1. Appendix 1: UR models: No confounders

Proofs of Properties (i) — (iii) for the scenario depicted in Figure 1a (i.e. k longitudinally measured
exposure variables x4, x5, ..., X, and one distal outcome y).

1.1. Definitions

1.1.1. Definition 1: Standard regression models

We define the ordinary least-squares (OLS) regression model 375(0 for each measurement of the
exposure variable x;, for 1 < i < k. Because the relationship between x; and y is confounded by all
previous values of x (i.e. x1, x5, ..., X;_1), we represent y as a function of 1, xq, x5, ..., X;:
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As discussed in Section 1, only the coefficient of the last/most recent measurement of x (i.e. &)(Cli))

may be interpreted as a total causal effect.

1.1.2. Definition 2: Unexplained residual (UR) terms

As established by Keijzer-Veen et al.}, each UR term e,; is derived from the OLS regression of x; on
all previous measurements of x (i.e. xq, X5, ..., X;_1):

% = 7P +9Wx, + 9%, + -+ V;E)i_l)xi_l + ey, (Eq.2)

for2 <i < k. Thus,
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By its formulation, e,; represents the difference between the actual value of x; and the value of x;
as predicted by all previous measurements of x.

1.1.3. Definition 3: Unexplained residuals (UR) models

We also define the UR model 375,2 —an OLS regression model which represents y as a function of

1,X1, €52, v, yi, for1 <i < k —as:
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Thus, the final composite model 37[(,’;) represents the outcome as a function of the initial value of x
and all subsequent increases.
1.2. Mathematical proofs

The proofs that follow rely upon the following key properties of OLS regression estimators and
require the following two lemmas:

Key properties of OLS estimators: We may represent the regression equation y = 8, + f1x; +
-+ + Brxp + € in summary notation as:

y=XB +¢,

where: y represents the vector of n continuous observations of the outcome; X represents the n X
(k + 1) matrix of n observations for k continuous covariates and 1 constant; 8 represents the k + 1
vector of coefficients for each covariate and constant; and € represents the vector of n residuals.

The OLS estimate of (8 is given by:
B='07X'y.
On the assumption that the inverse matrix exists, this equation has a unique solution.

Further, for the given OLS equation y = XS + e, it can be shown that the vector of residuals (e) is
orthogonal (denoted L) to every column (1, x4, x5, ... X)) of X.

*Note that detailed proofs have not been provided, but can be located in referenced material 2.

Lemma 1: For two orthogonal components 7 and § (i.e. T L §), the estimated coefficients of the
regression of y on T and § are equal to the estimated coefficients for the separate regressions of y
ontandyon§.

Proof of Lemma 1: The regression of y on T and § may be written as:

y=I[t 8][gg]+e=rﬁf+6ﬂ5+s.

From Definition 1, the OLS estimate of 8, and fBs is given by # = (X'X)~'X'y. In this scenario,

x=[ple a=[n 53=I5 2

where the final equivalency follows from the condition of orthogonality. Then

, -1 1 y—1
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and
I T, _ T,y
Xy= [5,]3/ = [5,y :

Combining these elements gives:
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From this, we see that the estimated coefficients are equivalent to those that would be produced for

the separate regressionsof yontandyoné. m

Lemma 2:1ft; L §; for0 <i < hand 0 <j < k, then span(ty, 74, ..., Tp) L span(8y, 61, ... 6y) for
any vectors Ty, Ty, ..., Tn, 89, 01, «- O *

Proof of Lemma 2: 7; L &; implies that7; - §; = 0for0 <i<hand0 < j < k. Then

span(tg, Ty, ..., Tp) * span(8y, 61, 85, .. 6x)
= (COTO + C1Tq + -+ ChTh) : (d080 + d161 + -+ dk6k)

= codo (T " 8p) + cody (1o - 81) + =+ + cody (T - 6k) + c1do(T1 - 8p) +
c1d1(Ty* 61) + -+ ¢ dy (71 - 6k) + -+ cpdo (T * 6p) +
cpdq (T * 61) + -+ cpdi (Tp - Ok)

= Codo(O) + Codl(O) + -+ Codk(O) + Cldo(O) + Cldl(O) + -+
Cldk(O) + -+ Chdo(O) + Chdl(O) + -+ Chdk(O)

=0.

Thus, span(ty, T4, ..., Tp) L span(dy, 61, 62, ...6). W

1.2.1. Covariate orthogonality

We prove that all UR terms ey, €,3, ..., €5 are orthogonal to all preceding variables in the
composite UR model (Eqg.3), and therefore orthogonal to their span; we prove this below.

Lemma 3: €xi 1 €,2,€x3, ...,ex(i_l), for2 <i<k.

Proof of Lemma 3: By construction, e; represents the residuals from the OLS regression of
x;~1,%1,%5, ..., X;_1. Thus, e,; L 1,x4, %5, ..., x;_1, which implies that e,; L span(1, xq, x5, ..., X;_1)
by Lemma 2.

Itis clear that ey, €x3, ..., €x(i—1) € span(l,xy, x,, ..., x;_1) for 2 < i < k by construction; we are
therefore able to conclude that ey; L ey, €x3, ..., €x(i—1)- B

Theorem 1: e,; L span(1,xy, xy, €43, ..., €x(i-1)), for2 < i < k.

Proof of Theorem 1: e,; 1 1,x; because e,; represents the residuals from the OLS regression of
x;i~1,%x1, %3, .., Xj—1. Further, ey; L ey;,€yx3, ..., €xi—1) for 2 < i < k by Lemma 3.

Thus, ey; L span(1,xy, €x;, €x3, .., €x(i—1)) by Lemma 2. m

! The span of a set of vectors &, 8;, 85, ... 0 is the set of all possible linear combinations of &, §;, 85, ... 8, i.e.:
span(8y, 61, 62, ... 6) = Co8p + €161 + €20, + -+ + €y,

where the coefficients ¢, ¢y, ¢5, ..., ¢ are scalars.



122, Property (i): 550 = 377

Proof of Property (i): This equality follows from the fact that each UR model 37152 is a function of the

same variables as the corresponding standard regression model 3759).

By Definition 3, 37152 = f(1,x1,€x2, -, €x), Where ey; = (1, x4, X5, ..., X;) by Definition 2. Thus, it
also holds that

}752 = f(1,x1,Xg, 0, Xi) .

Moreover, by Definition 1,

9 = F(1,x1, %, 00, %1) -

From this, it follows that 375@ = Al(,l'}g and, consequently, 375(1‘) = )71(,’;). ]

12.3.  Property (i): @) = 2%

Proof of Property (ii): By definition, 375(1) = 371(]}2) = f(1,x;1), and so it is trivially true that &)(611) = )Algcll).

Because ey; L span(1,xq, €xz, €x3, -, €x(i—1)) for 2 < i < k by Theorem 1, we are able to apply

Lemma 1 and conclude that /Tgcll) = 25621) = .. = igckl).

NONI

2
Therefore, @, x1- 1

1.2.4.  Property (iii): @) = %)

exi

Proof of Property (iii): Consider the UR model:

90 = A9 4 1D, 44D,y 4+ 2,0

X ex2

If we substitute the expansion for e,; (Eq.3) into this equation and rearrange, we produce:

o =20 + 20x + A0, 172 = 722 + 23] + -+ AU — 9%, — 7P, —
= Py Xiet + X
= A = A0, ? = = AQu 1+ A8 = 28D — = A0y D] 2y +
2(1) 2(1) ., (3) a@@) . @ 5 (1)
[Aelxz - ’161x3yx2 -t Aelxiyx; ] Xyt [)‘elxi] Xi -

Since we have already established that }75@ = }7[(,2 (i.e. Property (i)) because they are functions of

the same covariates, it follows that the estimated coefficients for those covariates must themselves

be equal. Specifically, we are able to see that the coefficient for x; will always equal the coefficient
@ _ 40O

forey, ie. @, oxi’

Finally, because ey; L span(1,xy, exz, €x3, ..., €x(i—1)), We can again apply Lemma 1 and conclude
that A = 1@ = ... = ig{) from which it follows that &f{? =1

exi exi xi’ exi’ =

2 Although no causal meaning/significance can be attributed to the intercept term, the logic applied in this proof may be easily extended

to show that dél) = igk).



2. Appendix 2: UR models: Time-invariant confounder

Proofs of Properties (i) — (iii) for the scenario depicted in Figure 2a (i.e. k longitudinally measured
exposure variables x4, x5, ..., X, one time-invariant confounder m, and one distal outcome y).

2.1. Definitions

We extend the definitions (1-3) provided in Appendix 1 to examine the scenario depicted in Figure
2a.

2.1.1. Definition 4: Standard regression models

Because the relationship between each measurement x; and y is confounded by m (for 1 < i < k),
adjustment for m is necessary to estimate the total effect of x; and y in the standard regression
models:

50 = a® + aPm + a0,

93 =al +aPm +aPx, +ax,

989 =@l +a%m +a%¥x +alx, + - +aWx, . (EQ.5)

2.1.2. Definition 5: Unexplained residual (UR) terms

In Figure 2a, it is clear that m confounds the relationship between x; and x4, x5, ...,x;_; for2 < i <
k, and thus adjustment for m is necessary when regressing x;~x4, X5, ..., X;_1 to generate each UR
terme,;, i.e.:

X = P30 + DM+ % 95 %0+ e+ Py Xios + exi (Eq.6)
and
exi = —Ps” = P m — 70xy — PRy — = Py ica X (Eq.7)

In this way, e,; represents the difference between the actual value of x; and the value of x; as
predicted by all previous measurements x4, x5, ..., X;_1, adjusted for the confounding effect of m.
2.1.3. Definition 6: Unexplained residuals (UR) models

Furthermore, m confounds the relationship between x; and y, and so adjustment must be made in
the composite UR model:

~(k 2(k 2(k s(k 2(k a(k
989 =299 4 1%m 4 1%99x, + 1% ey + -+ 1% . (Eq.8)
2.2. Mathematical proofs

The proofs that follow rely upon the following key properties of OLS regression estimators and
require the following two lemmas:



Key properties of OLS estimators: We may represent the regression equation y = 8, + f1x; +
-+ + B Xy + € in summary notation as:

y=XB+¢,

where: y represents the vector of n continuous observations of the outcome; X represents the n X
(k + 1) matrix of n observations for k continuous covariates and 1 constant; 8 represents the k + 1
vector of coefficients for each covariate and constant; and € represents the vector of n residuals.

The OLS estimate of (8 is given by:
p=X)"Xy.
On the assumption that the inverse matrix exists, this equation has a unique solution.

Further, for the given OLS equation y = Xﬁ + e, it can be shown that the vector of residuals (e) is
orthogonal (denoted 1) to every column (1, x4, x5, ... x;) of X.

*Note that detailed proofs have not been provided, but can be located in referenced material 2.

Lemma 1: For two orthogonal components 7 and 6 (i.e. T L §), the estimated coefficients of the
regression of y on T and § are equal to the estimated coefficients for the separate regressions of y
ontandyond.

Proof of Lemma 1: The regression of y on T and § may be written as:

y=Ir 5][gg]+€:TﬂT+5ﬂ5+8.

From Definition 1, the OLS estimate of 8, and S35 is given by f = (X'X)~1X’y. In this scenario,

ox =[5l =57 5=l sl

where the final equivalency follows from the condition of orthogonality. Then

-1 [fT 01T _[@DTt 0
(X X) 1= [TOT 5,6] - [ 0 (6,6)_1]

and

I T, _ T,y
X y = [5/]3] - |:5ij| .
Combining these elements gives:
B| _ @D 0 [T')’] _ @Dy
Bl o @oleyl T [eeiey]
From this, we see that the estimated coefficients are equivalent to those that would be produced for
the separate regressionsof yontandyoné. m



Lemma 2:1ft; L §; for0 <i < hand 0 < <k, then span(z, 74, ..., Tp) L span(6y, 61, ... §) for
any vectors Ty, Ty, ..., T, 89, 01, ... 0. >

Proof of Lemma 2: 7; L §; implies that7; - §; = 0for0 <i<hand0 < j < k. Then

span(ty, Ty, ..., Ty) - Span(dy, 81, 65, ... 6y)
= (C0T0 + C1Tq + -+ ChTh) ' (d060 + d161 + -+ dk6k)

= codo(To " 8) + cody (1o 81) + -+ + cody (o * 6) + c1do (T4 " 6p) +
c1dy (11 61) + -+ cqdi (11 - 8k) + =+ cpdo(Tp * 6p) +
cpdy (T * 81) + -+ cpdy (Th, * Oy)

= Codo(o) + Codl(o) + 4 Codk(o) + Cldo(o) + Cldl(O) + -+
C1dk(0) + -+ Cth(O) + Chdl(o) + 4 Chdk(o)

=0

Thus, span(ty, T4, ..., Tp) L span(dy, 61,62, ...6;). |

2.2.1. Covariate orthogonality

We prove that all UR terms ey, €3, ..., €5 are orthogonal to all preceding variables in the
composite UR model (Eq.8), and therefore orthogonal to their span; we prove this below.

Lemma 4: €xi 1 €,2,€x3, ...,ex(i_l), for2 <ic<k.

Proof of Lemma 4: By construction, e,; represents the residuals from the OLS regression of
x;~1,m,xq,%5, ..., Xi_1 (EQ.7). Thus, e,; L 1,m, xq, x5, ..., X;_1, from which it follows that e,; L
span(1l,m, x4, x5, ..., X;_1) by Lemma 2.

Because ey, €x3, .., Ex(i-1) € span(1,m, xq, x5, ..., x;_1) for 2 < i < k by construction, we are able
to conclude that ey; L exy, €x3, -, €x(i—1)- B

Theorem 2: e,; L span(1,m, xq, y;, €y3, ..., €x(i-1)), for 2 < i < k.

Proof of Theorem 2: e,; 1 1, m, x; because e,; represents the residuals from the OLS regression of
Xi~1,m,x1,X3, ..., Xj_q. Further, ey; L ey;,€x3, ..., exi—1) for 2 < i < k by Lemma 4 above.

Thus, ey; L span(1,m, xy, exy, €x3, ..., €xi—1)) by Lemma 2. m

2.2.2. Property (i): 757 = 54

Proof of Property (i): As before, this equality follows from the fact that yf,",g is a function of the same

variables as ﬁs(i).

By Definition 6, 371(,2 = f(1,m, x4, €y, ..., €4i), Where e; = f(1,m, xq, x5, ..., x;) by Definition 5.

Thus, it also holds that

3 The span of a set of vectors &, 8;, 85, ... 0 is the set of all possible linear combinations of &, §;, 85, ... 8, i.e.:
span(8y, 61, 62, ... 6) = Co8p + €161 + €20, + -+ + €y,

where the coefficients ¢, ¢y, ¢5, ..., ¢ are scalars.



j}\lSlR)’ = f(llm;x]_, X3, ...,xi) .

Moreover, by Definition 4,
P =fa .
yS _f( 'm'xl;xz.---,xl).

From this, it follows that 375@ = 371(,2 and, consequently, fék) = )71(,’;). ]

22.3.  Property (ii): @ = A%

Proof of Property (ii): By definition, 375(1) = 371(]}3) = f(1,m, x;), and it is trivially true that &;11) = /1;11).

Because ey; L span(1,m, Xy, €xy, €xs, -, €x(i—1)) for 2 < i < k by Theorem 2, we conclude that

2;11) = 15521) == ig? from Lemma 1.

Therefore, &,(Cll) = iikl)- m’
2.2.4. Property (iii): &3 = Ae

Proof of Property (iii): Consider the UR model:

90 = A9 4 1D 4 10, 41D,y 4+ 1,0,

ex2

If we substitute the expansion for e,; (Eq.7) into this equation and rearrange, we produce:

Pon = A0 +250m+ Adxy + A0, |97 = 9%+ xp = 7 m |+ 4

iggi [—17(51) - ?9£;)x1 - ?agé)xz - ?;l()i—l)xi—l + X - Vr(r?m]

_ 30 _ 30 (2) 7 @ A0 _ 5@ (@) OO

= [’101 - /1elx2VO -t Aelxiyol ] + [Axll - Aelxzyxl - Aelxi xll Xy +

(] (3 3 Nz . ~(s ~(i N 2

260 = 201y == 20 |0 + 4 [A0 i+ [ = A0 -
OO
/'lelxiy"f ]m .

We have already established that 375(0 = 371(,2 (i.e. Property (i)) because they are functions of the

same covariates, so it follows that the estimated coefficients for those covariates must themselves

be equal. Specifically, we see that the coefficient for x; will always equal the coefficient for e,;, i.e.
NONEEO)
a,; =47

xi exti’
Because ey; L span(1,m, Xy, €x3, €x3, ..., €x(i-1)), We may apply Lemma 1 and conclude that igc)i =
A2 = ... = 1% from which it follows that @ = 1% m

4 Although no causal meaning/significance can be attributed to the coefficient of the confounder m, the logic applied in this proof may be

easily extended to show that 0?,(,1) = iﬁ,’?.



3. Appendix 3: UR models: Time-varying confounder

Proofs of Properties (i) — (iii) for the scenario depicted in Figure 3a (i.e. k longitudinally measured
exposure variables x4, X5, ..., X, one time-varying confounder my, m,, ..., my, and one distal
outcome y).

3.1. Definitions

We extend the definitions (1-3) provided in Appendix 1 to examine the scenario depicted in Figure
3a.

3.1.1. Definition 7: Standard regression models

In this scenario, the relationship between each x; and y is confounded by all previous measurements
of the exposure x4, x5, ..., X;_1, as well as all previous and current measurements of the confounder
mq,my,...,m; (for 1 < i < k). These covariates must all be included in the standard regression
models to obtain an unbiased estimate of the total causal effect of each measurement x; on y, i.e.:

~(1 ~(1 ~(1 ~(1

yS( ) = a(() ) + a,(niml + a,(cl)xl

~(2 ~(2 ~(2 ~(2 ~(2 ~(2

ysg ) = a(() ) + ar(niml + “9(51)X1 + a,(n%mz + afcz)xz

~(k ~(k) | Ak ~(k ~(k ~(k

y_é ) = a(() )+ ar(niml + ag(cl)xl + -+ a,(n,zmk + afck)xk . (Eq.9)

3.1.2. Definition 8: Unexplained residual (UR) terms

The DAG in Figure 3a also makes evident that the relationship between each measurement x; and all
previous measurements of the exposure x4, x5, ..., X;_1 is confounded by all previous and current
measurements of the confounder m,, m,, ..., m;, for 2 < i < k. Thus, we create UR terms e,; for
each measurement of the exposure variable x; by adjusting for m;,m,, ..., m;, i.e.:

X =73 + P + P02+ Ty iyMic1 + Fap—pyXi-1 + Taimi + €x;  (Eq.10)

and
exi = —T” = Tayma — P Xy — - = Py Mict — -1y Xie1 — Taims + x; . (Eq.11)

In this way, e,; represents the difference between the observed value of x; and the value of x; as
predicted by all previous measurements x4, x,, ..., x;_1, adjusted for the confounding effects of
mq,my, .., m;.

Previous proofs have relied upon the orthogonality of the terms in the composite UR model (i.e.
Theorems 1 and 2 in Appendices 1 and 2, respectively). This necessitates the creation of UR terms
emi for each measurement of the time-varying confounding variable m;, for 2 < i < k. Each e,; is
derived from the OLS regression of m; on all previous values of the confounder m, m,, ..., m;_4 and

all previous values of the exposure x4, x5, ..., X;_1, i.€.:
m; = ﬁ(()l) + ﬁr(rll)lml + ﬁp(cl1)x1 + -+ ﬁy(r?(i_nmi—l + ﬁfcl()i_l)xi—l + emi (Eq.12)

and



— _x@ _ @ A (D N NO),
emi = Mo — Mm1™M1 — Nxi X1 — " = M=y Mi-1 — 1jZ1 Xi—1 T My (Eq.13)
These adjustments follow from the DAG in Figure 3a, in which it is evident that x4, x5, ..., X;_1
confound the relationship between m; and my, my, ..., m;_1. Thus, e,,; has a similar interpretation
to the original UR terms, in that it represents the part of m; unexplained by all previous values
mq,m,, ..., mij_q, adjusted for the confounding effects of x1,x5, ..., Xj_1.

3.1.3. Definition 9: Unexplained residuals (UR) models

Finally, we represent the composite UR model as a function of the initial value of the exposure x;
and all subsequent URs for the exposure e, €y3, ..., €4i, and the initial value of the confounder m;
and all subsequent URs for the confounder e,,3, €3, .-, €mi:

k)

~(k 2(k ~(k ~(k ~(k ~(k n
ylSR) = /15) ) + lgniml + l;l)xl + /’Lgn)lzemz + ,1( ) ey + o+ /1((3m

5 (k)
ex2 kEmk + Aexk €xk

(Eq.14)
3.2. Mathematical proofs

The proofs that follow rely upon the following key properties of OLS regression estimators and
require the following two lemmas:

Key properties of OLS estimators: We may represent the regression equation y = S, + B1x1 +
-+ BrX) + € in summary notation as:

y=Xp +¢,

where: y represents the vector of n continuous observations of the outcome; X represents the n X
(k + 1) matrix of n observations for k continuous covariates and 1 constant; 8 represents the k + 1
vector of coefficients for each covariate and constant; and € represents the vector of n residuals.

The OLS estimate of (8 is given by:
B=XX)Xy.
On the assumption that the inverse matrix exists, this equation has a unique solution.

Further, for the given OLS equation y = X,[? + e, it can be shown that the vector of residuals (e) is
orthogonal (denoted 1) to every column (1, x4, x5, ... x;) of X.

*Note that detailed proofs have not been provided, but can be located in referenced material 2.

Lemma 1: For two orthogonal components 7 and § (i.e. T L §), the estimated coefficients of the
regression of y on T and § are equal to the estimated coefficients for the separate regressions of y
ontandyons.

Proof of Lemma 1: The regression of y on T and § may be written as:

y=1Ir 5][?;]+e=rﬁr+5ﬁ5+e.

From Definition 1, the OLS estimate of 8, and s is given by £ = (X'X)™1X'y. In this scenario,

=[5l al=[5% 28=[5 Sl

where the final equivalency follows from the condition of orthogonality. Then



-1 _[t't 07 @D 0
(X X) 1= [TOT 8,6] - [ 0 (6,5)_1]

and

X'y = [g] y = [gﬂ -

Combining these elements gives:

p| _ [ 0 [T'y] _| @Dy
Bl | 0 @Y |@Tey]
From this, we see that the estimated coefficients are equivalent to those that would be produced for

the separate regressionsof yontandyoné. m

Lemma 2:1ft; L §; for0 <i < hand 0 <j < k, then span(ty, 74, ..., Tp) L span(8y, 61, ... 6y) for
any vectors Ty, Ty, ..., Tp, 89, 01, - 0. >

Proof of Lemma 2: 7; L §; implies that7; - §; = 0for0 <i<hand0 < j < k. Then
span(ty, Ty, ..., Tp) - Span(8y, 61, 8, ... Ox)
= (C0T0 + C1Tq + -+ ChTh) ) (d050 + d161 + -+ dk6k)

= codo(Tg " 8p) + codq (To - 81) + =+ + cody (T - 8k) + c1do(T1 - 8p) +
c1dy(Ty* 61) + -+ crdp(T1 - 6k) + -+ cpdo (T * 6p) +
cpdq (T * 61) + -+ cpdi (Tp - Ok)

= Codo(O) + Codl(O) + -+ Codk(O) + Cldo(O) + Cldl(O) + -+
Cldk(O) + -+ Chdo(O) + Chdl(O) + -+ Chdk(O)

=0

Thus, span(ty, Tq, -, Tp) L span(dy, 61,03, ... 6x).

3.2.1. Covariate orthogonality

Here, we show that: the UR terms for each measurement of the confounder (i.e. €,,2, €m3, -, €mi)
are mutually orthogonal; the UR terms for each measurement of the exposure (i.e. e,5, €x3, -, €xi)
are mutually orthogonal; and, importantly, the UR terms e,,2, €3, ---, € are orthogonal to

€x2)€x3) s Exii-
Lemma 6: ey L €z, €3, -, €m(i-1), for 2 < i < k.

Proof of Lemma 6: By construction, e,,; represents the residuals from the OLS regression of
mi~1,myq, xq, ..., mj_1,x;_1 (Eq.13). Thus, e,,; L 1,mq, x4, ..., M;_1, X;_1, Which implies e;,; - 1 = 0,
emi M1 =0,€epi"x1=0,..,en m_1=0,ey,;xi_1=0.

From this, it follows that e,,;; L span(1,mq, x4, ..., m;_1,X;_1) from Lemma 2.

5 The span of a set of vectors &, 8;, 85, ... 0 is the set of all possible linear combinations of &, §;, 85, ... 8, i.e.:
span(8y, 61, 62, ... 6) = Co8p + €161 + €20, + -+ + €y,

where the coefficients ¢, ¢y, ¢5, ..., ¢ are scalars.



Because €2, €m3, ) Em(i—1) € SPAn(l,my, xq, ..., m;_q,x;_1) for 2 < i < k by construction, we are
able to conclude that ey,; L €2, €3, o) Em(iz1)- W

Lemma 7: €y 1L €,2,€,3, ...,ex(i_l), for2 <i<k.

Proof of Lemma 7: By construction, e,; represents the residuals from the OLS regression of
xi~1,mq, x4, ..., mj_q, X;_1,m; (Eq.12). Thus, e,; L 1,mq, x4, ..., M;_1, X;_1, m;, which implies e,; -
1=0,ey-m; =0,64;:x1=0,...,epi  mi_1=0,€,;-x,_1=0,e,;-m; =0.

From this, it follows that e,; L span(1, myq, x4, ..., mj_q, X;_1,m;) from Lemma 2.

Because eyy, €x3, v, €x(i—1) € SPAN(1, My, X1, ..., M;_1, X;_1,m;) for 2 < i < k by construction, we
are able to conclude that ey; L ey, €x3, ..., €x(i—1)- B

LemmaS:exiJ_emj,forZSiSkandZSjsk.

Proof of Lemma 8: As established previously, e,; L span(1,mq,xq, ..., mj_1,%;_1,mM;) by Lemma 2,
for 2 <i < k. Because e,,3, €3, -, €mi€ span(l,my, x4, ..., M;_1, X;j_1, m;) by construction, it is
evident that e,; L €2, €m3, ) €mi-

Further, e,,; 1 span(1,mq, x4, ...,mj_l,xj_l) by Lemma 2, for 2 < j < k. Because
€x2,€x3) ) Ex(j—1) € SPAN(1, My, Xy, ..., Mj_1, Xj_1) by construction, it is evident that e,,; 1

€x2,€x3, «r) ex(j_l).
Combining these two results, it follows that e,; L ep,;for2 <i<kand2<j<k.m
Theorem 3: span(ey;, en;) L span(1,my, xy, ..., €m(i—1), €x(i-1)), for 2 < i < k.

Proof of Theorem 3: By definition, e,; L 1,mq, x;. As established in Lemmas 7and 8, e,; L

€x2) wen) ex(i_l), €m1r ) em(i_l).
Further, e,,; L 1,m4, x4 by definition, and as established in Lemmas 6 and 8, e,,;; L
exz, ey ex(i_l), eml, ey em(i_l).

Thus, by Lemma 2, it follows that span(ey;, em;) L span(l,my,xq, ..., €m(i-1), €x(i-1))- B

3.2.2. Property (i):?ék —3'32

Proof of Property (i): As previously, Property (i) follows from the fact that 37[(,2 is a function of the

same variables as ﬁs(i).
By Definition 9, 371(,2 f(1,my,x1, €m2,€x2, - » €mi» €xi), Where e,; = f(1,my, x4, ..., my, x;) and
emi = f(1,mq,xq, ..., m;_1, X;_1,m;) by Definition 8. Thus, it also holds that

”(l) = f(1,my,xq, ..., My, X;) .
Moreover, by Definition 7,

A(k) = f(1,mq,xq, ..., My, Xi)

From this, it follows that ym = 371(”3 and, consequently, y¢ pU) = )A’L(zl;) u



3.23.  Property (ii): &) = 2%

Proof of Property (ii): By definition, 375(1) = 37[5}3) = f(1,my,x;), and it is trivially true that &9511) = 2;11)-

Because span(ey;, i) L span(l,my, xy, ..., €mi—1), €x(i-1) for 2 < i < k by Theorem 3, we are

able to conclude that igcll) = 2;21) == /T;kl) by applying Lemma 1.

Therefore, &;511) = /TS?. m

3.24.  Property (ji): @) = 2%

exi

Proof of Property (iii): Consider the UR model:

ema + )ngzexz + -+ i(i) emi ﬁfgiexi .

emi

59 = 29 4 1D, + 1D, + 19

em2

By substituting the expansions for e,; (Eq.11) and e,,; (Eq.13) into this equation and rearranging, we
produce:

371(12 = ig) + ’Tg&ml + /T;?xl + igr)nz [_ﬁ(()z) - 77;(521)951 - ﬁr(rfiml + mz] +
Aoga [ =767 = 14t %1 + X2 = Ty — 7715122)7”2] oo Ao [_ﬁ(()i) — A
= Aty = Ay == At ymey om0 [ <75 = 2 =
P2 iy + X — Pagmy — - — ?,Ef?mz]
= |28 = 2onats” = Adafo? =+ = Ay = 285" | + |25 = Ao -
30,92 — = 20 4D = AD 70 my + [AQ - 19,72~ AD,72 — .-
Toni &) = A3 e Ay = A0 | e + (A0 %

Having established that 375(0 = 371(,2 (i.e. Property (i)) because they are functions of the same

covariates, it follows that the estimated coefficients for those covariates must themselves be equal.

Specifically, we see that the coefficient for x; will always equal the coefficient for e,;, i.e. c?}(c? =
5()
Aexi‘

Finally, using the fact that e,; L span(1,my, xq, €2, €x2, -+, €m(i—1), €x(i—1), €mi), We apply Lemma
1 and conclude that 1% = 1%, = ... = 2% from which it follows that &9 = 1%, m

exi exi exi’ xi exi®

6 Although no causal meaning/significance can be attributed to the intercept term or the coefficients of the UR terms for the confounder

5 _ Z(k) A~ _ Z(k)
e

€m2, - » €my, the logic applied in this proof may be easily extended to show that &((,1) = igk) and @5 = Agmas -0 @ic = Ao TESPECtively.



4, Appendix 4: Details of standard error simulation

4.1. DAG

—
e g

-0.1 -0.3

Path coefficients represent bivariate correlations.

4.2. Correlation matrix based upon DAG
X1 X2 y
X1 1.00 - -
X, 0.40 1.00 -
y -0.22 -0.34 1.00
4.3. Population parameters used in simulation
Mean SD
X, 10.00 2.50
X, 15.00 3.75
y 20.00 5.00
4.4, Annotated R code

# load packages required for simulation
require(Matrix); require(matrixcalc); require(MASS); require(dagitty); require(devtools)
# devtools::install_github("jtextor/dagitty/r") # update regularly

HEHHHHRH AR
## Covar FUNCTION ##
HEHHHHHHH R




# converts SDs and pairwise correlations to a covariace matrix

Covar <- function(n=2,SD=data.frame(1,1),c.vec=data.frame(0.5)) {
check <-n-length(SD)
if (check !=0) stop("Incorrect SD specifications!")
check <-(n*(n-1)/2)-length(c.vec)
if (check !=0) stop("Incorrect correlation specifications!")
Cor <-NULL
for (iin 1:(n+1)) {
Row <- NULL
for (jin 1:(n+1)) {
if (i==j) Element <- 1
else if (i<j) Element <- c.vec[((i-1)*(2*n-i)/2)+(j-i)]
else if (i>j) Element <- c.vec[((j-1)*(2*n-j)/2)+(i-j)]
Row <- c(Row,Element)
}
Cor <- rbind(Cor,Row)
} 4 cov(i,j) = cor(i,j)*sd(i)*sd(j)
Cov <- matrix(nrow=n,ncol=n)
for (iin 1:n) { for (j in 1:n) { CoV[i,j] <- Cor[i,j]*SD[i]*SDI[j] }}
Cov <- as.matrix(forceSymmetric(Cov))
if (lis.positive.definite(Cov)) {
print("Warning: covariance matrix made Positive Definite")
Cov <- as.matrix(nearPD(Cov)Smat) }
return(Cov)

}

HitHHHHIEH]
## DAG ##
HitHHHHITH]

dagl <- dagitty('dag{
X1 [pos="0.2,0.2"]
X2 [pos="0.6,0.2"]
Y [pos="1,1"]
X1 -> X2 [beta=0.4]
X1->Y [beta=-0.1]
X2 ->Y [beta=-0.3]
1)
plot(dagl)
mod <- Im(Y~X1+X2, data=simulateSEM(dagl, empirical=TRUE))

HEHHHHA R
## COVARIANCE MATRIX ##
HEHHHHAE R

MyData <- simulateSEM(dagl, empirical=TRUE) # standardised data
Names <_ C(lelll’“XzII'IIYll)

SetCor <- cor(MyData); Corr <- SetCor[lower.tri(SetCor)]

N <-1000




X1.mu <-10

X2.mu <-15

Y.mu <-20

Mu  <-c(X1.mu,X2.mu,Y.mu)
X1l.sd <-X1.mu/4

X2.sd <-X2.mu/4

Y.sd <-Y.mu/4

SD  <-c(X1.sd,X2.sd,Y.sd)
MyCov <- Covar(3,SD,Corr)

HEHHHHR B
## SIMULATION ##
HEHHHHR B

# set storage for SEs for X1

seX1.reg <- NULL # standard regression models
seX1.UR <- NULL # UR models (as reported)
seX1.UR.boot <- NULL # UR models (bootstrapped)

# set storage for SEs for X2/e2

seX2.reg <- NULL # standard regression models
see2.UR <- NULL # UR models (as reported)
see2.UR.boot <- NULL # UR models (bootstrapped)

set.seed(23)

for (i in 1:1000) {
# simulate N observations
MyData <- data.frame(mvrnorm(N,Mu,MyCov,empirical=FALSE)); names(MyData) <- Names

# create standard regression model for X1 and save SE
modX1 <- Im(Y~X1, data=MyData); seX1.reg <- c(seX1.reg, summary(modX1)Scoefficients[2,2])

# create standard regression model for X2 and save SE
modX2 <- Im(Y~X1+X2, data=MyData); seX2.reg <- c(seX2.reg, summary(modX2)Scoefficients[3,2])

# create UR term
modX2.resid <- Im(X2~X1, data=MyData); MyDataSe2 <- modX2.residSresiduals

# create UR model and save SEs for coeffs

modUR <- Im(Y~X1+e2, data=MyData)

seX1.UR <- ¢(seX1.UR, summary(modUR)Scoefficients[2,2])
see2.UR <- ¢(see2.UR, summary(modUR)Scoefficients[3,2])

# use bootstrapping to create distribution of coefficients for UR model
coeffX1.UR.boot <- NULL # set storage for coeffs for X1 from UR model
coeffe2.UR.boot <- NULL # set storage for coeffs for e2 from UR model

for (j in 1:1000) {
# select random sample with replacement from MyData
select <- sample(c(1:1000), 1000, replace=TRUE)




MyData.boot <- MyDatalselect,]

# create UR term
modX2.resid.boot <- Im(X2~X1, data=MyData.boot); MyData.bootSe2 <-
modX2.resid.bootSresiduals

# create UR models and save coeffs

modUR.boot <- Im(Y~X1+e2, data=MyData.boot)

coeffX1.UR.boot <- ¢(coeffX1.UR.boot, summary(modUR.boot)Scoefficients[2,1])

coeffe2.UR.boot <- c(coeffe2.UR.boot, summary(modUR.boot)Scoefficients[3,1])
}

# calculate SES for UR model as standard deviation of distribution of coefficients
seX1.UR.boot <- c(seX1.UR.boot, sd(coeffX1.UR.boot))
see2.UR.boot <- ¢(see2.UR.boot, sd(coeffe2.UR.boot))

}

HEHHHHR R
## VIOLIN PLOTS ##
HEHHHHR R

# load required packages, import fonts
require(ggplot2); require(gridExtra); require(extrafont); require(Hmisc)
font_import(pattern="[C/c]alibri"); loadfonts(device="win") ## use fonttable() to see options

# function to produce summary statistics (mean and +/- sd)
data_summary <- function(x) {

m <- mean(x)

ymin <- m - sd(x)

ymax <- m + sd(x)

return(c(y=m, ymin=ymin, ymax=ymax))

}

# create stacked data frames for each pairwise comparison
DataFrameX1 <- stack(data.frame(seX1.reg,seX1.UR,seX1.UR.boot))
DataFrameX2 <- stack(data.frame(seX2.reg,see2.UR,see2.UR.boot))

# X1 plot
plotX1 <- ggplot(DataFrameX1, aes(x=ind, y=values)) +
geom_violin(fill="gray60", color="gray30", size=1.2, trim=TRUE) +
stat_summary(fun.data=data_summary, color="gray90", size=0.7) +
scale_x_discrete(name="", labels=c("Standard \nregression \nmodels","Unexplained \nresiduals
\nmodels \n(reported)", "Unexplained \nresiduals \nmodels \n(bootstrapped)")) +
scale_y_continuous(name="Standard error") +
ggtitle("Exposure: x1") +
theme_bw() +
theme(axis.line=element_line(size=1, colour="black"),
panel.border=element_blank(),
#panel.grid.major=element_blank(),
panel.grid.minor=element_blank(),
plot.title=element_text(size=16, hjust = 0.5, family="Calibri"),




text=element_text(size=13, family="Calibri Light"),
axis.text.x=element_text(size=13),
axis.text.y=element_text(size=11),
plot.margin=unit(c(0.5,0.5,0.5,0.5),"cm"),
legend.position="none")

#plotX1

# X2 plot
plotX2 <- ggplot(DataFrameX2, aes(x=ind, y=values)) +
geom_violin(fill="gray60", color="gray30", size=1.2, trim=TRUE) +
stat_summary(fun.data=data_summary, color="gray90", size=0.7) +
scale_x_discrete(limits=c("seX2.reg", "see2.UR", "see2.UR.boot"), name="", labels=c("Standard
\nregression \nmodels","Unexplained \nresiduals \nmodels \n(reported)", "Unexplained \nresiduals
\nmodels \n(bootstrapped)")) +
scale_y_continuous(name="Standard error") +
ggtitle("Exposure: x2") +
theme_bw() +
theme(axis.line=element_line(size=1, colour="black"),
panel.border=element_blank(),
#panel.grid.major=element_blank(),
panel.grid.minor=element_blank(),
plot.title=element_text(size=16, hjust = 0.5, family="Calibri"),
text=element_text(size=13, family="Calibri Light"),
axis.text.x=element_text(size=13),
axis.text.y=element_text(size=11),
plot.margin=unit(c(0.5,0.5,0.5,0.5),"cm"),
legend.position="none")
#plotX2

# composite plot

composite <- grid.arrange(plotX1, plotX2,
ncol=2, nrow=1,
widths=c(5,5), heights=8)
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