AI}	192	2.64
pBAR14-L1	lox5171/66	KanMX	3'HphMX _{AI}	453	0.35
pBAR15-L1	lox5171/66	KanMX	3 'NatMX _{AI}	381	0.76
pBAR16-L1	lox5171/66	HphMX	3 'NatMX _{AI}	381	0.19
pBAR17-L1	lox5171/66	HphMX	3'KanMX _{AI}	216	0.29
pBAR18-L1	lox66	HphMX	5 'NatMX _{AI}	192	1
pBAR19-L1	lox66	HphMX	5 'KanMX _{AI}	594	0.12

Table S3. Related to Figure 2. Oligonucleotides used in this study.

Primers for amplifying barcodes with loxP variants pXL005 CCAGCTGGTACCNNNNNAANNNNNTTNNNNNTTNNNNATAACTTCGTATAATGTATGCT pXL006 CCAGCTGGTACCNNNNNAANNNNAANNNNNTTNNNNNTTACCGTTCGTATAGTACACA pXL296 CCAGCTAGATCTNNNNNAANNNNNTTNNNNNTTNNNNNATAACTTCGTATAATGTATGCT pXL297 CCAGCTGGATCCNNNNNAANNNNAANNNNNTTNNNNNTACCGTTCGTATAGTACACAT p23 GCCGAAATTGCCAGGATCAGG Primers for Gibson assembly ORFs into barcode plasmids pXL094 GCCGCTTAATTAACAATTGGAGAGTGTACTGAGAGTGCAC pXL095 gTCTAGACCTAGGCGTACGTCTGTGCGGTATTTCACACCG pXL096 GCCGCTTAATTAACAATTGGGGGCTTCTCTTATGGCAACCG pXL097 gTCTAGACCTAGGCGTACGTGGAACCCTAGTGTTGAATGGC Primers for amplify fragments from human intron KCNIP4 pXL267 CCAGCTTCTAGAatccttggacttgccatttg pXL268 CCAGCTTCTAGAagettggcaccagactcact pXL269 CCAGCTACTAGTggatttgaatgccttcctga pXL270 CCAGCTACTAGTtcatcccgaccaccaataat pXL271 CCAGCTCAATTGGCCACACAGGAAAAAGGAAA pXL272 CCAGCTCAATTGCTGGCAGAAAGTAGCCAAGG Yeast cloning GTTCTTTGCTTTTTTCCCCAACGACGTCGAACACATTAGTCCTACGCACTTAACTTCGCA pEV8 pEV9 GCTTGCGCTAACTGCGAACAGAGTGCCCTATGAAATAGGGGAATGCATATCATACGTAAT GCGAACAGAGTAAACCGAA p14 p15 GAAGGTCTGAAGGAGTTC pXL003 <u>ATCTGTTTAGCTTGCCTCGTCCCCGCCGGGTCACCCGGCCAGCGACATGG</u>AGATTGTACT pXL004 AACATGTTCTTTGCTTTTTTCCCCAACGACGTCGAACACATTAGTCCTACTGTGCGGTAT AGATCTGTTTAGCTTGCCTCGTCCCCGCCGGGTCACCCGGCCAGCGACATGGTACCGTTC pXL008 *GTATAATGTATGCTATACGAAGTTAT*TGCGCGGGTGATCACTTATGG*TACCGTTCGTATAATGTGT* AGATCTGTTTAGCTTGCCTCGTCCCCGCCGGGTCACCCGGCCAGCGACATGGTACCGTTC pXL043 GTATAATGTATGCTATACGAAGTTATTGCGCGGGTGATCACTTATGGTACCGTTCGTATAAAGTAT AGATCTGTTTAGCTTGCCTCGTCCCCGCCGGGTCACCCGGCCAGCGACATGGATAACTTC pXL044 GTATAAAGTATCCTATACGAACGGTATGCGCGGTGATCACTTATGGTACCGTTCGTATAATGTG **Primers for barcoded PPI construction** pZL065 CGGGATCCATGGGCGGTGGCGGATCAGGAGG CCGCTCGAGTCGACACTGGATGGCGGCGT pZL070 pZL071 TCAGGAGGCGGTGGGTCT pZL072 CCGACTATCCAAACCATGTCTACTTTACTGGTACCCAATTCCGGTTGTTCAAT pZL073 AGTAAAGTAGACATGGTTTGGATAGTCGG pZL074 AGACCCACCGCCTCCTGA

Table S3 (Continued). Related to Figure 2. Oligonucleotides used in this study.

gblocks for split drug resistant markers construction

5'HphMX	CCAGCTCCATGTCGCTGGCCGGGTGACCGATTCGGTAATCTCCGAACAGAGTCTTGACGTGCGCAGCTCAGGGGCATGAT GTGACTGTCGCCCGTACATTTAGCCCATACATCCCCATGTATAATCATTTGCATCCATACATTTTGATGGCCGCACGGCGCGA AGCAAAAATTACGGCTCCTCGCTGCAGACCTGCGAGCAGGGAAACGCTCCCCTCACAGACGCGTTGAATTGTCCCCACGC CGCGCCCCTGTAGAGAAATATAAAAGGTTAGGATTTGCCACTGAGGTTCTTCTTTCATATACTTCCTTTTAAAATCTTGCTAG GATACAGTTCTCACATCACA
	ACAGGGTGTCACGTTGCAAGACCTGCCTGAAACCGAACTGCCCGCTGTTCTGCAGCCGGTCGCGGAGGCCATGGATGCGA TCGCTGCGGCCGATCTTAGCCAGACGAGCGGGTTCGGCCCATTCGGACCGCCAAGGAATCGGTCAATACACTACGGCGT GATTTCATATGCGCGATTGCTGATCCCCATGTGTATCACTGGCAAACTGTGATGGACGACACCGTCAGTGCGTCCGTC
3'HphMX	CCAACAATGTCCTGACGGACAATGGCCGCATAACAGCGGTCATTGACTGGAGCGAGGCGATGTTCGGGGGATTCCCAATAC GAGGTCGCCAACATCTTCTTCTGGAGGCCGTGGTTGGCTTGTATGGAGCAGCAGACGCGCTACTTCGAGCGGAGGCATCC GGAGCTTGCAGGATCGCCGCGGGCTCCGGGCGTATATGCTCCGCATTGGTCTTGACCAACTCTATCAGAGCTTGGTTGACGG CAATTTCGATGATGCAGCTTGGGCGCAGGGTCGATGCGACGCAATCGTCCGATCCGGAGCCGGGACTGTCGGGCGTACAC AAATCGCCCGCAGAAGCGCGGCCGTCTGGACCGATGGCTGTGTAGAAGTACTCGCCGATAGTGGAAACCGACGCCCAG CACTCGTCCGAGGGCAAAGGAATAATCAGTACTGACAATAAAAAGATTCTTGTTTTCAAGAACTTGTCATTTGTATAGTTTT TTTATATTGTAGTTGTTCTATTTTAATCAAATGTTAGCGTGATTTATATTTTTTTCGCCTCGACATCATCACCCAGATGCCGAA
	GTTAAGTGCGCAGAAAGTAATATCATGCGTCAATCGTATGTGAATGCTGGTCGCTATACTGCTGTCGATTCGATACTAACGC CGCCATCCAGTGTCGAAAACGAGCTCCATTAGTGAGTAACTCTGTGATATCTCTCTATAATTAGCAGTTTTTCACTGAAATT CCAGGAAAGGTAATAAACTCAGATTTTTTTTTT
5'KanMX	CCAGCTCCATGTCGCCGGGCTGACCGGTGACCGATTCGGTAATCTCCGAACAGAGTCTTGACGTGCGCAGCTCAGGGGCATGATGTGACTGTCGCCCGGGCGCGGGGGGGG
3'KanMX	CAGCTGGCGCGCCTTAAGCAGGAGGGTACCGATATCAGATCTAAGCTTGAATTCGAATTTTACTAACAAATGGTATTAT TTATAAcagcttgataaccttattttigacgaggggaaattaataggttgtattgatgttggacgagtcggaatcgcagaccgataccaggatcttgccatcctatggaactgcctcggtgagttttctc cttcattacagaaacggctttttcaaaaatatggtattgataatcctgatatgaattaaattgcagttcattgatgtcgatgagtttttttaaTCAGTACTGACAATAAAAAGATTCTT GTTTTCAAGAACTTGTCATTGTATAGTTTTTTTATATTGTAGTGTGTTCTATTTTAATCAAATGTTAGCGTGACTTATATTATTTTT TCGCCTCGACATCATCTGCCCAGATGCGAAGTTAAGTGCGCCAGAAAGTAATATCATGCGTCAATCGTATGTGAATGCTGGTC GCTATACTGCTGTCGATTCGAT
5'NatMX	CCAGCTCCATGTCGCTGGCCGGGTGACCGATTCGGTAATCTCCGAACAGAGGCCCAGAATACCCTCCTTGACAGTCTTGAC GTGCGCAGCTCAGGGGCATGATGTGACTGTCGCCCGTACATTTAGCCCATACATCCCCATGTATAATCATTTGCATCCATACA TTTTGATGGCCGCACGGCGCGCAAGCAAAAATTACGGCTCCTCGCTGCAGACCTGCGAGCAGGGAAACGCTCCCCTCACA GACGCGTTGAATTGTCCCCACGCCGCGCCCCTGTAGAGAAATATAAAAGGTTAGGATTTGCCACTGAGGTTCTTCTTTCATA TACTTCCTTTTAAAATCTTGCTAGGATACAGTTCTCACATCACATCCGAACATAAACAACCATGGGTACCACTCTGACGAC ACGGCTTACCGGTACCGCACCAGTGTCCCGGGGGACGCCGAGGCCATCGAGGCACTGGATGGGTCCTTCACCACCGACAC CGTCTTCCGCGTCACCGCCACCGGGGACGGCTTCACCCTGCGGGGAGGTGCCGGTGGACCCGCCCTGACCAAGGTGTTCC CCGACGACGAAgtaTGTTAATATGGACTAAAGGAGGCTTTTGTCGACGGATCCGATATCGGTACCCTCCTGCTTAAGGGCGC GCCAGCTGG
3'NatMX	CCAGCTGGCGCGCCCTTAAGCAGGAGGGTACCGATATCAGATCTAAGCTTGAATTCGAATTTTACTAACAAATGGTATTAT TTATAAcagTCGGACGACGACGAGGGCGCGGGGGGGGGGGGGGGGGGG

Table S3 (Continued). Related to Figure 2. Oligonucleotides used in this study.

Forward primers for EVO1 cycle

P104	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNNCGATGTTTAATATGGACTAAAGGAGGCTTTT			
P105	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNNACAGTGTTAATATGGACTAAAGGAGGCTTTT			
P111	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNNTGACCATTAATATGGACTAAAGGAGGCTTTT			
P112	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNNGCCAATTTAATATGGACTAAAGGAGGCTTTT			
P122	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNNATCACGTTAATATGGACTAAAGGAGGCTTTT			
P124	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNNGGCTACTTAATATGGACTAAAGGAGGCTTTT			
P125	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNNNTAGCTTTTAATATGGACTAAAGGAGGCTTTT			
P130	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNNNTCTCCCCTTAATATGGACTAAAGGAGGCTTTT			
P131	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNNGACGTCTTAATATGGACTAAAGGAGGCTTTT			
P132	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNNGAGGTTTTAATATGGACTAAAGGAGGCTTTT			
P135	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNNGTTAACTTAATATGGACTAAAGGAGGCTTTT			
P137	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNNAACCACTTAATATGGACTAAAGGAGGCTTTT			
P201	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNNGCTTGATTAATATGGACTAAAGGAGGCTTTT			
P202	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNNCAAGAATTAATATGGACTAAAGGAGGCTTTT			
P203	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNNATGCGATTAATATGGACTAAAGGAGGCTTTT			
P204	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNNCATAGGTTAATATGGACTAAAGGAGGCTTTT			
P205	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNNTTTTTGTTAATATGGACTAAAGGAGGCTTTT			
P206	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNNTGGAAGTTAATATGGACTAAAGGAGGCTTTT			
P207	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNNCCGGGCTTAATATGGACTAAAGGAGGCTTTT			
P208	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNCTACTCTTAATATGGACTAAAGGAGGCTTTT			
P209	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNAGTGATTTAATATGGACTAAAGGAGGCTTTT			
P210	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNNTTCGGTTTAATATGGACTAAAAGGAGGCTTTT			
P211	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNGAATCGTTAATATGGACTAAAGGAGGCTTTT			
P212	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNCGCATATTAATATGGACTAAAGGAGGCTTTT			
Reverse prim	ers for EVO1 cvcle			
P101	CTCGGCATTCCTGCTGAACCGCTCTTCCGATCTNNNNNNNTATATACGCTCGAATTCAAGCTTAGATCTGATA			
P108	CTCGGCATTCCTGCTGAACCGCTCTTCCGATCTNNNNNNCGCTCTATCTCGAATTCAAGCTTAGATCTGATA			
P109	CTCGGCATTCCTGCTGAACCGCTCTTCCGATCTNNNNNNGAGACGTCTTCGAATTCAAGCTTAGATCTGATA			
P110	CTCGGCATTCCTGCTGAACCGCTCTTCCGATCTNNNNNNNATACTGCGTTCGAATTCAAGCTTAGATCTGATA			
P126	CTCGGCATTCCTGCTGAACCGCTCTTCCGATCTNNNNNNACTAGCAGATCGAATTCAAGCTTAGATCTGATA			
P127	CTCGGCATTCCTGCTGAACCGCTCTTCCGATCTNNNNNNTGAGCTAGCTCGAATTCAAGCTTAGATCTGATA			
P128	CTCGGCATTCCTGCTGAACCGCTCTTCCGATCTNNNNNNNCTGCTACTCTCGAATTCAAGCTTAGATCTGATA			
P129	CTCGGCATTCCTGCTGAACCGCTCTTCCGATCTNNNNNNNGCGTACGCATCGAATTCAAGCTTAGATCTGATA			
P133	CTCGGCATTCCTGCTGA ACCGCTCTTCCGATCTNNNNNNNCCTCTCCGCTCGA ATTCA AGCTTAGATCTGATA			
P134	CTCGGCATTCCTGCTGAACCGCTCTTCCGATCTNNNNNNNTTAATCCTCTCGAATTCAAGCTTAGATCTGATA			
P136	CTCGGCATTCCTGCTGAACCGCTCTTCCGATCTNNNNNNNATCCGAGTATCGAATTCAAGCTTAGATCTGATA			
P138	CTCGGCATTCCTGCTGAACCGCTCTTCCGATCTNNNNNNNCCGTACACATCGAATTCAAGCTTAGATCTGATA			
P213	CTCGGCATTCCTGCTGA ACCGCTCTTCCGATCTNNNNNNNCTTCTCA A ATCGA ATTCA A GCTTA GATCTGATA			
P214	CTCGGCATTCCTGCTGAACCGCTCTTCCGATCTNNNNNNAGGGTTTATTCGAATTCAAGCTTAGATCTGATA			
P215	CTCGGCATTCCTGCTGAACCGCTCTTCCGATCTNNNNNNNGGCGTCCGTTCGAATTCAAGCTTAGATCTGATA			
P216	CTCGGCATTCCTGCTGAACCGCTCTTCCGATCTNNNNNNGTATTGTAATCGAATTCAAGCTTAGATCTGATA			
P217	CTCGGCATTCCTGCTGAACCGCTCTTCCGATCTNNNNNNGCGCGCTCTTCGAATTCAAGCTTAGATCTGATA			
P218	CTCGGCATTCCTGCTGAACCGCTCTTCCGATCTNNNNNNGCACTCTTCTCGAATTCAAGCTTAGATCTGATA			
P219	CTCGGCATTCCTGCTGAACCGCTCTTCCGATCTNNNNNNNTGTTTGAATTCGAATTCAAGCTTAGATCTGATA			
P220	CTCGGCATTCCTGCTGAACCGCTCTTCCGATCTNNNNNNNCCTGCACACTCGAATTCAAGCTTAGATCTGATA			
P221	CTCGGCATTCCTGCTGAACCGCTCTTCCGATCTNNNNNNGATCTGCAATCGAATTCAAGCTTAGATCTGATA			
P222	CTCGGCATTCCTGCTGAACCGCTCTTCCGATCTNNNNNNNGCTTAAGGCTCGAATTCAAGCTTAGATCTGATA			
P223	CTCGGCATTCCTGCTGAACCGCTCTTCCGATCTNNNNNNCAATGTTGATCGAATTCAAGCTTAGATCTGATA			
P224	CTCGGCATTCCTGCTGAACCGCTCTTCCGATCTNNNNNNCACCGACAGTCGAATTCAAGCTTAGATCTGATA			
Primers for EVO2 cycle				
pE1	CAAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATCT			
pE2	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT			
r				

Table S4. Related to Figure 2. Plasmids used in this study.

Plasmids	Benchling link
pBAR1	https://benchling.com/s/U6S529CV
pBAR6	https://benchling.com/s/5bnewTrg
pBAR7	https://benchling.com/s/SZrma0HA
pBAR8	https://benchling.com/s/seq-Z0ihfMgQookfPNdrNUbi
pBAR9	https://benchling.com/s/seq-sZwuEZxGBuKkVqPVbMbH
pBAR10	https://benchling.com/s/seq-nQBMZqibosBDtnvYukeg
pBAR11	https://benchling.com/s/seq-jn3tDL5Dms6cTcYqmMjg
pBAR12	https://benchling.com/s/seq-mRqqVLrOABycUDiyT0rX
pBAR13	https://benchling.com/s/seq-h6t5XrKxsiuWnZFFlzVl
pBAR14	https://benchling.com/s/seq-spjmIEnVmMNZbO5H0ipI
pBAR15	https://benchling.com/s/seq-heABOqBRCBBygjE2t6Mx
pBAR16	https://benchling.com/s/seq-sagZuUOEY9feDxD8boY4
pBAR17	https://benchling.com/s/seq-4fPJM4Ai4Uz6JHBTovrC
pBAR18	https://benchling.com/s/seq-0Xk4ND4Cx9gKAPNcNPCF
BXL121	https://benchling.com/s/seq-TyAWiSEV1VCbCH4d57dr
BXL122	https://benchling.com/s/seq-xbtvKQuuygVIzCnmLhoX
BXL123	https://benchling.com/s/seq-dMSYSYDOLdl1J1luI62g
BXL124	https://benchling.com/s/seq-ABVeiUGaSLzIKK81GPUL
BXL147	https://benchling.com/s/seq-BxdSoqpcM2EpvtIG807E
BXL149	https://benchling.com/s/seq-eQI5JLEqROIwoJC2hOJ6
BXL160	https://benchling.com/s/seq-PlE41YUcs7dP75g8Pwyj
BXL162	https://benchling.com/s/seq-PEfY1QKeB4vsexZwKJys
BXL164	https://benchling.com/s/seq-u7Z5B54cvPoHzRJoz8Sy
BXL169	https://benchling.com/s/seq-u6rLx3wIweIUK9opIdRH
pS413 TEFpr1-linker-DHFR-HphMX	https://benchling.com/s/seq-6HsHsJUNHIooqHVxpt9i
pAG32 linker-DHFR-HphMX	https://benchling.com/s/seq-5BMVpGySmHJUiWQn7jtY

Table S5. Related to Figure 2. Yeast strains used in this study.

Name	Genotype	Source	identifier
BY4727	MATα his $3\Delta 200$ leu $2\Delta 0$ lys $2\Delta 0$ met $15\Delta 0$ trp $1\Delta 63$ ura $3\Delta 0$	ATCC	200889
BY4741	MATa his $3\Delta 1$ leu $2\Delta 0$ met $15\Delta 0$ ura $3\Delta 0$	ATCC	201388
BY4742	MATα his $3\Delta 1$ leu $2\Delta 0$ lys $2\Delta 0$ ura $3\Delta 0$	ATCC	201389
SHA319	MATα his 3Δ 1 leu 2Δ 0 lys 2Δ 0 ura 3Δ 0 ybr 20 9w::GalCre-NatMX	Jaffe et al., 2016	NA
SHA333	$MATa\ his 3\varDelta 1\ leu 2\varDelta 0\ met 15\varDelta 0\ ura 3\varDelta 0\ ybr 209w::GalCre-NatMX$	This paper	NA
SHA342	$MATa\ his 3\Delta 1\ leu 2\Delta 0\ met 15\Delta 0\ ura 3\Delta 0\ ybr 209w::GalCre-NatMX$	This paper	NA
SHA349	MATα his $3\Delta 1$ leu $2\Delta 0$ lys $2\Delta 0$ ura $3\Delta 0$ ybr 209 w::GalCre-NatMX	Schlecht et al., 2017	NA
XLY001	MATα his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 ybr209w::GalCre-URA3 can1::MFA1pr- HIS3-MFα1pr-LEU2	This paper	NA
XLY003	MATα his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 ybr209w::GalCre-lox71-lox5171/71 can1::MFA1pr-HIS3-MFα1pr-LEU2	This paper	NA
XLY005	MATa his $3\Delta 1$ leu $2\Delta 0$ met $15\Delta 0$ ura $3\Delta 0$ ybr $209w$::GalCre-lox 71 -lox $2272/71$ can1::MFA1pr-HIS3-MF α 1pr-LEU2	This paper	NA
XLY009	MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 ybr209w::GalCre-URA3 can1::MFA1pr- HIS3-MFα1pr-LEU2	This paper	NA
XLY011	MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 ybr209w::GalCre-lox2272/66-lox5171/71 can1::MFA1pr-HIS3-MFα1pr-LEU2	This paper	NA
XLY023	MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 ybr209w::GalCre-lox71/66- HphMX-5'URA3-BC-loxP-lox2272/71 can1::MFA1pr-HIS3-MFα1pr-LEU2	This paper	NA
XLY024	MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 ybr209w::GalCre-lox2272/66- lox5171/71/66-3'URA3-BC-KanMX-lox5171 can1::MFA1pr-HIS3-MFα1pr-LEU2	This paper	NA
XLY058	<i>MATα his3Δ1 leu2Δ0 lys2Δ0 met15Δ0 trp1Δ63 ura3Δ0 ybr209w::GalCre-lox2272/66-lox5171/71</i>	This paper	NA
XLY059	MATα his3Δ1 leu2Δ0 lys2Δ0 met15Δ0 trp1Δ63 ura3Δ0 ybr209w::GalCre-lox71- lox2272/71	This paper	NA
XLY065	MATα his3Δ1 leu2Δ0 lys2Δ0 met15Δ0 trp1Δ63 ura3Δ0 ybr209w::GalCre-lox71- lox5171/71	This paper	NA
XLY082	MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 ybr209w::GalCre-lox71-lox5171/71/66 - 3'HphMX - KanMX can1::MFA1pr-HIS3-MFα1pr-LEU2	This paper	NA
XLY083	MATa his3 $\Delta 1$ leu2 $\Delta 0$ met15 $\Delta 0$ ura3 $\Delta 0$ ybr209w::GalCre-lox71-lox5171/71/66 - 3'NatMX - KanMX can1::MFA1pr-HIS3-MF α 1pr-LEU2	This paper	NA
XLY085	<i>MATa his3</i> Δ 1 leu2 Δ 0 met15 Δ 0 ura3 Δ 0 ybr209w::GalCre-lox71-lox5171/71/66 - 3'KanMX - HphMX can1::MFA1pr-HIS3-MF α 1pr-LEU2	This paper	NA
XLY088	MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 ybr209w::GalCre-HphMX- loxP-5 'NatMX-lox5171/71 can1::MFA1pr-HIS3-MFα1pr-LEU2	This paper	NA
XLY089	MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 ybr209w::GalCre-KanMX- loxP-5 'HphMX-lox5171/71 can1::MFA1pr-HIS3-MFα1pr-LEU2	This paper	NA
XLY090	MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 ybr209w::GalCre-HphMX- loxP-5 'KanMX-lox5171/71 can1::MFA1pr-HIS3-MFa1pr-LEU2	This paper	NA
XLY091	MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 ybr209w::GalCre-lox71/66- HphMX-5'URA3-BC-loxP-lox5171/71 can1::MFA1pr-HIS3-MFα1pr-LEU2	This paper	NA
XLY092	MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 ybr209w::GalCre-lox71- lox5171/71/66-3'URA3-BC-KanMX-lox5171 can1:: MFA1pr-HIS3-MFα1pr-	This paper	NA