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eAppendix 1: Near-Far matching, prior to Instrumental Variable (IV) estimation.

1.1 Overview

Near-far matching is a matched-pair IV study design that aims to reduce weak instrument bias by
ensuring that within the matched pairs, units are ‘“far’ apart on the instrument but ‘near’ according
to other baseline covariates 3. Hence there are | matched pairs, with the units in each pair indexed
by j ={1,2}, which are ‘near’ according to observed covariates (x), i.e. Xi1= Xi2, but far according to the

instrument (Z), implying (Zi1 - Zi) is large for each matched pair i=1,...1.

1.2 Application of the near-far matching algorithm to strengthen the IV in the (SPOT)light study,

while balancing baseline prognostic variables

We use the same matched data as a previous paper that assessed the overall effectiveness of ICU
transfer using the (SPOT)light data. For full details of the matching algorithm, interested readers are

referred to the paper by Keele et al (2019)*, and so here we provide an overview of the key features.

The aim of the near-far matching algorithm was to strengthen the instrument, the number of beds
available at the time of assessment, while balancing the baseline covariates between the groups
under comparison. The comparison groups are defined as those patients assessed when there were
‘many’ versus ‘few’ ICU beds available. To obtain the matched dataset, Keele et al (2019) first
calculated the pairwise distance between patients included in the sample using the rank-based
Mahalanobis distance metric which is robust to low-incidence binary variables and variables with
highly skewed distributions °. For two covariates, the current level of care, and the recommended
level of care, a small fraction of data were missing. Instead of imputing these missing values based
on a model, a method recommended by Rosenbaum (2010) > was used. Missing values were
imputed using the mean for that covariate and a separate indicator for whether the value was
missing was created. The imputed values were included in the distance calculation. The indicators
for missing data were subsequently included in the match to ensure that the rate of missingness was

balanced across comparison groups.

Next, to obtain the near-far match, Keele et al (2019) matched with a reverse caliper? so that only

those matches where the difference in the instrumental variable (Z;; - Zi;) exceeded a threshold, A,

L While typically caliper matching attempts to avoid poor matches by imposing
a tolerance on the maximum distance between matched pairs (Cochran and Rubin 1973), Keele et al use a
caliper to reject matches by imposing a tolerance on the minimum distance between matched pairs.
© 2019 Grieve R et al. JAMA Network Open.
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were acceptable. The larger the required difference in the instrumental variable, the more difficult it
may be to find those units similar according to observed covariates. Hence, to balance covariates
while strengthening the instrument, it may be necessary to remove some observations. Here, the
matching algorithm used optimal subset matching ®, which seeks to find the largest set of matched
pairs such that the average matched distance within a pair did not exceed a particular threshold §.
The parameter & can also be viewed as a penalty, describing the cost of excluding a treated
individual from the match. In general, as the value for § is increased, sufficiently large samples meet
the average distance criterion, so that the match does not exclude anyone (at the cost of greater
covariate imbalance), and as & is decreased, more units will be excluded so that only the closest

pairs will be retained in the match.

Keele et al (2019) undertook a grid search which iterated over values of A and § to produce those
matches judged to lead to sufficient balance, and instrument strength. In this study, A=1.5 times the
standard deviation of the instrumental variable (number of beds available) and § =1000 for the
average matched distance, were judged most appropriate. Choosing A=1.5, resulted in the exclusion
of those matched pairs where the difference between the matched patients was that there were
less than three beds available in the ICU at the time of assessment. Hence, patients were excluded
from the matched data if it was not possible to find a corresponding patient with similar covariates
but a difference of at least three ICU beds available at assessment. The net result was that the
sample size was reduced from 13,011 (unmatched) to 9,192 patients (4,596 matched pairs), but the

characteristics of the patients included in the matching were similar to those excluded (eTable 2).
1.3 Performance of the matching algorithm

Following the near-far matching, the balance of the matched data according to the level of the
instrument was assessed for each baseline covariate. First, the standardized mean differences were
reported across two groups defined as the subsamples of patients who were admitted when there
were ‘many’ versus ‘few’ beds available. Here the results show that the standardized differences
were relatively low (all less than 10) (see main text, Table 1). Second, the levels of the covariates
(rescaled by their standard deviations) were compared according to the levels of the IV, the number
of beds available. If the covariates influencing outcomes tend not to vary across levels of the IV (as is
the case here (eFigure 1), this increases confidence that the IV only influences outcomes through its
influence on the likelihood of ICU transfer. Overall, the near-far matching algorithm provides good

covariate balance across the levels of the IV.
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As intended, the near-far matching algorithm also increased the strength of the instrument,
assessed using the Cragg-Donald Wald F-statistic for weak instruments and by comparing the
proportion of patients transferred to ICU when there were ‘many’ versus ‘few’ beds available. In the
near-far matched data, the proportion of patients transferred to ICU was 10.3 percentage points
higher when ‘many’ beds were available (43.4%) than when ‘few’ beds were available (33.1%) and
the Cragg-Donald Wald F-statistic for weak instruments was 70.962. For comparison, when the
instrument is not strengthened, that is when a ‘near’ matching algorithm was used instead, the
difference in the proportion of patients transferred to ICU was only 7.1 percentage points (33.9%

versus 41%) and the Cragg-Donald Wald F-statistic was 63.247.

According to these results the near-far matching algorithm balanced the observed covariates, that is:
age, gender, NEWS SOFA and ICNARC physiology scores, CCMDS level at assessment, and timing (out
of hours, winter, and weekend or not) while increasing the imbalance for the IV as desired (STROBE

checklist).

We now describe the intuition behind the particular IV approach taken to report the effectiveness of

ICU transfer for deteriorating ward patients.

eAppendix 2: The intuitive ideas behind essential heterogeneity, marginal treatment effects

(MTEs) and person-centered treatment (PeT) effects.

2.1 Essential heterogeneity

Studies examining the impact of ICU care often distil comparisons down to a single number that
represents the average incremental benefit or harm 72, This approach ignores evidence that there is
substantial variability in the case-mix of patients admitted to ICU, and the effectiveness of ICU care
may be heterogeneous. A further challenge is that the selection of patients for ICU transfer is
according to risk factors that modify the effectiveness of ICU care, and many of these factors, such as
the patient’s frailty or pre-admission health status may remain unmeasured. In particular, clinicians
may select those patients for ICU transfer according to their anticipated gain in health outcome, but

their health status at assessment is not measured in the data recorded.

These issues limit the usefulness of traditional approaches that report the effectiveness of ICU care
overall, or for a limited range of measured patient subgroups. Together, heterogeneous effects of
ICU transfer and selection into ICU based on anticipated gains are termed ‘essential heterogeneity’.

In the presence of this ‘essential heterogeneity’ previous methodological research has shown that

© 2019 Grieve R et al. JAMA Network Open.



traditional IV regressions tend to estimate a local average treatment effect parameter that is often
not interpretable, or of clinical relevance. In particular, the resultant estimate only applies to the ill-
defined subgroup who would have switched treatment modality according to a change in the level of

the instrument 2%,

We address these concerns with a recently developed econometric methodology that uses an
instrumental variable (V) to address selection biases in observational studies and establish person-
centered treatment (PeT) effects 1618, PeT effects estimate an average treatment effect for each
person in the data, conditioning on their observed characteristics and the level of the IV, and
crucially accounting for their individualized distribution of unobserved heterogeneity (see next
section). Consequently, such individualized effects can help answer distributional questions on
effectiveness, such as examining the benefits and harms of ICU care versus care in a general ward,

and identifying subgroups that are most likely to benefit from such care.

2.2 Marginal treatment effects (MTEs)

To provide the intuition behind these concepts, we pose a clinical question; is transfer to ICU
effective for deteriorating ward patients? Some clinicians believe that the effectiveness of ICU care
differs according to patients underlying health condition and age, and select patients for ICU
accordingly. One challenge for the analysis is that not all of the required variables are measured.
Suppose the available dataset contains for each patient: age, mortality, and a valid instrumental
variable, the number of ICU beds available at assessment (NBA). The fewer the NBA, the less likely

the patient is to be transferred to ICU.

A local instrumental variable (LIV) approach can be used to overcome the problem of essential
heterogeneity when a multivalued instrument, such as NBA, is available. LIV methods are used to
estimate the marginal treatment effects (MTEs) parameters. MTEs are the treatment effects for
those individuals for whom the influence of the observed characteristics (age and NBA in the stylized
example), balance with those of the unobserved confounders (medical history) on the decision to
transfer the patient, such that the clinician is indifferent to the decision as to whether or not to

transfer the patient to ICU (see Figure 1 in main text).

To estimate an MTE, the LIV approach compares the outcomes of two groups of similar patients (say
aged 50), where one group is faced with a constraint of d beds available and the other a slightly
weaker constraint d+g, with € representing a slight increase in beds available. These two groups of

patients should be identical with respect to the distribution of their risk factors (observed and
© 2019 Grieve R et al. JAMA Network Open.



unobserved) provided NBA is independent of all risk factors affecting outcomes. Hence the
individual’s propensity for transfer is identical, beyond the slight difference in the constraint
according to the number of beds. By definition, this independence assumption will hold if NBA is a
valid instrumental variable (assumption 2 below). The decision as to whether to transfer these
similar patients to ICU is only according to the NBA, which does not directly influence outcomes
(assumption 2 below). Therefore any difference in average outcomes between these two groups is
only driven by the receipt of ICU care or not, for this margin of patients where the clinicians were
indifferent between transfer and not, but were nudged to transfer by the small perturbation of the

instrumental variable, i.e. NBA.

For this margin of patients, we can quantify a normalized level of unobserved confounders that was
sufficient to balance their observed confounders at the considered level of NBA (d). Here,
normalized means a scalar score that represents a balancing score for unobserved risk factors,
irrespective of their empirical distributions. One can think of the normalized level of unobserved
confounders as the propensity not to transfer the patient based on unobserved confounders. If the
observed and unobserved risk factors do not balance, then the small perturbation induced by the
nudge would have been inadequate to affect treatment selection. The obvious but crucial
consequence is that we can use this insight to quantify the effect of the unmeasured confounders on

treatment selection.

By definition for marginal patients, the propensity to transfer the patient to ICU equals the
propensity not to. The difference in average outcomes between the two groups of similar patients
(e.g. aged 50) represents the marginal treatment effect (MTE) for those patients at that particular

normalized level of unobserved confounders.

Similarly, for another dyad of NBA, d’ and d’+ €, one can estimate another MTE at another
normalized level of unobserved confounder. In this way, a full schedule of MTEs can be estimated
that vary over the unobserved confounder levels (i.e. past medical history here) given the level of
the observed confounders (i.e. age here). MTEs can be calculated by considering different values of
the observed covariates, which will imply different values of the normalized unobserved
confounders.? Once MTEs are estimated over the range of observed and normalized unobserved
confounder levels, they can then be aggregated to form meaningful treatment effect parameters

such as the ATE, CATEs, ATT and ATC.

2 |n this study, MTEs are estimated at 9,064 unique covariate/IV combinations.
© 2019 Grieve R et al. JAMA Network Open.
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2.3 Person-centered treatment (PeT) effects

The MTEs can also be aggregated to study heterogeneity in effects using person-centered treatment
(PeT) effects. PeT effects are obtained by averaging the MTEs over only the normalized levels of the
unobserved confounder (e.g. medical history) that conforms with the observed decision whether or
not to transfer the patient to ICU. Intuitively, if based on a patient’s observed information (age), it is
unlikely that they would be transferred to ICU, but we observe that they are in fact transferred, this
conveys useful information about their unobserved confounders (e.g. medical history) (See eFigure 2
for further details). Accordingly, when averaging the MTEs to estimate an effect for this patient
conditional on their observed covariates, we would not consider MTEs that imply values of the
unobserved confounders that are incompatible with the observed transfer decision. By taking
account of the individual’s context in this manner, the PeT effect is more personalized than CATEs

which average across all of the MTEs conditional on the observed covariates.
We next consider the formal models on which the estimation of PeT effects is based.

eAppendix 3: Formal models behind essential heterogeneity, marginal treatment effects and

person-centered treatment (PeT) effects.
3.1 Structural models

We start by formally developing structural models of outcomes and treatment choice %2, There are
two treatment states (D = 0 or 1) — transfer to ICU (treated) state denoted by D = 1 and continued
care in a general ward (untreated) state denoted by D = 0. The corresponding potential individual

outcomes (Yp) in these two states are denoted by Y; and Yo and can be defined as:

(Eq. 1) Y1 = py (X, Xy, €) and ¥g = .“O(Xo:Xuy: €)

Y’

where Xo is a vector of observed random variables, X, is a vector of unobserved random variables
which are also believed to influence treatment selection (they are the unobserved confounders), and
€ is an unobserved random variable that captures all the remaining unobserved random variables
which influence outcomes but not treatment selection. We assume that observed covariates are
exogenous (assumption 1a and 1b) implying that endogeneity only arises through the decision of

whether or not to transfer the patient to ICU (D):

© 2019 Grieve R et al. JAMA Network Open.



Assumption 1: (a) (X,,Xy,) L eand (b) X, L X,

We assume the existence of an instrumental variable, Z, that influences whether the patient is
transferred to ICU (assumption 2a), but is independent of the unobserved confounders (assumption

2b):
Assumption 2: (a) cov(D, Z|Xy) # 0 and (b) X, L Z|X,

Prior to the realization of the outcome of interest, Yp, individuals are assigned to be in treatment
state 1 or 0 according to whether the influence of the observed covariates and the IV that encourage
ICU transfer, dominate the influence of the unobserved confounders (XuD) that discourage ICU

transfer as represented in equation 2:
(Eq.2) D=1if up(X,, Z) — Xy, > 0, and D = 0 otherwise

where w, is an unknown function of Xp and Z, and X,, , is a random variable that captures X,,, and all

remaining unobserved random variables influencing the transfer decision (but not outcomes).

Equations (Eq. 1) and (Eq. 2) represent the nonparametric models that conform to the Imbens and
Angrist’s independence and monotonicity assumptions *° needed to interpret instrumental variable
estimates in a model of heterogeneous returns 3. While Equation 2 is written in levels, we can re-
express it in terms of probabilities. As in Heckman and Vytlacil (1999, 2001, 2005)'*3, we can

rewrite (Eq. 2) as
(Eg.3) D=1 if P(X, = x,,Z = z) >V, and D=0 otherwise

where V' = FXuD [Xup|Xo = %0,Z = z], P(x,,2) = FXuDlxayz[“D (x5,2)|X,,Z] and F represents a
cumulative distribution function. Therefore, for any arbitrary distribution of X, | conditional on Xo

and Z, by definition, V ~ Uniform[0, 1] conditional on Xo and Z.

To estimate the probability of being in treatment state 1 consistently requires that the instrument is
conditionally independent of the unobserved covariates influencing the transfer decision

(Assumption 3):

Assumption 3: X, | L Z|X,

© 2019 Grieve R et al. JAMA Network Open.



3.2 Marginal Treatment Effects

A MTE is perhaps the most nuanced estimable effect. It identifies an effect for an individual whose
observed (xo and z) and unobserved covariates (captured by v which includes x,,, ) make his
physician indifferent between transferring the patient to ICU or keeping them in the general ward
i.e. P(x,,z) = v. Under regular IV assumptions, Heckman and Vytlacil (2001) 12 show that Marginal

Treatment Effects can be identified by

0E:(Y|x,,Z
(Eq. 4) % = E.((Y, — Yp)|X,, V = v) = MTE(x,,v),

where Y; and Yy are the outcomes in State 1 and 0, Y = D*Y; + (1 - D)*Y, is the observed outcome and

p is the propensity score.
3.3 Person Centered Treatment Effects

For a particular individual we will not observe v, meaning we cannot estimate their treatment effect
E(Y; — Yy|x,,v) and they may not be marginal (i.e. P(x,,z) # v) making the MTE inappropriate.
However, their actual treatment assignment allows us to infer that v < P(x,,z) if we observe they
were transferred to ICU and v 2 P(xo,z) if they remained in a general ward. This insight allowed Basu
(2014) *® to define the Person centered treatment (PeT) effect as E(Y; — Yy|x,, V < P(x,,z)) for
individuals in the treated group (ICU) and E (Y; — Yy|x,,V = P(x,, z)) for individuals in the control
group (general wards). The PeT is more nuanced than the CATE as it takes account of the plausible

range of values that v may take.

Conceptually, a PeT effect is a weighted average of MTEs. For an individual in the treated group, the

PeT effect would be3:

P(x0,Z)
PeT effect = E(Y; — Yo|xo,V < P(x,,2)) = P(xo,z)‘lf MTE (x,,v) dv
0

For any given individual, the PeT effect identifies the specific margins where that individual may
belong given their individual values of Xo, P(x,, z) and D. It then averages the MTEs over those

margins. This distinguishes the PeT from the CATE which averages MTEs across all margins.

3 Similarly, a PeT effect for a person in the control group can be obtained by integrating MTEs over
values of V greater than P(x,, 2).
© 2019 Grieve R et al. JAMA Network Open.
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eAppendix 4: Estimating marginal treatment effects (MTEs) and PeT effects.

Before estimating PeT effects, we must first estimate the MTEs using an LIV approach. A control

function is estimated, which models how the outcome (Y) varies over:

I the observed patient and ICU-level characteristics (risk factors)
Il.  the estimated IV-dependent propensity to be transferred to ICU (p(x,, z)) and interactions
between the propensity score and the risk factors and

Ill.  polynomials of the propensity score (K(a; p(x,,2))).

This control function can be written in general form as:

(Eq.5) E(Y|Xp,P(x,2)) =g (ao +a.Xp + az X p(x,,2) X Xg + K(a; ﬁ(xo,z)))
where g is a function that depends on the properties of the outcome variable (e.g. the normal or
logistic CDF for a binary variable). The partial derivate of the outcome, as characterized by the
control function, with respect to the IV-dependent propensity score, p(x,, z) (reflecting marginal
changes in the IV), estimates the marginal treatment effect according to specific values of the scalar
unobserved risk factor levels (V = p(x,, 2)).
ag (ao + a1 Xp + az X p(x,,2) X Xo + K(a; ﬁ(xo,z)))

dp

MTE =

To calculate the PeT estimates, the MTE is calculated at different possible values of p(x,, )
corresponding to different possible values at which the patient would be a marginal patient (i.e.
P(x,,2) = V). Next the MTEs that correspond to values of V that would be inconsistent with
whether or not the patient was actually transferred to ICU (based on Eq. 3) are eliminated. The

remaining MTEs are then averaged to give the patient’s PeT estimate.

eAppendix 5: Implementation of PeT for evaluating the effectiveness of ICU transfer for

deteriorating ward patients.

To implement the PeT method on the matched sample, we first estimate the probability of being in
the treated group (D=1) conditional on the covariates and the IV (number of ICU bed available) and
predict the propensity score for each individual in the matched sample P(x,, z). We require that this
propensity score has mass at any value (rounded to 0.01) for both levels of the exposure so

observations at values of the rounded propensity score that do not meet this criterion are dropped.

© 2019 Grieve R et al. JAMA Network Open.
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Next we determine an appropriate model for the outcome equation, g(.). Since our outcome of
interest, mortality, is binary we use a probit model for this equation also. We include the baseline
covariates, hospital fixed effects, the propensity score and also include interactions between the
covariates and the propensity score as suggested in Basu (2015) 7. The hospital fixed effects are not

interacted with the propensity score to preserve degrees of freedom.

After specifying this equation, which is the second stage of an LIV estimand (Eg. 5), we obtain
marginal treatment effects using numerical integration. To do so, we compute the marginal

ag . . L
treatment effect (d—g), and then evaluate it 1,000 times replacing p by a random draw, u, from a

uniform distribution with the minimum and maximum values determined by the range of the
estimated propensity scores. These values represent the distribution of MTEs for the individual at
different possible levels of unobserved covariates, V. Next, we determine for each of the 1,000
draws of u, whether the value would be consistent with the individual being in the treated or

comparison group as in Equation 2 above. To do so we define the latent variable D* =
{<b‘1 (ﬁ(xo,z)) + o711 - u)}, with the individual assigned to treatment if D* > 0 and assigned to

the comparison group otherwise. The PeT for the individual is then calculated by averaging the MTEs

over the subset of MTEs consistent with their actual treatment assignment.

These individual level PeTs are then aggregated to obtain a CATE for a number of subgroups: for the
treated group giving the average treatment effect on the treated (ATT), for the comparison group
giving the average treatment effect on the untreated (ATUT) and also by age category, NEWS score,
NEWS risk category, ICNARC score, SOFA score, and age category combined with each of the

physiology measures.

To obtain standard errors for the PeT effect estimates, we use a bootstrap approach, where we
resample with replacement 1,000 times and for each bootstrap sample we repeat the entire process
outlined above including estimation of the propensity score and the outcome models. The standard
deviation of the individuals’ (or sub groups’) bootstrapped estimates represents the standard error

of the PeT estimate.

eAppendix 6: Details of predictive models.
We applied a logistic regression analysis to explore which subgroups of patients were predicted to
have an estimated reduction in the absolute risk of 28-day mortality following ICU transfer of greater

© 2019 Grieve R et al. JAMA Network Open.
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(or less) than 10%, the magnitude of clinical benefit upon which the initial power calculation for the
(SPOT)light study was based. Of the 9,068 patients, 3,472 (38.5%) had PeT estimates exceeding this
threshold (PeT < -10%). The model included the following predictors: age, age squared, gender,
diagnosis of sepsis, peri-arrest, NEWS, SOFA and ICNARC physiology scores, CCMDS level at
assessment and recommended level, and timing (out of hours, winter, and weekend or not). Since
PeT estimates for some patients are more precisely estimated than for others, the logistic regression
was also estimated after weighting each individual’s data by the inverse of the standard error of
their PeT estimate. The results are presented in eTable 6. The patients predicted to benefit more
from ICU transfer were those who were older, admitted during winter, during the week and within

usual office hours, and with higher physiology scores indicating greater severity.

eAppendix 7: Sensitivity Analyses.

As an initial sensitivity check, the ATE calculated by averaging the individual PeT estimates was
compared to estimates obtained from two stage least squares (2SLS). 2SLS does not estimate the
ATE, rather it estimates a weighted average of local average treatment effect (LATE). We note that
the LATE estimate is larger than the PeT effects (eTable 3), although it is not immediately clear to
which patients this estimate relates.eTables 10 and 11 compare average treatment effect estimates
based on alternative model specifications to the base case. In the baseline model (Model 1), the
treatment and outcome equations were modelled using probit functional form. To assess whether
results are sensitive to the functional form assumption, Model 2 used a logistic regression for the
treatment equation and Model 3 used logistic regression for both the treatment and outcome
equations. To assess the sensitivity of results to the inclusion/exclusion of explanatory variables
Model 4 removed the physiology scores completely, Model 5 included the physiology scores but did
not include squared terms. Model 6 included interactions between the physiology scores but did not
include squared terms, while Model 7 included physiology scores, squared terms and interactions.
As shown in eTable 10, the overall ATE is quite robust to these changes. eTable 11 reports similar
sensitivity analyses for the conditional average treatment effects by subgroups for 90 day mortality.
The subgroups are, as described above, based on the type of care (general ward vs ICU), age
category, NEWS risk category and NEWS score. The subgroups effects are robust to changes to the
model specification, although leaving out the physiology score alters results somewhat as might be

expected (Model 4).

© 2019 Grieve R et al. JAMA Network Open.
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Supplementary Figures and Tables

eTable 1: Baseline characteristics of all deteriorating ward patients receiving ICU versus General

Ward care, before matching.

Standardized

Characteristics ICU General ward .
difference
No. of admissions 4,994 8,017
No. of ICU beds available
Mean (SD) 4.63 (3.22) 4.05 (3.13) 0.181
Median (Min, Max) 4 (0, 18) 3 (0, 19)
Age, mean (SD) 63.77 (16.74) 66.08 (18.30) -0.132
Male sex, n (%) 2,728 (54.6%) 4,105 (51.2%) 0.069
Reported sepsis diagnosis, n (%) 3,380 (67.7%) 4,553 (56.8%) 0.226
CCMDS level of care at visit, n (%)
Level 0 490 (9.8%) 1,231 (15.4%) -0.168
Level 1 3,064 (61.4%) 5,774 (72.0%) -0.228
Level 2 1,301  (26.1%) 944 (11.8%) 0.371
Level 3 104 (2.1%) 22 (0.3%) 0.168
Missing 35 (0.7%) 46 (0.6%) 0.016
Recommended CCMDS level of care
at visit, n (%)
Level 0 86 (1.7%) 838 (10.5%) -0.371
Level 1 1,183  (23.7%) 5,830 (72.7%) -1.126
Level 2 2,539 (50.8%) 1,229 (15.3%) 0.815
Level 3 1,152 (23.1%) 52 (0.6%) 0.739
Missing 34 (0.7%) 68 (0.8%) -0.019
Peri-arrest, n (%) 456 (9.1%) 191 (2.4%) 0.293
Acute Physiology scores, mean (SD)
ICNARC 17.40 (7.76) 13.63 (6.55) 0.524
SOFA 3.90 (2.33) 2.68 (1.95) 0.565
NEWS 7.07 (3.17) 5.68 (2.93) 0.456
NEWS Risk class, n (%)
None 93 (1.9%) 258 (3.2%) -0.086
Low 956 (19.1%) 2,451 (30.6%) -0.267
Medium 1,240 (24.8%) 2,487 (31.0%) -0.138
High 2,705 (54.2%) 2,821 (35.2%) 0.389
Time of admission, n (%)
Weekend 1,261 (25.3%) 1,969 (24.6%) 0.016
Out of hours 1,983 (39.7%) 2,608 (32.5%) 0.150
Winter 1,299 (26.0%) 2,064 (25.7%) 0.006

ICU, intensive care unit; SD, Standard Deviation, CCMDS, Critical Care Minimum Dataset; ICNARC
ICNARC, Intensive Care National Research and Audit Centre; SOFA, Sequential Organ Failure
Assessment; NEWS, National Early Warning Score. The NEWS score ranges from 0 (least severe) to
20 (most severe). The SOFA score from 0 (least severe) to 14 (most severe), and the ICNARC
physiology score from 0 (least severe) to 100 (most severe).

© 2019 Grieve R et al. JAMA Network Open.
15



eTable 2: Baseline characteristics for the patients in the unmatched versus matched samples.

Characteristics Unmatched Matched
Number of admissions 13,011 9,192
Age 65.19 (17.8) 65.11 (17.5)
Male, n (%) 6,833 (52.5%) 4,874 (53.0%)
?aenpyc)”rtne?(y:)eps's diagnosis 7,933 (61.0%) 5,741 (62.5%)
CCMDS level of care at visit,
n (%)
Level 0 1,721 (13.2%) 1,100 (12.0%)
Level 1 8,838 (67.9%) 6,409 (69.7%)
Level 2 2,245 (17.3%) 1,547 (16.8%)
Level 3 126 (1.0%) 84 (0.9%)
Missing 81 (0.6%) 52 (0.6%)
Peri-arrest, n (%) 647 (5.0%) 397 (4.3%)
Acute Physiology scores
ICNARC 15.08 (7.28) 15.15 (7.26)
SOFA 3.15 (2.18) 3.15 (2.17)
NEWS 6.21 (3.10) 6.23 (3.08)
NEWS Risk class, n (%)
None 351 (2.7%) 245 (2.7%)
Low 3,407 (26.2%) 2,394 (26.0%)
Medium 3,727 (28.6%) 2,591 (28.2%)
High 5,526 (42.5%) 3,962 (43.1%)
Time of admission
Weekend 3,230 (24.8%) 2,231 (24.3%)
Out of hours 4,591 (35.3%) 3,198 (34.8%)
Winter 3,363 (25.8%) 1,920 (20.9%)

ICU, intensive care unit; SD, Standard Deviation, CCMDS, Critical Care Minimum Dataset; ICNARC
ICNARC, Intensive Care National Research and Audit Centre; SOFA, Sequential Organ Failure
Assessment; NEWS, National Early Warning Score. The NEWS score ranges from 0 (least severe) to
20 (most severe). The SOFA score from O (least severe) to 14 (most severe), and the ICNARC
physiology score from 0 (least severe) to 100 (most severe).
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eTable 3: Comparison of overall effects, estimated by PeT versus 2-stage least squares (2LS).

Baseline PeT

Model 2SLS
28-day mortality -4.9% -34.00%
(-26.4%, 16.6%) (-89.9%, 21.9%)
90-day mortality -4.7% -25.60%

(-28.5%, 19.2%)  (-83.8%, 32.5%)
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eTable 4: Summary of effects on 28-day mortality, by subgroup.

Incremental 95% Confidence Incremental 95% Confidence
effect™ Interval effect™ Interval

Type of care: NEWS score
General
ward 3.3% -15.2% 21.8% 0 3.7% -12.1% 19.5%
ICU -10.1% -33.2% 13.0% 1 2.8% -12.9% 18.4%
Age category 2 4.0% -11.8% 19.7%
18-23 7.7% -5.5% 21.0% 3 2.9% -14.1% 20.0%
24-29 7.1% -6.7% 21.0% 4 2.7% -14.1% 19.5%
30-35 5.9% -7.7% 19.4% 5 1.1% -17.5% 19.7%
36-41 3.0% -12.3% 18.2% 6 -0.9% -20.5% 18.7%
42-47 1.9% -13.4% 17.2% 7 -1.1% -21.5% 19.3%
48-53 0.1% -16.0% 16.2% 8 -3.9% -25.4% 17.6%
54-59 -2.4% -21.0% 16.2% 9 -5.6% -28.2% 17.0%
60-65 -3.7% -22.9% 15.5% 10 -8.4% -31.6% 14.7%
66-71 -4.1% -24.4% 16.1% 11 -11.2% -35.7% 13.2%
72-77 -5.0% -26.5% 16.6% 12 -16.6% -43.7% 10.5%
78-83 -4.2% -26.9% 18.5% 13 -13.6% -38.6% 11.4%
84-89 -1.9% -25.9% 22.1% 14 -20.6% -51.4% 10.2%
90-95 2.6% -24.2% 29.3% 15 -22.7% -55.2% 9.7%
96-101 8.5% -22.1% 39.0% 16 -33.7% -80.0% 12.5%
NEWS risk category 17 -25.0% -59.7% 9.6%
0 3.2% -12.4% 18.9% 18 -19.6% -74.0% 34.8%
1 2.4% -14.1% 18.9% 19 -25.4% -50.6% -0.2%
2 -0.2% -19.2% 18.9%
3 -5.8% -28.0% 16.3%

18

© 2019 Grieve R et al. JAMA Network Open.



eTable 5: Summary of effects on 28- and 90-day mortality, by age group and level of NEWS score.

28-day mortality 90-day mortality
Incremental 95% Confidence Incremental 95% Confidence
effect™ Interval effect™ Interval
Aged < 75 & NEWS score:
Low (<5) 1.4% -14.5% 17.4% 2.5% -18.0% 23.0%
Moderate (5-6) -2.1% -21.1% 16.9% -1.1% -23.0% 20.8%
High (>6) -8.4% -31.0% 14.1% -6.8% 30.8% 17.3%
Aged 2 75 & NEWS score:
Low (<5) -1.0% -24.8% 22.8% -3.3% -31.6% 25.0%
Moderate (5-6) -4.8% -30.5% 20.9% -7.0% -34.0% 20.1%
High (>6) -11.6% -39.0% 15.8% -12.5% -40.0% 15.1%
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eTable 6: Baseline characteristics explaining variations in PeT effects following ICU transfer versus

general ward care on 28-day mortality.

Weighted by inverse of standard

ight
Unweighted deviation of PeT
Odds Ratio 95% CI Odds Ratio 95% ClI

Age 1.144%** (1.091, 1.2) 1.243** (1.153, 1.34)
Age squared 0.999%*** (0.999, 1) 0.999%*** (0.998, 0.999)
Male 0.904 (0.795, 1.029) 0.848** (0.746, 0.965)
R ted i

CPOTIEASERSIS ) ga1%*x (0.536, 0.766) 0.618%** (0.506, 0.756)
diagnosis (any)
CCMDS level of
care at visit

Level 1 0.061*** (0.031, 0.123) 0.036*** (0.013, 0.095)

Level 2 0.430** (0.224, 0.827) 0.28%* (0.101, 0.778)

Level 3 0.789 (0.238, 2.609) 0.429 (0.072, 2.546)

Missing 0.359** (0.151, 0.851) 0.551 (0.14, 2.165)
Peri-arrest 3.631%** (2.46, 5.359) 2.631*** (1.792, 3.863)
Acute Physiology
scores

ICNARC 1.193*** (1.143, 1.245) 1.254*** (1.191,1.32)

SOFA 1.083*** (1.064, 1.102) 1.088*** (1.059, 1.118)

NEWS 2.113%** (1.868, 2.389) 2.324%** (1.958, 2.758)
Time of admission
Weekend 0.752%** (0.611, 0.926) 0.591%** (0.464, 0.753)
Out of hours 0.404%** (0.31,0.528) 0.395%** (0.249, 0.627)
Winter 1.133 (0.913, 1.406) 1.353* (0.964, 1.899)

Reference group: Reduction in absolute risk of 28-day mortality following ICU transfer of less
than 10%, Statistically significantly different from 1: *** = at 1% level; **=at 5% level; * = at
10% level.
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eTable 7: Local instrumental variable (LIV) model for 28-day mortality.

Main effect Interaction with propensity score
Odds 95% Confidence . 95% Confidence
. Odds Ratio
Ratio Interval Interval
Age -0.033 (-0.08, 0.014) 0.034%*** (0.011, 0.058)
Age squared 0.0002 (-0.0002, 0.001) -0.0001 (-0.0003, 0.0001)
Male 0.003 (-0.233, 0.239) 0.022 (-0.088, 0.133)
Reported sepsis g (-0.135, 0.315) -0.03 (-0.147, 0.087)
diagnosis (any)
CCMDS level of
care at visit
Level 2 -0.191 (-0.534, 0.151) 0.113 (-0.123,0.348)
Level 3 2.557 (-18.1, 23.2) -2.144 (-22.8, 18.5)
Missing 0.854 (-58.1, 59.8) -0.108 (-27.2, 27.0)
Recommended
CCMDS level of
care at visit
Level 2 0.034 (-0.607, 0.675) 0.122 (-0.336, 0.58)
Level 3 -0.655 (-4.177, 2.867) 0.962 (-2.784, 4.708)
Missing -8.295 (-352.9, 336.3) 0.492 (-16.7,17.7)
Peri-arrest -0.052 (-0.541, 0.436) -0.072 (-0.45, 0.305)
Acute
Physiology
scores
ICNARC -0.0005 (-0.061, 0.06) 0.015 (-0.025, 0.056)
ICNARC- -0.0002 (-0.002, 0.001) 0.0002 (-0.001, 0.001)
squared
NEWS 0.001 (-0.114, 0.115) 0.058* (-0.008, 0.123)
NEWS-squared -0.001 (-0.009, 0.006) 0.00002 (-0.004, 0.005)
SOFA -0.129 (-0.321, 0.063) -0.001 (-0.097, 0.095)
SOFA-squared 0.003 (-0.016, 0.022) 0.014%** (0.002, 0.025)
Time of
admission
Out of hours 0.147 (-0.065, 0.358) -0.013 (-0.127,0.101)
Weekend 0.178 (-0.069, 0.425) -0.039 (-0.161, 0.082)
Winter -0.01 (-0.278, 0.259) -0.002 (-0.146, 0.141)
Constant -3.49%** (-4.181, -2.8) 1.614* (-0.185, 3.413)

Statistically significantly different from 1: *** = at 1% level; **=at 5% level; * = at 10% level.
Note: Control for hospital were also included but are not shown.
Test of joint statistical significance of interactions: chi-square = 45.67; p-value = 0.0014
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eTable 8: 90-day Mortality following ICU versus General Ward care for the matched sample.

Sample ICU, Deaths General Ward, Risk [95% Cl]****
size* N** (%) Deaths N** (%) Difference***
Estimator
IV (PeT, Logit) 9,015 2660
3079 (34.2%) -4.7% (-28.5% to 19.2%)
(29.5%)
IV (PeT, Probit) 9,015 2598
2864 (31.1%) -2.5% (-23.7% to 18.7%)
(28.3%)
Regression 9,192 3094
2556 (27.8%) 5.9% (3.3% to 8.4%)
(33.7%)
Unadjusted 9,192 3357
2394 (26.0%) 10.5% (8.5% to 12.4%)
(36.5%)

*For each method, the maximum sample size was 9,192. Observations were excluded if there is not
mass at any value (rounded to 0.01) of the propensity score for both levels of exposure as
recommended by Basu (2015). **The number of predicted deaths is rounded to the nearest whole
number. *** Difference in percentage of deaths from the PeT Instrumental variable estimate. ***
Normal based ClI with SE calculated with the non-parametric bootstrap allowing for clustering by
hospital. ™" difference in percentage of deaths from the PeT Instrumental variable estimate **
Normal based ClI with SE calculated with the non-parametric bootstrap allowing for clustering by
hospital

ICU, intensive care unit; Cl, confidence interval; IV, Instrumental Variable; PeT, Person-centred
treatment effect;
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eTable 9: Summary of effects of ICU transfer on 90-day mortality, by subgroup.

Increment 95% Confidence Incrementa 95% Confidence

al effect™ Interval | effect™ Interval
Type of care: NEWS score
General
ward 2.6% -18.4% 23.6% 0 4.9% -17.0% 26.9%
ICU -10.7% -32.8% 11.4% 1 3.0% -17.2% 23.2%
Age category 2 3.3% -16.4% 23.0%
18-23 11.1% -4.2% 26.5% 3 2.7% -17.6% 23.1%
24-29 10.4% -5.6% 26.3% 4 1.9% -17.3% 21.1%
30-35 8.2% -7.2% 23.7% 5 0.4% -19.9% 20.7%
36-41 4.5% -12.5% 21.5% 6 -2.1% -22.5% 18.4%
42-47 3.2% -13.8% 20.3% 7 -2.3% -23.4% 18.8%
48-53 0.6% -17.3% 18.5% 8 -5.2% -26.5% 16.1%
54-59 -2.0% -22.1% 18.1% 9 -6.4% -28.4% 15.5%
60-65 -4.1% -24.7% 16.5% 10 -9.3% -31.6% 13.0%
66-71 -5.2% -26.8% 16.5% 11 -11.6% -35.2% 12.1%
72-77 -6.4% -28.8% 16.1% 12 -15.3% -41.3% 10.7%
78-83 -6.4% -29.7% 16.9% 13 -12.0% -36.6% 12.5%
84-89 -4.4% -28.7% 19.8% 14 -17.2% -46.7% 12.4%
90-95 -1.0% -27.9% 25.8% 15 -18.7% -48.8% 11.5%
96-101 4.3% -24.5% 33.0% 16 -27.6% -71.3% 16.1%
NEWS risk category 17 -17.0% -51.7% 17.7%
0 4.4% -17.1% 25.9% 18 -17.9% -63.5% 27.7%
1 2.1% -17.6% 21.8% 19 -19.2% -40.4% 1.9%
2 -0.9% -21.3% 19.4%
3 -6.7% -28.5% 15.2%
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eTable 10: Sensitivity analysis of conditional average treatment effects on 28-day mortality, overall, and by subgroup.

Baseline PeT Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7
Incremental Incremen Incremental Increment Incrementa Incremental Incremen
[ 95% ClI tal 95% CI [ 95% ClI e 95% CI oot 95% ClI rox 95% ClI tal 95% CI
effect o effect al effect | effect effect e
effect effect
(-26.4%, (-21%, (-21.4%, (-23.6%, (-20.2%, (-24.5%, (-21.5%,
Overall average -4.9% 16.6%) -1.8% 17.3%) -2.3% 16.7%) -1.4% 20.8%) -3.1% 14.0%) -5.1% 14.2%) -2.0% 17.5%)
Type of care:
(-15.1%, (-15.3%, (-20.1%, (-14.2%, (-18.3%, (-15.7%,
General ward -0.4% (-21%, 20.3%) 3.3% 21.7%) 3.1% 21.6%) 1.9% 23.9%) 1.8% 17.9%) 0.3% 19.0%) 3.0% 21.7%)
(-32.4%, (-33.0%, (-31.7%, (-32.1%, (-36.3%, (-33.0%,
ICU -12.6% (-37.2%, 12%) -10.1% 12.3%) -11.0% 10.9%) -6.7% 18.3%) -11.0% 10.2%) -14.1% 8.2%) -10.1% 12.8%)
Age category
- 0, _ 0, - 0, _ 0, _ 0, _ 0, _ 0,
(-8.3%, (-5.9%, (-4.5%, (-7.8%, (-5.6%, (-8.0%, (-6.6%,
18-23 5.5% 19.2%) 7.7% 21.3%) 9.0% 22.5%) 7.1% 22.0%) 6.6% 18.9%) 5.0% 18.0%) 7.4% 21.4%)
(-9.9%, (-6.9%, (-5.2%, (-8.6%, (-6.7%, (-9.6%, (-7.6%,
24-29 5.0% 19.9%) 7.1% 21.2%) 8.7% 22.5%) 6.8% 22.1%) 6.0% 18.7%) 4.1% 17.9%) 6.8% 21.3%)
(-7.7%, (-6.1%, (-9.9%, (-7.5%, (-10.2%, (-8.5%,
30-35 3.6% (-11%, 18.2%) 5.8% 19.4%) 7.1% 20.4%) 5.5% 20.8%) 4.5% 16.6%) 2.9% 16.1%) 5.5% 19.4%)
(-15.4%, (-12.0%, (-10.5%, (-13.6%, (-11.3%, (-14.1%, (-12.7%,
36-41 0.9% 17.1%) 3% 18.1%) 4.1% 18.8%) 3.5% 20.6%) 2.4% 16.0%) 0.4% 15.0%) 2.8% 18.3%)
(-17.3%, (-13.4%, (-12.1%, (-15.3%, (-12.7%, (-16.2%, (-13.6%,
42-47 -0.5% 16.2%) 1.8% 17.0%) 2.8% 17.7%) 2.1% 19.5%) 0.9% 14.5%) -1.0% 14.2%) 1.9% 17.4%)
- 0, . 0, - 0, _ ) _ 0, _ 0, _ 0,
(-19.2%, (-15.6%, (-14.9%, (-18.3%, (-15.1%, (-18.1%, (-16.2%,
48-53 -1.8% 15.7%) 0.3% 16.2%) 0.7% 16.2%) 0.5% 19.2%) -0.7% 13.7%) -2.3% 13.6%) 0.0% 16.1%)
(-25.4%, (-20.9%, (-20.7%, (-23.2%, (-20.0%, (-23.9%, (-21.2%,
54-59 -5.0% 15.5%) -2.5% 15.9%) -2.6% 15.6%) -1.9% 19.4%) -3.4% 13.3%) -5.8% 12.4%) -2.5% 16.2%)
(-27.4%, (-22.4%, (-22.7%, (-24.7%, (-21.5%, (-25.3%, (-22.8%,
60-65 -6.3% 14.8%) -3.6% 15.2%) -4.0% 14.7%) -2.6% 19.5%) -4.5% 12.6%) -6.5% 12.2%) -3.7% 15.4%)
(-29.8%, (-24.2%, (-25.1%, (-26.9%, (-23.4%, (-27.9%, (-24.8%,
66-71 -7.2% 15.4%) -4.1% 15.9%) -5.0% 15.0%) -3.6% 19.7%) -5.4% 12.7%) -7.5% 12.8%) -4.4% 15.9%)
(-32.1%, (-26.2%, (-27.4%, (-28.7%, (-25.2%, (-29.6%, (-26.8%,
72-77 -8.2% 15.7%) -4.9% 16.3%) -6.1% 15.1%) -4.0% 20.8%) -6.1% 13.0%) -8.2% 13.3%) -5.2% 16.3%)
(-33.4%, (-26.7%, (-28.2%, (-28.8%, (-25.7%, (-30.8%, (-27.1%,
78-83 -8.0% 17.5%) -4.2% 18.4%) -5.5% 17.1%) -3.3% 22.3%) -5.7% 14.3%) -7.8% 15.3%) -4.4% 18.4%)
(-25.7%, (-27.1%, (-28.8%, (-25.1%, (-30.2%, (-26.1%,
84-89 -6.3% (-33%, 20.5%) -2% 21.8%) -3.3% 20.5%) -1.9% 24.9%) -3.9% 17.2%) -5.9% 18.4%) -2.0% 22.2%)
(-32.2%, (-23.8%, (-25.1%, (-28.5%, (-23.1%, (-28.9%, (-24.2%,
90-95 -2.5% 27.2%) 2.6% 28.9%) 1.4% 27.9%) 0.8% 30.1%) 0.2% 23.5%) -1.9% 25.2%) 2.7% 29.6%)
(-31.5%, (-22.1%, (-23.0%, (-26.3%, (-23.0%, (-29.9%, (-23.0%,
96-101 3.2% 37.9%) 8.5% 39.0%) 7.8% 38.5%) 5.3% 36.9%) 4.4% 31.7%) 1.9% 33.6%) 8.4% 39.8%)
NEWS risk category
(-15.9%, (-11.9%, (-11.1%, (-19.8%, (-11.0%, (-14.8%, (-13.4%,
0 1.5% 18.9%) 3.3% 18.4%) 3.7% 18.6%) 0.3% 20.4%) 1.7% 14.3%) 2.1% 18.9%) 2.7% 18.9%)
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19.8%)
(-14.1%,
19.3%)
(-17.4%,
19.6%)
(-20.4%,
18.6%)
(-21.5%,
19.1%)
(-25.2%,
17.4%)
(-27.7%,
16.6%)
(-31.1%,
14.4%)
(-35.2%,
12.9%)
(-42.8%,
10.0%)
(-38.2%,
11.0%)
(-50.9%,
9.7%)
(-55.0%,
9.4%)
(-78.8%,
11.6%)
(-59.9%,
9.5%)
(-71.8%,
32.6%)

2.4%

-0.6%

-6.7%

4.2%

3.2%

4.1%

3.0%

2.6%

0.8%

-1.5%

-1.9%

-4.8%

-6.6%

-9.2%

-12.4%

-17.3%

-14.3%

-21.1%

-23.2%

-34.4%

-24.5%

-21.8%

(-13.6%,
18.5%)
(-19.4%,
18.2%)
(-28.5%,
15.2%)

(-10.8%,
19.2%)
(-12.1%,
18.4%)
(-11.1%,
19.3%)
(-13.7%,
19.6%)
(-13.9%,
19.1%)
(-17.5%,
19.2%)
(-20.9%,
18.0%)
(-22.1%,
18.3%)
(-26.1%,
16.4%)
(-28.9%,
15.7%)
(-32.0%,
13.6%)
(-36.6%,
11.7%)
(-43.5%,
9.0%)
(-38.9%,
10.4%)
(-51.2%,
9.1%)
(-55.1%,
8.7%)
(-78.2%,
9.4%)
(-59.4%,
10.4%)
(-74.3%,
30.7%)
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0.4%

-0.5%

-3.1%

0.3%

-0.3%

0.4%

0.7%

0.8%

0.1%

-0.7%

-0.8%

-2.5%

-2.4%

-4.0%

-5.6%

-9.3%

-5.5%

-12.2%

-11.0%

-28.6%

-14.3%

-1.4%

(-20.3%,
21.0%)
(-22.3%,
21.3%)
(-27%,
20.8%)

(-19.8%,
20.4%)
(-19.7%,
19.1%)
(-20.1%,
20.8%)
(-20.4%,
21.8%)
(-19.5%,
21.1%)
(-21.8%,
21.9%)
(-22.7%,
21.3%)
(-23.3%,
21.7%)
(-25.6%,
20.7%)
(-26.0%,
21.3%)
(-28.5%,
20.6%)
(-31.4%,
20.1%)
(-39.0%,
20.3%)
(-31.6%,
20.7%)
(-46.4%,
22.1%)
(-48.0%,
26.0%)
(-82.4%,
25.1%)
(-47.2%,
18.5%)
(-42.8%,
40.1%)

0.8%

-1.5%

-6.7%

1.9%

0.4%

1.6%

1.3%

0.9%

-0.3%

-2.2%

-2.6%

-5.1%

-6.3%

-8.8%

-11.5%

-15.9%

-12.1%

-18.2%

-19.2%

-28.9%

-20.9%

-16.4%
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(-13.2%,
14.8%)
(-18.0%,
15.0%)
(-26.9%,
13.4%)

(-10.6%,
14.4%)
(-11.7%,
12.5%)
(-11.1%,
14.4%)
(-13.2%,
15.7%)
(-13.4%,
15.2%)
(-16.6%,
15.9%)
(-19.2%,
14.9%)
(-20.8%,
15.5%)
(-24.4%,
14.1%)
(-26.5%,
14.0%)
(-30.0%,
12.4%)
(-34.5%,
11.5%)
(-42.0%,
10.2%)
(-36.4%,
12.2%)
(-48.2%,
11.8%)
(-49.5%,
11.1%)
(-73.6%,
15.9%)
(-50.8%,
8.9%)
(-61.3%,
28.5%)

0.1%

-3.7%

-9.6%

2.5%

0.5%

1.9%

0.4%

-0.2%

-2.5%

-4.6%

-5.5%

-8.7%

-9.5%

-12.1%

-13.8%

-16.9%

-13.7%

-19.9%

-16.8%

-30.9%

-15.8%

-10.2%

(-17.1%,
17.3%)
(-22.6%,
15.2%)
(-31.1%,
11.9%)

(-14.4%,
19.4%)
(-16.0%,
17.1%)
(-14.7%,
18.4%)
(-17.3%,
18.0%)
(-17.4%,
17.0%)
(-21.2%,
16.1%)
(-23.8%,
14.6%)
(-25.6%,
14.6%)
(-29.5%,
12.1%)
(-31.2%,
12.2%)
(-34.2%,
9.9%)
(-37.4%,
9.8%)
(-42.0%,
8.3%)
(-38.8%,
11.4%)
(-50.8%,
11.1%)
(-49.1%,
15.5%)
(-75.6%,
13.8%)
(-51.5%,
19.9%)
(-59.0%,
38.6%)

2.4%

-0.3%

-6.0%

3.3%

2.3%

4.2%

2.9%

2.6%

1.0%

-1.3%

-1.4%

-4.3%

-5.8%

-8.6%

-11.4%

-15.9%

-13.4%

-19.6%

-18.2%

-31.3%

-21.7%

-19.0%

(-14.5%,
19.3%)
(-19.4%,
18.8%)
(-28.1%,
16.1%)

(-13.0%,
19.5%)
(-14.3%,
18.9%)
(-12.0%,
20.3%)
(-14.4%,
20.3%)
(-14.4%,
19.5%)
(-17.7%,
19.7%)
(-20.7%,
18.2%)
(-21.7%,
18.9%)
(-25.6%,
17.0%)
(-28.0%,
16.4%)
(-31.6%,
14.3%)
(-36.0%,
13.2%)
(-43.6%,
11.7%)
(-39.1%,
12.3%)
(-52.2%,
13.0%)
(-53.1%,
16.7%)
(-79.1%,
16.5%)
(-58.4%,
15.1%)
(-69.5%,
31.4%)



(-51.3%, (-51.9%, (-50.1%, (-24.2%, (-36.9%, (-33.9%, (-47.8%,
19 -25.4% 0.4%) -25.8% 0.3%) -23.9% 2.3%) 0.7% 25.7%) -18.3% 0.4%) -5.8% 22.2%) -18.6% 10.6%)
Treatment Probit Logit Probit Probit Probit Probit
(outcome) equation (Probit) (Probit) Logit (Logit) (Probit) (Probit) (Probit) (Probit)
NEWS, SOFA &
ICNARC scores Yes Yes Yes No Yes Yes Yes
NEWS, SOFA &
ICNARC scores
squared Yes Yes Yes No No No Yes
Interactions
between NEWS,
SOFA & ICNARC
scores No No No No No Yes Yes
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eTable 11: Sensitivity analysis of conditional average treatment effects on 90-day mortality, overall, and by subgroup.

Overall
average
Type of care:

General ward

ICU
Age category

18-23
24-29
30-35
36-41
42-47
48-53
54-59
60-65
66-71
72-77
78-83
84-89

90-95

27
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Baseline PeT Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

Increme*r:fal 95% Cl Increme*r:fal 95% Cl Increme*r:fal 95% Cl Increme*r:ral 95% Cl Increme*r:fal 95% Cl Increme*r:fal 95% Cl IncremeﬂE 95% Cl
effect effect effect effect effect effect al effect

(-28.5%, (-23.7%, (-22.8%, (-22.0%, (-22.9%, (-27.1%, (-24.9%,

-4.7% 19.2%) -2.5% 18.7%) -2.5% 17.7%) 0.9% 23.8%) -3.2% 16.6%) -6% 15.1%) -3.3% 18.4%)

(-24.4%, (-19.0%, (-18.1%, (-19.9%, (-18.1%, (-22.4%, (-19.9%,

-0.5% 23.5%) 2.6% 24.3%) 2.8% 23.8%) 3.3% 26.5%) 1.7% 21.5%) -0.8% 20.8%) 1.8% 23.4%)

(-36.9%, (-33.2%, (-32.3%, (-28.4%, (-32.7%, (-36.7%, (-35.2%,

-11.6% 13.6%) -10.7% 11.8%) -11.1% 10.2%) -2.9% 22.5%) -10.9% 10.9%) -14.5% 7.6%) -11.3% 12.6%)

(-7.9%, (-4.7%, (-2.8%, (-4.8%, (-4.9%, (-8.4%, (-6.4%,

9.3% 26.5%) 11.1% 26.9%) 12.4% 27.5%) 12.2% 29.2%) 9.9% 24.7%) 7.3% 23.1%) 10.0% 26.3%)

(-9.3%, (-6.0%, (-3.9%, (-5.5%, (-5.8%, (-9.6%, (-7.4%,

8.8% 26.9%) 10.4% 26.8%) 11.8% 27.5%) 11.7% 29.0%) 9.5% 24.7%) 6.6% 22.9%) 9.4% 26.2%)

(-11.1%, (-7.7%, (-5.6%, (-6.8%, (-7.7%, (-11.0%, (-9.0%,

6.8% 24.6%) 8.2% 24.2%) 9.4% 24.4%) 10.2% 27.2%) 7.0% 21.7%) 4.7% 20.3%) 7.3% 23.7%)

(-16.0%, (-13.0%, (-10.7%, (-10.8%, (-12.4%, (-15.6%, (-14.5%,

3.4% 22.8%) 4.5% 22.1%) 5.8% 22.3%) 7.9% 26.7%) 3.9% 20.3%) 1.5% 18.5%) 3.6% 21.6%)

(-17.8%, (-14.6%, (-12.5%, (-12.7%, (-13.9%, (-17.8%, (-15.6%,

1.9% 21.6%) 3.2% 21.1%) 4.3% 21.1%) 6.2% 25.1%) 2.5% 19.0%) -0.1% 17.7%) 2.7% 20.9%)

(-20.6%, (-18.1%, (-16.2%, (-16.0%, (-17.2%, (-20.3%, (-19.2%,

-0.1% 20.4%) 0.6% 19.3%) 1.3% 18.9%) 4.0% 24.1%) 0.3% 17.8%) -2% 16.4%) -0.2% 18.9%)

(-26.4%, (-23.1%, (-21.8%, (-20.5%, (-22.1%, (-25.9%, (-24.3%,

-3.1% 20.2%) -2.1% 18.9%) -1.9% 18.0%) 2.0% 24.6%) -2.5% 17.1%) -5.4% 15.1%) -2.8% 18.7%)

(-29.3%, (-25.3%, (-24.4%, (-22.9%, (-24.4%, (-28.1%, (-26.6%,

-5.7% 18.0%) -4.0% 17.4%) -4.1% 16.3%) 0.2% 23.2%) -4.4% 15.6%) -7.1% 13.8%) -4.8% 17.1%)

(-32.3%, (-27.6%, (-27.0%, (-25.4%, (-26.7%, (-30.9%, (-28.9%,

-7.2% 17.9%) -5.2% 17.3%) -5.5% 16.1%) -1.4% 22.7%) -5.8% 15.2%) -8.7% 13.5%) -6.0% 16.9%)

(-34.5%, (-29.5%, (-29.2%, (-27.3%, (-28.4%, (-32.5%, (-30.9%,

-8.6% 17.4%) -6.4% 16.8%) -7.0% 15.3%) -2.2% 23.0%) -6.8% 14.9%) -9.6% 13.2%) -7.2% 16.4%)

(-36.5%, (-30.3%, (-30.3%, (-28.3%, (-29.3%, (-34.3%, (-31.5%,

-9.4% 17.6%) -6.4% 17.6%) -7.1% 16.1%) -2.6% 23.0%) -7.2% 15.0%) -10.3% 13.8%) -7.2% 17.1%)

(-36.3%, (-29.1%, (-29.1%, (-28.3%, (-28.7%, (-33.8%, (-30.3%,

-8.3% 19.8%) -4.4% 20.4%) -5.0% 19.2%) -1.8% 24.7%) -5.5% 17.6%) -8.6% 16.6%) -5.0% 20.4%)

(-36.5%, (-28.1%, (-28.0%, (-29.2%, (-27.7%, (-33.4%, (-28.8%,

-6.1% 24.4%) -1.2% 25.8%) -1.4% 25.3%) -0.5% 28.2%) -2.7% 22.2%) -5.8% 21.8%) -1.6% 25.6%)



96-101
NEWS risk
category

0

3
NEWS score

0

10

11

12

-0.7%

2.9%

-0.1%

-3.3%

-8.8%

3.2%

1.1%

1.3%

0.6%

-0.7%

-1.9%

-4.6%

-4.7%

-7.9%

-8.7%

-10.9%

-13.6%

-16.3%

(-33.7%,
32.3%)

(-21.7%,
27.4%)
(-22.8%,
22.6%)
(-26.8%,
20.2%)
(-34.0%,
16.4%)

(-21.9%,
28.2%)
(-22.0%,
24.3%)
(-21.4%,
24.0%)
(-22.7%,
23.9%)
(-22.8%,
21.4%)
(-25.3%,
21.5%)
(-28.3%,
19.2%)
(-28.9%,
19.6%)
(-32.4%,
16.7%)
(-33.9%,
16.6%)
(-36.4%,
14.5%)
(-40.8%,
13.7%)
(-45.1%,
12.6%)

4.3%

4.4%

2.1%

-1.0%

-6.6%

5.0%

3.0%

3.3%

2.8%

1.9%

0.4%

-2.1%

-2.3%

-5.2%

-6.5%

-9.2%

-11.5%

-15.2%

(-24.2%,
32.7%)

(-17.0%,
25.8%)
(-18.0%,
22.1%)
(-22.0%,
20.1%)
(-29.3%,
16.0%)

(-16.8%,
26.8%)
(-17.3%,
23.3%)
(-16.7%,
23.2%)
(-17.9%,
23.5%)
(-17.9%,
21.7%)
(-20.5%,
21.4%)
(-23.3%,
19.1%)
(-24.2%,
19.6%)
(-27.3%,
16.9%)
(-29.1%,
16.1%)
(-32.2%,
13.9%)
(-36.0%,
12.9%)
(-42.1%,
11.6%)

4.4%

4.9%

2.3%

-0.9%

-6.9%

5.5%

3.5%

3.6%

3.1%

2.1%

0.6%

-2.1%

-2.5%

-5.5%

-6.7%

-9.5%

-12.0%

-15.5%

(-24.0%,
32.9%)

(-15.7%,
25.5%)
(-17.0%,
21.7%)
(-21.1%,
19.3%)
(-28.5%,
14.7%)

(-15.6%,
26.5%)
(-16.2%,
23.2%)
(-15.6%,
22.8%)
(-16.9%,
23.1%)
(-17.0%,
21.2%)
(-19.5%,
20.7%)
(-22.5%,
18.3%)
(-23.5%,
18.5%)
(-26.6%,
15.6%)
(-28.4%,
14.9%)
(-31.4%,
12.4%)
(-35.3%,
11.2%)
(-40.8%,
9.7%)

3.3%

1.6%
2.1%
1.6%

-0.2%

1.4%
0.6%
1.9%
2.5%
2.1%
2.2%
1.2%
1.7%
0.2%
0.4%
-1.3%
-2.2%

-4.2%
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(-26.0%,
32.6%)

(-20.1%,
23.3%)
(-19.9%,
24.0%)
(-21.1%,
24.2%)
(-24.4%,
23.9%)

(-20.2%,
23.1%)
(-20.3%,
21.5%)
(-19.7%,
23.6%)
(-19.9%,
24.9%)
(-19.4%,
23.6%)
(-20.6%,
25.1%)
(-21.5%,
24.0%)
(-21.4%,
24.8%)
(-23.3%,
23.6%)
(-23.3%,
24.2%)
(-26.0%,
23.5%)
(-28.0%,
23.6%)
(-34.6%,
26.2%)

1.5%

1.4%

0.4%

-1.7%

-6.5%

1.5%

-0.3%

0.6%

0.9%

0.4%

-0.5%

-2.5%

-2.7%

-5.3%

-6.0%

-8.7%

-10.7%

-13.7%

(-25.7%,
28.7%)

(-16.0%,
18.7%)
(-17.6%,
18.3%)
(-21.4%,
18.0%)
(-28%,
15.0%)

(-15.8%,
18.9%)
(-16.7%,
16.1%)
(-16.3%,
17.6%)
(-17.9%,
19.7%)
(-17.8%,
18.6%)
(-20.1%,
19.1%)
(-22.5%,
17.5%)
(-23.4%,
18.0%)
(-26.3%,
15.8%)
(-27.5%,
15.5%)
(-30.7%,
13.3%)
(-33.9%,
12.5%)
(-39.4%,
12.0%)
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-1.8%

1.3%

-1.1%

-4.5%

-10.3%

1.4%

-1%

-0.1%

-0.5%

-1.5%

-3.4%

-5.5%

-6.3%

-9.6%

-10%

-12.8%

-14.4%

-16.5%

(-32.1%,
28.4%)

(-20.0%,
22.6%)
(-21.7%,
19.4%)
(-25.5%,
16.5%)
(-32.3%,
11.7%)

(-20.1%,
22.9%)
(-21.2%,
19.2%)
(-20.6%,
20.3%)
(-21.6%,
20.7%)
(-21.7%,
18.7%)
(-24.6%,
17.7%)
(-26.6%,
15.6%)
(-28.0%,
15.4%)
(-31.1%,
12.0%)
(-32.1%,
12.1%)
(-34.7%,
9.1%)
(-37.6%,
8.8%)
(-40.6%,
7.6%)

3.4%

3.2%

1.5%

-1.7%

-7.5%

3.8%

2.2%

2.7%

2.1%

1.2%

-0.3%

-2.9%

-3.2%

-6.2%

-7.3%

-10.2%

-12.3%

-15.3%

(-25.8%,
32.7%)

(-18.8%,
25.2%)
(-19.1%,
22.0%)
(-22.9%,
19.5%)
(-30.8%,
15.8%)

(-18.5%,
26.1%)
(-18.7%,
23.1%)
(-17.9%,
23.4%)
(-19.1%,
23.2%)
(-18.8%,
21.1%)
(-21.6%,
20.9%)
(-24.3%,
18.5%)
(-25.3%,
19.0%)
(-28.7%,
16.3%)
(-30.4%,
15.8%)
(-33.9%,
13.5%)
(-37.8%,
13.1%)
(-43.6%,
13.0%)



(-42.2%, (-37.2%, (-36.2%, (-27.3%, (-34.0%, (-37.2%, (-38.9%,

13 -13.6% 14.9%) -12.0% 13.1%) -12.4% 11.4%) -1.1% 25.0%) -10.4% 13.2%) -13.5% 10.3%) -12.1% 14.6%)
(-52.3%, (-47.4%, (-46.0%, (-40.9%, (-43.5%, (-46.8%, (-49.5%,

14 -18.6% 15.2%) -17.1% 13.2%) -17.3% 11.5%) -5.6% 29.6%) -14.7% 14.1%) -18.6% 9.7%) -16.7% 16.1%)
(-51.4%, (-49.8%, (-46.8%, (-44.5%, (-43.5%, (-44.9%, (-50.3%,

15 -19.3% 12.8%) -18.6% 12.6%) -18.5% 9.7%) -5.7% 33.1%) -14.9% 13.7%) -16.5% 11.9%) -16.4% 17.5%)
(-73.2%, (-71.9%, (-69.4%, (-73.5%, (-69.2%, (-69.3%, (-74.7%,

16 -27.7% 17.8%) -27.3% 17.3%) -27.6% 14.1%) -18.5% 36.6%) -27.7% 13.8%) -29.6% 10.0%) -26.3% 22.1%)
(-56.1%, (-52.2%, (-50.9%, (-41.3%, (-42.8%, (-45.3%, (-52.4%,

17 -17.5% 21.2%) -17.2% 17.9%) -16.4% 18.1%) -7.5% 26.3%) -13.9% 15.1%) -13.3% 18.8%) -16.0% 20.4%)
(-68.6%, (-63.9%, (-61.8%, (-38.1%, (-51.6%, (-58.8%, (-55.3%,

18 -19.7% 29.3%) -17.7% 28.4%) -18.1% 25.5%) 2.3% 42.7%) -16.7% 18.2%) -17.7% 23.5%) -11.0% 33.4%)
(-42.3%, (-41.1%, (-38.5%, (-25.4%, (-30.5%, - (-33.2%, (-41.1%,

19 -18.4% 5.5%) -19.1% 2.8%) -18.1% 2.2%) -2.6% 20.3%) -16.4% 2.3%) -11.4% 10.4%) -15.7% 9.7%)

Functional

form for 1st

treatment

(outcome) Probit Probit Probit Probit Probit

equation (Probit) Logit (Probit) Logit (Logit) (Probit) (Probit) (Probit) (Probit)

NEWS, SOFA &

ICNARC scores Yes Yes Yes No Yes Yes Yes

NEWS, SOFA &

ICNARC scores

squared Yes Yes Yes No No No Yes

Interactions

between

NEWS, SOFA &

ICNARC scores No No No No No Yes Yes
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eTable 12: 28- and 90-day Mortality following ICU versus General Ward care for the matched sample

excluding patients transferred after 24 hours.

| W
Sample ICU, Deaths General Ward,

L Deaths Risk difference™
size N** (*%) N** (%)
N(%) N(%) Mean [95% CI]**
28 day, n (%) 7,894 2092.7 1799.3
(26.5%) (22.8%) 3.7%  (-95.0% to 52.8%)
90 day, n (%) 7,893 2757.2 2229.6
(34.9%) (28.2%) 6.7%  (-97.8%to 43.8%)

*For each method, the maximum sample size was 9,192. Observations were excluded if there is not mass at any value
(rounded to 0.01) of the propensity score for both levels of exposure as recommended by Basu (2015). **The number of
predicted deaths is rounded to the nearest whole number. *** Difference in percentage of deaths from the PeT
Instrumental variable estimate. *** Normal based Cl with SE calculated with the non-parametric bootstrap allowing for
clustering by hospital. *** difference in percentage of deaths from the PeT Instrumental variable estimate ** Normal
based Cl with SE calculated with the non-parametric bootstrap allowing for clustering by hospital

ICU, intensive care unit; Cl, confidence interval; IV, Instrumental Variable; PeT, Person-centred treatment effect;
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eTable 13: 28- and 90-day day Mortality following ICU versus General Ward care for the matched sample

excluding patients recommended for ICU (level 3)

General Ward,

Szi:?éo*le ICI\EJ,,:*D(T;?S Deaths Risk difference™”
° N** (%)
N(%) N(%) Mean [95% CI]**
28day, n (%) 8,271 1506.4 2166.7
(18.2%) (26.2%) 8.0%  (-31.8t015.8%)
90 day, n (%) 8,269 1938.9 2707.2
(23.4%) (32.7%) 93%  (-34.5t0 15.9%)

*For each method, the maximum sample size was 9,192. Observations were excluded if there is not mass at any value
(rounded to 0.01) of the propensity score for both levels of exposure as recommended by Basu (2015). **The number of
predicted deaths is rounded to the nearest whole number. *** Difference in percentage of deaths from the PeT
Instrumental variable estimate. *** Normal based Cl with SE calculated with the non-parametric bootstrap allowing for
clustering by hospital. *** difference in percentage of deaths from the PeT Instrumental variable estimate ** Normal
based Cl with SE calculated with the non-parametric bootstrap allowing for clustering by hospital

ICU, intensive care unit; Cl, confidence interval; IV, Instrumental Variable; PeT, Person-centred treatment effect;
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eFigure 1: Mean level of rescaled variables according to the level of the instrumental variable.
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b) Binary covariates
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eFigure 2: lllustration of plausible values for unobserved covariates influencing transfer decision.

Density

Pp(xa'z}_xug,)(] Pn(xa-z)_-\-uoﬁ']

Xur

0 Hp (xm Z)
In the example above, an individual with particular values for their observed covariates (xo ) with z
beds available at the time of their assessment for transfer, would be transferred to ICU if there were
no unobserved factors which discourage transfer since the po(Xo, z) is greater than 0 (see equation
2). If the unobserved risk factors that discourage transfer were non-zero, but smaller in magnitude
than pn(xo, z), then their effect would be insufficient to offset that of the factors that encourage
transfer, and the individual would be transferred. The probability this occurs is represented by the
area under the probability density curve to the left of the blue line. If instead, the discouraging
factors exceeded this level, then the individual would no longer be transferred to ICU. The
probability this occurs is represented by the area under the curve to the right of the blue line. Thus
the observed choice as to whether the individual is transferred is informative about the level of the
unobserved variables Xup.

D
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eFigure 3: Estimated PeT effects of ICU transfer versus general ward care on 28-day mortality, overall, and by

subgroup according to whether ICU transfer was recommended, and whether the patient was actually transferred.
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eFigure 4: Bubble chart indicating average effect of being transferred to ICU by other subgroups.

Dark green indicates levels of absolute risk reductions > 10%, light green 0 to 10% risk reduction and red indicates

increased absolute risk. Larger dot indicates more individuals in that subgroup.
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Age Categories (in years)

(b) SOFA score by age category
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(c) NEWS score by ICNARC score
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d) ICNARC score by SOFA score
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e) NEWS score by SOFA score
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eFigure 5: Estimated PeT effects of ICU transfer versus general ward care on 90-day mortality, according to strata,

defined by age and physiology scores at assessment for ICU transfer.

Absolute risk reductions (95% Cl).
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Note: Heterogeneous effects are estimated for each individual using the PeT method and then aggregated according to
strata. The NHS National Early Warning Score (NEWS) ranges from O (least severe) to 20 (most severe). The Sequential
Organ Failure Assessment (SOFA) ranges from 0 (least severe) to 14 (most severe), and the Intensive Care National Audit
& Research Centre (ICNARC) physiology score ranges from O (least severe) to 100 (most severe).

41

© 2019 Grieve R et al. JAMA Network Open.



eFigure 6: Sensitivity analysis, excluding patients transferred to ICU more than 24 hours after admission. Bubble chart
indicating estimated PeT effects of ICU transfer versus general ward care on 28-day mortality, by age category and

NEWS score.

Dark green indicates levels of absolute risk reductions for 28-day mortality > 10%, light green 0 to 10% risk reduction
and red indicates increased absolute risk. Larger dot indicates more individuals in that subgroup. Left of the dashed lines

indicates ‘low’ risk, between the dashed lines ‘medium’ risk and to the right of the dashed lines, ‘high’ risk.
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eFigure 7: Sensitivity analysis, excluding patients recommended for level 3 (ICU) care post assessment. Bubble chart
indicating estimated PeT effects of ICU transfer versus general ward care on 28-day mortality, by age category and

NEWS score.

Dark green indicates levels of absolute risk reductions > 10%, light green 0 to 10% risk reduction and red indicates
increased absolute risk. Larger dot indicates more individuals in that subgroup. Left of the dashed lines indicates ‘low’

risk, between the dashed lines ‘medium’ risk and to the right of the dashed lines, ‘high’ risk.
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eFigure 8: Distribution of potential effects of transfer to ICU on 28- and 90-day mortality according to actual
admission.
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