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Individual Differences in Object Recognition: Supplement 
 

This supplement elaborates on several data-analytic issues and procedures used in our 

manuscript. The data and code for Study 1 can be found at 

https://figshare.com/s/24b5c4a510f87c7d6b5a. The data and code for Study 2 can be found at 

https://figshare.com/s/e962df58149a0a2a3af2. 

Intraclass Correlations 

To estimate the intraclass correlations (ICCs) and confidence intervals shown in Table 4, 

we specified a mixed-effects model that predicted scores on each task by fixed (consistency ICC) 

or random (agreement ICC) effects for category, a random effect for person, and a random 

residual term (analogous to a person x category interaction in a conventional random effects 

ANOVA).  To generate estimates and confidence intervals, we used a Bayesian procedure 

instantiated in SAS PROC MCMC. Vague prior distributions were specified for fixed effects 

(each normal with μ = 0 and σ2 = 100), random variance parameters (other than the random effect 

for persons; log uniform bounded between -10 and 10 ) and residual variance parameters (log 

uniform bounded between -10 and 10), and for ICC1 (uniform between 0 and 1) (Spiegelhalter, 

2001). Using Markov Chain Monte Carlo (MCMC) simulation methods with a 10,000 sample 

burn-in phase, we generated 50,000 samples. We thinned the samples (selecting every 5th) and 

thus generated 10,000 samples from the posterior distribution of the parameters. For each 

sample, we algebraically computed estimates of the variance due to persons ( )2
pσ  and of ICC5 

from estimates computed in the first stage. We have found that an approach in which ICC1 is 

given a prior distribution and the estimates yielded by MCMC algorithm are used to solve 

algebraically for the random variance parameter for persons yields more stable solutions and 

https://figshare.com/s/24b5c4a510f87c7d6b5a
https://figshare.com/s/e962df58149a0a2a3af2
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better sampling of the parameter space than an approach specifying priors for all random and 

residual parameters and solving for ICC1
 after the fact.  We computed medians of the posterior 

distribution as our ICC estimates and formed 95% Bayesian Highest Posterior Density (HPD) 

intervals that represent the narrowest intervals with 95% probability (e.g., Christensen, Johnson, 

Brascum, & Hanson, 2011).  

Bifactor Models  

 An alternative hierarchical structure model to the second-order factor model is a bifactor 

model (e.g., Chen, West, & Sousa, 2006; Reise, 2012). A bifactor alternative to the second-order 

factor model shown in the bottom panel of Figure 4 would specify direct paths from a general 

factor (i.e., o) to each of the 15 task indicators (3 tasks for each of 5 categories). Five “group” 

factors would represent the unique variance due to each category on which the 3 task indicators 

for a given category would load. The intercorrelations among all 6 factors would be constrained 

to equal 0 to insure an identifiable (i.e., estimable and testable) model. It can be shown that the 

second-order factor model shown in Figure 4 is actually a restricted version of a bifactor model 

(e.g., Yung, Thissen, and McLeod, 1999).  That is, it imposes the same restrictions on the data as 

the bifactor model, plus additional ones involving proportionality constraints among factor 

loadings. A statistical test (i.e., a nested chi-square test, see below) comparing the two models 

indicated that the additional restrictions imposed by the second-order model could not be 

rejected (p > .10).  Other indices of model fit discussed in the Data Analysis section of Study 1 

indicated either that the models fit equivalently or that the second-order model fit slightly better, 

especially when model parsimony (fewer parameters specified) was rewarded. We also specified 

a second type of bifactor model according to which all tasks load directly on o and the group 

factors are task, rather than category, factors. Although this model fit rather well (e.g., RMSEA = 
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.044), it fit worse than the second-order factor model when within-task factor loadings were 

constrained equal as in Model 4 (RMSEA for bifactor model = .067).  

 Apart from the relative fit of competing models, there are two primary reasons why we 

focused on the second-order factor model. Simulation studies have raised increasing concern 

about the fitting propensity of bifactor models. Fit indices can commonly indicate that bifactor 

models fit better than a correlated factor model or second-order factor model even when one of 

the latter alternatives represents the correct population structure for the data (e.g., Morgan, 

Hodge, Wells, & Watkins, 2015; Murray & Johnson, 2013). More generally, there is evidence 

that bifactor models are over-flexible (i.e., susceptible to overfitting) by, for example, 

accommodating mis-specifications, random noise, and nonsense response patterns (e.g., Bonifay, 

Lane, & Reise, 2017; Reise, Kim, Mansolf, & Widaman, 2016).  

 A second consideration is our belief, shared with other methodologists (e.g., Morgan et 

al., 2015), that substantive and conceptual considerations should be a major determinant of the 

decision concerning which model to emphasize. From that perspective, we believe that the 

second-order factor model that is the focus of our analyses is quite compelling because it posits a 

causal chain of influence that in the present context makes sense. According to this perspective, a 

higher-order object recognition ability influences learning and/or recognition of specific 

categories of objects that in turn influences performance on specific tasks designed to assess 

ability on each category. Finally, inclusion of additional details might cloud the essential 

findings and their substantive implications.    

While our models showed a strong fit to the observed data, there are issues regarding 

model fit that any given set of CFA and SEM analyses typically do not and/or cannot address. 

One of these is the overall fitting propensity of a given model (e.g., Pitt, Myung, & Zhang, 
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2002), that is, the degree to which it might fit data that arise out of a diverse array of alternative 

population structures. The greater the fitting propensity, the more flexible a model and the more 

likely it is to fit even when it does not accurately characterize the true structure generating the 

data. Assessments of fitting propensity that have been conducted to date do clearly indicate that 

the higher-order factor model is sensitive to misspecifications and has a significantly more 

restricted fitting propensity than the bifactor model (e.g., Mansolf & Reise, 2017; Morgan et al., 

2015) The assessment of the fitting propensity of SEM models is a complex enterprise (Preacher, 

2006) that requires significant methodological development. This will be a target of our future 

work.  

Robust Estimation  

 As noted in the description of the CFA analyses conducted in Study 1, we used the two-

stage Savalei-Bentler two-stage (TS) estimator to deal with the issues of non-normality and the 

presence of missing data. The TS estimator yields estimates that are consistent (converging in 

probability to the true parameters with increasing sample size) for non-normally distributed data 

as long as the mechanism for missing data is either missing completely at random (MCAR) or 

missing at random (MAR) under the most common conditions for the latter (Yuan & Bentler, 

2000; Yuan & Lu, 2008).  It should be noted that the Savalei-Bentler TS estimator is not the 

same as the TS estimator used in earlier simulation studies (e.g., Enders & Peugh, 2004) that 

fails to correct appropriately standard errors and the model chi-square even under normality 

(Savalei & Bentler, 2009). 

 At the present time, robust full-information maximum likelihood (FIML) is more 

commonly used in SEM studies to analyze data with both non-normality and missing data. We 

believe that one major reason is the greater availability of this estimator in commonly used 
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software (e.g., the MLR estimator in MPLUS). We used the Savalei-Bentler approach rather than 

a robust full-information maximum likelihood (FIML) approach because Savalei and Falk’s 

(2014) results for sample size and missing data conditions that mirrored those of the present 

study generally indicated that the TS approach performed better. Results were, however, very 

similar when analyses were conducted with robust FIML using either EQS or MPLUS. We also 

decided to use the Savalei-Bentler TS estimator rather than the two-stage robust two-state 

estimator developed by Yuan and colleagues (Tong, Zhang, & Yuan, 2014; Yuan & Zhang, 

2012) that down-weights extreme observations because: (1) The Savalei-Bentler TS approach 

affords more accessible computation of model fit indices beyond the chi-square test of exact fit;  

(2) We believe that the most appropriate implementation of model comparisons using the Yuan-

Zhang estimators is an issue that requires further study;1 (3) Violations of normality (in 

particular, kurtosis values) in the present study were relatively moderate and outliers were rare; 

and, (4) Based on prior simulation results (e.g., Savalei & Falk, 2014; Tong et al., 2014), the 

percentage of missing data (~15%) was below the fraction (e.g., 30%) that would engender 

significant concern about the performance of the Savalei-Bentler robust TS estimator. Results 

were similar when analyses were conducted using the Yuan-Zhang estimators.  

Latent Variable Analyses in Study 2.  

 As noted in the text, due to the sample size (N=54), Study 2 is far from ideal for latent 

variable modeling using SEM software. For this reason, in the text, we focused on the analyses 

of observed measures and only discuss SEM analyses for the FIQ latent variable. Because, 

however, the results of such analyses may be of interest to readers we summarize them in this 

                                                 
1 For example, we found one case using the Yuan-Bentler residual-based statistic in which the 
chi-square value for a nested model with more restrictions (greater degrees of freedom) was 
slightly lower than that for a comparison model that imposed fewer restrictions.   
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section. For each measure, we specified two models that are similar to the two models for FIQ 

discussed in the text. The first model was a factor model designed to estimate correlations 

between the Cat0 and Cat2 latent variables and a latent variable representing a given measure 

(e.g., visual short-term memory). Instead of using multiple indicators for variables other than 

FIQ we used latent variables that represented reliability-corrected scores (i.e., models were 

specified such that the proportion of  the total observed variance of a given measure due to the 

latent factor equaled the estimated reliability of that measure reported in Table 8).  The second 

model was an equivalent model that regressed each of the Category factors on the latent variable 

denoting a specific individual difference measure and allowed the residuals of Cat0 and Cat2 to 

be freely correlated.   

 Given the non-normality of some of the variables, we used robust estimation techniques 

using MPLUS. When data were missing (1 observation for Stroop Cost and Visual STM) we 

used the MLR estimator and for the other measures we used the MLM estimator. Both use the 

Satorra-Bentler correction for standard errors and test statistics. We used MPLUS rather than 

EQS for these analyses simply because of the greater ease of generating estimates and 

confidence intervals for the derived measures discussed below and of generating bias-corrected 

bootstrap confidence intervals. In fact, confidence intervals were almost identical whatever the 

software platform or resampling procedure and they were very similar across different bootstrap 

confidence interval approaches (e.g., BCA, bias-corrected, asymptotic adjusted, or percentile). 

This is due in part to the extremely small percentage of missing data in Study 2. Consistent with 

the observed variable results presented in Table 9, we computed bias-corrected bootstrap 

confidence intervals around correlations and partial correlations and percentile confidence 

intervals around other measures. 
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 Supplemental Table 1 shows the fit of each model and Supplemental Table 2 shows 

parameter estimates and confidence intervals. Given the sample size, these confidence intervals 

should be regarded with caution (e.g., Nevitt & Hancock, 2001). All models specified reached 

convergence and had proper solutions. Table 1 shows only one set of fit indices per measure 

because the two models specified for each measure are equivalent (i.e., their fit is identical). As 

shown in Supplemental Table 1, in most cases, the models fit well. Including FIQ, 6 of the 9 

models consistently yield values of the RMSEA and other indices that indicate good to excellent 

fit (RMSEA < .06).  The exceptions are Visual Short-term Memory, Shift Cost, and Emotional 

Stability, although the latter two have RMSEA values that indicate at least reasonable fit. 

However, readers should note the wide confidence intervals around the RMSEA values. 

Although confidence intervals were not estimated, the other fit measures undoubtedly have the 

same feature.  

 Supplemental Table 2 shows estimates and confidence intervals for the correlational 

(zero-order and partial) and decomposition measures discussed in the text. Values for Visual 

STM in particular should be interpreted with caution given the non-optimal fit of its models. 

Also it should be noted that, while we reliability-corrected all measures, the reliability of Stroop 

cost was .50 (see Table 8), which suggests that estimates may not be optimally precise. Even 

give these caveats, it is evident from this table that: (1) Correlations between the individual 

difference measures and Cat 0 and Cat 2 tend to be modest at best with the possible exception of 

Shift Cost; (2) Partial correlations between Cat0 and Cat2 tend to be very high and approach the 

zero-order correlation between Cat0 and Cat2 (r=.89); and, (3) Negligible to small components 

of the overall correlation between Cat0 and Cat2 go through the individual difference variables. 

Conversely, as indicated by the last column, the lowest value of the proportion due to the 



8 
 

residual path is 83% (Shift Cost) and most values of this index are in the 90-100% range. An 

additional feature of Supplemental Table 2 is that, despite the sample size, many of the 

confidence intervals are relatively narrow. For example, among the individual measures, the 

lowest lower bound for a 95% confidence interval around the proportion of residual component 

measure is 56% and the lowest lower bound for the correlation among the residuals is .61 

Considered as a whole, these results are consistent with the results summarized in the text that 

focus on observed correlations and the latent variable model for FIQ.  
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Supplemental Table 1: Measures of Fit for Study 2 Models 

Measure RMSEA CFI SRMR 

Stroop Cost 
.019 

(.000,.139) .998 .042 

Shift Cost 
.068 

(.000,.163) .982 .052 

L-EFT 
.058 

(.000,.147) .984 .044 

Visual STM 
.122 

(.036,.199) .927 .054 

Conscientiousness 
.040 

(.000,.143) .984 .046 

Extraversion 
.059 

(.000,.150) .984 .044 
Emotional  
Stability 

.086 
(.000,168) .967 .050 

Agreeableness 
.000 

(.000,.137) 1.00 .041 

Intellect 
.046 

(.000,.148) .991 .051 
Note. N=54. 90% confidence intervals are shown for the RMSEA 
using the Li and Bentler (2006) formula. Hu and Bentler (1998, 
1999) recommended the following criteria for adequate fit on the 
first three measures: CFI ≥ .95, RMSEA ≤ .06, and SRMR ≤ .08. 
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Supplemental Table 2: Zero-order, Partial, and Decomposed Correlations for Latent Variables in 
Study 2 

 

Note. Zero-order correlation between Cat0 and Cat2 latent variables = .89. Partial correlations 
between Cat0 and Cat2 adjust for the given individual difference measure. Component indices 
decompose the zero-order correlation between Cat0 and Cat2 into components through the 
individual difference measure and the residual paths. Bias-corrected bootstrap confidence 
intervals are shown in parentheses for zero-order and residual correlations. Percentile bootstrap 
confidence intervals are shown for the final three indices. Estimates are bolded when confidence 
intervals do not include 0. Upper bounds for proportions in the last column can exceed 1 due to 
negative values for the component of the correlation through the individual difference path.  

 
 

 

Individual 
Difference 
Measure Cat 0 r Cat 2  r 

Cat0/Cat2 
Partial r 

Component of 
Cat0/Cat2 r  

Through Ind. 
Dif. Path 

 
Component of 

Cat0/Cat2 r 
Through 

Residual Path 

       Proportion:

Residual Component
Cat0/Cat2 r (= .88)

 
 
 

 

Stroop Cost 
-.22 

(-.61.10) 
-.30 

(-.63,.05) 
.87 

(.61,.1.00) 
.07 

(-.01,.39) 
.81 

(.45,.95) 
92% 

(56%,101%) 

Shift Cost 
-.45 

(-.68,-.15) 
-.33 

(-.56,-.09) 
.86 

(.63,1.00) 
.15 

(.02,.37) 
.73 

(.46,.92) 
83% 

(57%,98%) 

L-EFT 
.11 

(-.11,32) 
-.02 

(-.30,.24) 
.88 

(.67,.1.00) 
-.00 

(-.02, .06) 
.87 

(.66,.1.01) 
100% 

(93%,102%) 

Visual STM 
.32 

(-.00,.59) 
.35 

(-.01,.58) 
.87 

(.62,1.00) 
.11 

(.00,.32) 
.77 

(.51,.94) 
87% 

(63%,100%) 

Conscientiousness 
-.24 

(-.53,.10) 
-.19 

(-.51,.15) 
.88 

(.67,1.00) 
. 05  

  (-.01,.26) 
.84 

(.58.99) 
95% 

(71%,100%) 

Extraversion 
-.02 

(-.26,.23) 
.00 

(-.31,.26) 
.88 

(.68,1.00) 
.00 

(-.01,.07) 
.88 

(.68,1.00) 
100% 

(92%,102%) 
Emotional  
Stability 

-.11 
(-.35.18) 

-.00 
(-.30,.28) 

.88 
(.67,.1.00) 

.00 
(-.02,.08) 

.87 
(.64,.1.00) 

100% 
(88%,102%) 

Agreeableness 
-.16 

(-.48,.16) 
-.08 

(-.38,.20) 
.88 

(.68,1.00) 
.01 

(-.01,.17) 
.86 

(.64,1.00) 
99% 

(81%,101%) 

Intellect 
-.03 

(-.35,.27) 
.20 

(-.15,.44) 
.89 

(.72,.1.00) 
-.01 

(-.05,.11) 
.87 

(.68,.1.00) 
101% 

(88%,107%) 


