1	Supporting Information
2	
3	Title: Calcifying species sensitivity distributions for ocean acidification
4	Authors: Ligia B. Azevedo ^{1,2} , An M. De Schryver ^{3,4} , A. Jan Hendriks ² , Mark A. J.
5	Huijbregts ²
6	¹ International Institute for Applied Systems Analysis, Ecosystem Services and Management
7	Program, Schlossplatz 1, A-2361 Laxenburg, Austria
8	² Radboud University of Nijmegen, Department of Environmental Science, Nijmegen, The
9	Netherlands
10	³ ETH Zürich, Institute of Environmental Engineering, Zürich, Switzerland
11	⁴ Quantis, Parc Scientifique EPFL, Bâtiment D, 1015 Lausanne, Switzerland
12	*Corresponding author:
13	Ligia B. Azevedo
14	phone number: +43(0)2236807597
15	e-mail: azevedol@iiasa.ac.at
16	Keywords: climate change, pH, potentially affected fraction, effect concentration, marine,
17	acidification
18	

This supporting information is composed of four appendices. Appendix S1 shows the keyword used to complement the data collection with more recent literature. Appendix S2 shows the conversion from CO_2 partial pressure (p CO_2) to ocean pH. Appendix S3 describes the experimental design and pH₅₀ and pH₁₀ results of each logistic regression (Table S3.1), the literature list included by our study (Table S3.2), and the location of each experiment (Figure S3.1). Appendix S4 shows the result of the influence of temperature and experiment duration on pH₅₀ results.

26

- 27 Appendix S1 Keyword search in Scopus in September 2014.
- ABS((acidification* OR pH OR elevated pCO*) AND (ocean* OR marine*) AND (test* OR
- 29 experiment* OR lab*) AND NOT ((marine sediment) OR (*surfactant OR oil) OR (DMS and
- 30 DMSP))) AND (PUBYEAR > 2012)

31

32 Appendix S2 Conversion of CO₂ partial pressure to pH

When CO_2 partial pressure (p CO_2 , µatm) for ocean water was reported instead of pH, we employed the following conversion equation (Figure S2.1). The conversion was done for 79 experiments (or 21 studies), Table S3.1.

Figure S2.1 Correlation between pCO_2 and pH for different world's oceans based on the work of

36

³⁸ Feely et al.¹.

Appendix S3 Description of logistic regressions

Table S3.1 Duration and temperature, the pH range, number of samples, and the pH₅₀ (95% confidence interval) and pH₁₀ (derived according to equation 3, main text) of individual logistic regressions for (a) growth, (b) reproduction, and (c) survival of calcifying species. The underlying experimental data for the logistic regressions are listed in Table S3.2 and their locations are illustrated in Figure S3.1. pH₁₀ was calculated when the logistic regression returned pH₅₀ and β coefficients were significantly different from zero (otherwise, it is shown as not applicable, N/A).

	Logistic regression ID	Duration (day)	Temperature (°C)	pH range	Samples	pH_{50}	β	рН ₁₀
(a) Growth								
Annelida								
				7.48 to				
Hydroides crucigera	46	60	25	8.11	4	$7.67^{\text{\pounds}}$	-0.65^{f}	N/A
				7.33 to				
Spirorbis spirorbis	190	30	16	8.11	3	No fit found		N/A
				7.33 to			_	
	192	30	16	8.11	3	7.21^{\pounds}	$-0.63^{\text{\pounds}}$	N/A
						7.60	-0.37	
				7.33 to		(7.48 to)	(-0.65 to -	
	193	30	16	8.11	3	7.72) [*]	0.09)	7.95
Arthropoda								
				7.35 to		c	c	N/A
Upogebia deltaura	83	35	0	7.99	3	1.71 ^t	-0.06 ^t	
				7.35 to		c	c	N/A
	84	35	0	7.99	3	7.77 ^t	-0.17 ^t	
Bryozoa								
				7.30 to				
Celleporella hyalina	174	15	15	8.10	3	No fit found		N/A

	Logistic regression ID	Duration (day)	Temperature (°C)	pH range	Samples	рН ₅₀	β	рН ₁₀
				7.30 to				
	175	15	19	8.10	3	$7.30^{\text{\pounds}}$	-0.46^{f}	N/A
				7.30 to	_	f	f	/ .
	176	15	22	8.10	3	7.19 ^r	-0.07 ^t	N/A
	104	20	17	7.33 to	2	17.0cf	2.02^{f}	
Electra pilosa	194	30	16	8.11 7.43 to	3	-1/.06	-3.83	N/A
Murianora truncata	188	45	18	7.45 l0 8.06	3	7 49 [£]	0.00^{f}	N/A
Mynapora trancata	100	UT J	10	7 43 to	5	/.+/	0.00	11/17
	189	83	18	8.06	3	No fit found		N/A
Chlorophyta					-			
				7.40 to				
Halimeda cylindracea	332	35	28	8.10	4	No fit found		N/A
-						7.85	-0.12	
				7.40 to		(7.82 to	(-0.22 to -	
	333	35	30	8.10	4	$(7.88)^{4}$	0.02)	7.97
				7.40 to		= c c f	e d ef	
	334	35	32	8.10	4	7.80^{2}	-0.15^{2}	N/A
	225	25	24	7.40 to	4	N. 64 6 1		NT/A
	555	35	34	8.10 7.40 to	4	No fit found		N/A
Halimada incrassata	45	60	25	7.49 to 8 10	1	7 82 [£]	-0.15 [£]	N/A
manneau merassata	75	00	25	7 71 to	-	7.02	-0.15	1 1/11
Halimeda macroloba	258	14	27	8.05	3	No fit found		N/A
				7.71 to	-			
	259	10	27	8.01	3	$7.63^{\text{\pounds}}$	-0.33 [£]	N/A
				7.73 to				
	260	7	27	7.99	3	7.83^{t}	-0.22^{t}	N/A
				7.40 to				/ .
	325	35	28	8.10	4	No fit found		N/A

	Logistic regression ID	Duration (day)	Temperature (°C)	pH range	Samples	рН ₅₀	β	\mathbf{pH}_{10}
				7.40 to		_		
	329	35	30	8.10	4	7.38^{\pounds}	$-0.53^{\text{\pounds}}$	N/A
				7.40 to				
	330	35	32	8.10	4	No fit found		N/A
	221	25	2.4	7.40 to		T c f	o o of	
	331	35	34	8.10	4	7.64~	-0.23~	N/A
	226	25	20	/.40 to	4	N. 64 6 1		NT/A
Halimeaa vertebralis	320	35	30	8.10 7.40 to	4	No fit found		N/A
	377	35	32	7.40 to 8 10	1	7 78 [£]	-0.16 [£]	N/A
	521	55	52	7.40 to	4	7.70	-0.10	1N/T
	328	35	34	8 10	4	No fit found		N/A
	020		0.	7.40 to		100 110 100		
	336	35	28	8.10	4	7.76^{f}	-0.39 [£]	N/A
Cnidaria								
				7.54 to				
Acropora digitifera	219	7	29.3	8.11	3	$7.19^{\text{\pounds}}$	$-0.02^{\text{\pounds}}$	N/A
				7.57 to		C	c	
	220	7	29.3	8.16	3	4.03^{\pm}	-0.71^{t}	N/A
				7.54 to	_			4 -
	221	14	29.3	8.09	3	No fit found		N/A
						6.89	-0.33	
	222	1.4	20.2	7.63 to	2	$(6.82 \text{ to})^{\text{¥}}$	(-0.41 to -	7.01
	222	14	29.3	8.15	3	$(6.96)^{\circ}$	0.25)	1.21
				7 28 to		7.11	-0.21	
	223	35	20.3	7.38 to 8 13	3	(7.10 to 7.12)€	$(-0.22 \ 10 - 0.2)$	731
	223	55	27.5	7 70 to	5	7.12)	0.2)	7.51
	224	35	293	8 23	3	7.29^{f}	-0.01^{f}	N/A
Acropora intermedia	54	56	25.5	7.65 to	3	7.15^{f}	-0.41^{f}	N/A
	51	20	20.0		5	,	0.11	1 1/ 1 1

	Logistic regression ID	Duration (day)	Temperature (°C)	pH range	Samples	pH ₅₀	β	рН ₁₀
				8.20				
						6.94	-0.18	
				7.65 to		(6.93 to	(-0.18 to -	
	57	56	28.5	8.20	3	$(6.95)^{\text{``}}$	0.18)	7.11
				7.65 to				
	61	56	25.5	8.20	3	6.79^{\pounds}	-0.11 [£]	N/A
						7.67	-0.47	
				7.65 to		(7.58 to	(-0.67 to -	
	62	56	28.5	8.20	3	7.75) [€]	0.27)	8.11
				7.65 to		_		
	65	56	25.5	8.20	3	8.02^{\pounds}	-0.03^{f}	N/A
						7.56	-0.24	
				7.65 to		(7.54 to	(-0.28 to -	
	66	56	28.5	8.20	3	7.58) [€]	0.21)	7.79
				7.83 to		C	C	
Acropora millepora	195	11	26.5	8.07	3	5.55 [±]	-1.51 [±]	N/A
				7.81 to		c	c	
	203	23	26.5	8.04	3	8.03 ^L	-0.08^{L}	N/A
				7.81 to				
	204	23	29	8.04	3	No fit found		N/A
						6.62	-1.16	
				7.81 to		(6.31 to)	(-1.66 to -	
	206	11	29	8.04	3	6.92) [*]	0.65)	7.72
				7.83 to		£	c	
	212	23	26.5	8.07	3	7.23 ^L	-0.35 ^t	N/A
				7.81 to		£	c	
	213	23	29	8.04	3	7.23	-0.35	N/A
						7.76	-0.36	
			• • -	7.58 to	_	$(7.60 \text{ to})^{*}$	(-0.65 to -	0.4.0
Favia fragum	76	14	28.5	8.14 ^{\circ}	3	7.91)*	0.07)	8.10

	Logistic regression ID	Duration (day)	Temperature (°C)	pH range	Samples	рН ₅₀	β	pH ₁₀
				7.77 to			2	
Lophelia pertusa	90	8	9	8.03 [¤]	4	$7.58^{\mathfrak{t}}$	-0.44^{f}	N/A
		_	_	7.77 to		f	f	/ .
	91	8	9	8.03	4	7.29 ^r	-0.50^{t}	N/A
	02	0	0	7.77 to		7 2 o f	o c a f	
	92	8	9	8.03	4	7.20~	-0.57~	N/A
	120	20	10.5	7.73 to	4	No fit formal		NT/A
	128	89	12.5	8.10 7.73 to	4	No III Iound		N/A
	129	89	12.5	7.7500 8 10 ^a	4	No fit found		N/A
	12)	07	12.0	8.01 to		i to int iound		1 1/21
	130	5	12.5	8.06 [¤]	3	6.93 [£]	-0.69^{f}	N/A
		-		7.74 to	_			
Madrepora oculata	126	89	12.5	8.10 [¤]	4	No fit found		N/A
-				7.74 to		_		
	127	89	12.5	8.10 [¤]	4	$6.22^{\mathfrak{t}}$	-1.92^{t}	N/A
				7.75 to		ĉ	C	
	131	5	12.5	8.06 ^{°°}	3	7.38 ^t	-0.34^{L}	N/A
	205	•	265	7.81 to	2	T c f	o o of	
Montipora monasteriata	205	23	26.5	8.04	3	7.64~	-0.28~	N/A
				7.01.40		6.98 ((05 to	-0.3/	
	207	22	20	7.81 to 8.04	2	(0.95 l0 7 02) [¥]	$(-0.40 \ 10 - 0.28)$	7 2 2
	207	23	29	0.04 7.83 to	5	7.02)	0.28)	1.55
	214	11	26.5	8.07	3	7.22^{f}	-0.58^{\pm}	N/A
	211	11	20.5	7.81 to	5	1.22	0.50	1 1/1 1
	215	11	29	8.04	3	7.22^{f}	-0.38^{f}	N/A
				7.83 to	-			
	216	23	26.5	8.07	3	$7.26^{\text{\pounds}}$	-0.36 [£]	N/A
	217	23	29	7.81 to	3	$7.29^{\text{\pounds}}$	-0.37 [£]	N/A

	Logistic regression ID	Duration (day)	Temperature (°C)	pH range	Samples	рН ₅₀	β	\mathbf{pH}_{10}
				8.04				
				7 49 4-		7.03	-0.81	
	20	(0	25	/.48 to	1	(6./4 to)	(-1.4 / t0 - 0.15)	7 01
Oculina arbuscula	38	60	25	8.11	4	7.33) 7.61	0.15)	/.81
				7 81 to		7.01	-0.5	
Posillopora damicornis	106	11	20	7.81 to 8.04	2	(7.00 to 7.62)€	$(-0.33 \ 10 - 0.26)$	7.80
Foculopora admicornis	190	11	29	8.04 7.83 to	5	7.03)	0.20)	1.09
	107	23	26.5	7.83 to 8.07	3	7.31 [£]	0.46^{f}	N/A
	197	23	20.3	7.81 to	5	7.51	-0.40	1N/A
	198	23	29	8.04	3	7.48^{f}	-0.41^{f}	N/A
	170	25	2)	0.01	5	7.04	-0.58	1 1/1 1
				7 81 to		(6 99 to	(-0.7 to -	
	208	23	26.5	8.04	3	$(0.99 \ 0.00)^{\text{¥}}$	0 46)	7 59
	200		_0.0	7.81 to	C C	,,	00)	,,
	209	23	29	8.04	3	6.64^{f}	-0.42^{f}	N/A
				7.83 to				
	218	11	26.5	8.07	3	$7.10^{\text{\pounds}}$	-0.59 [£]	N/A
				7.71 to				
	257	14	27	8.05	3	No fit found		N/A
				7.71 to				
	261	10	27	8.01	3	$7.63^{\text{\pounds}}$	-0.26^{f}	N/A
				7.73 to		_		
	262	7	27	7.99	3	6.99^{f}	-0.73^{f}	N/A
				7714-		/.85	0.02	
	2(2	14	27	/./1 to	2	(/.84 to 7.86)€	-0.02	707
	263	14	27	0.UJ 7 71 to	3	1.80)	(-0.04 to 0)	/.ð/
	761	10	77	/./1 LO 2 01	2	7.62 [£]	0.22 [£]	NI/A
	204	10	27	0.01	3	7.03 7.06 [£]	-0.33	IN/A
	265	/	27	1.13 to	3	1.80	-0.28	IN/A

	Logistic regression ID	Duration (day)	Temperature (°C)	pH range	Samples	рН ₅₀	β	рН ₁₀
				7.99				
				7.58 to		7.61 (7.43 to	-0.46 (-0.79 to -	
Porites astreoides	75	14	29.4	8.11 [¤] 7.72 to	3	7.79) [¥]	0.12)	8.04
	93	49	26	7.99 [¤] 7 40 to	3	7.85 [£]	-0.29 [£]	N/A
Porites australiensis	291	56	27	8.00 7.40 to	3	6.28^{f}	-1.45 [£]	N/A
	292	56	27	8.00 7.40 to	3	7.31 [£]	-0.03 [£]	N/A
	293	56	27	8.00 7.40 to	3	No fit found		N/A
	294	56	27	8.00 7.40 to	3	7.65 [£]	-0.21 [£]	N/A
	295	56	27	8.00 7.40 to	3	7.68 [£]	-0.26 [£]	N/A
	296	56	27	8.00	3	$7.81^{\text{\pounds}}$	-0.01 [£]	N/A
Porites lobata	55	56	25.5	7.65 to 8.2	3	$7.17^{\text{\pounds}}$	-0.19 [£]	N/A
	58	56	28.5	7.65 to 8.2	3	6.76 [£] 7.76 (7.70 to	-0.3 [£] -0.24 (-0.37 to -	N/A
	63	56	25.5	7.65 to 8.2	3	().1/0 [€]	0.11)	7.99
	64	56	28.5	7.65 to 8.2	3	No fit found	,	N/A
Dinophyta				7 77 to				
Scrippsiella trochoidea	88	19	15	8.21 ^{°°} 7.77 to	3	7.97 [£]	-0.15 [£]	N/A
	89	19	15	8.21 [¤]	3	7.87^{f}	-0.19 [£]	N/A
Echinodermata								

	Logistic regression ID	Duration (day)	Temperature (°C)	pH range	Samples	рН ₅₀	β	pH_{10}
				6.80 to				
Amphiura filiformis	1	40	14.5	8.00	4	4.95 [£] 7.06	-2.10 [£] -0.78	N/A
				7.36 to		(6.92 to	(-1.1 to -	
Arbacia punctulata	36	60	25	8.04 7.36 to	4	7.20) [¥]	0.46)	7.81
Asterias rubens	181	70	12.9	8.06 [¤] 7.60 to	3	7.25 [£]	-0.04^{f}	N/A
Centrostephanus rodgersii	85	5	0	8.01	3	7.50 [£] 7.82	-0.02 [£] -0.14	N/A
				7.13 to		(7.79 to	(-0.21 to -	
Echinometra mathaei	12	3	24	8.11 7.36 to	5	$(7.85)^{4}$	0.08)	7.96
Eucidaris tribuloides	44	60	25	8.04 7 40 to	4	7.20^{f}	-0.73 [£]	N/A
Heliocidaris erythrogramma	236	14	21	8.20 7.40 to	4	7.94^{f}	-0.11 [£]	N/A
	237	14	23	8.20 7.40 to	4	7.83 [£]	-0.08^{f}	N/A
	238	14	25	8.20 7.60 to	4	7.85 [£]	-0.17 [£]	N/A
	239	14	21	8.20 7.40 to	3	7.26 [£]	-0.02^{f}	N/A
	240	14	21	8.20 7.40 to	3	No fit found		N/A
	241	14	23	8.20	3	6.31 [£] 6.26	-2.58 [£] -0.30	N/A
				7.02 to		(6.07 to	(-0.54 to -	
Hemicentrotus pulcherrimus	14	3	14	7.98	5	$(6.46)^{\text{F}}$	0.07)	6.55
Paracentrotus lividus	136	3	12.5	7.00 to	6	7.54	-0.30	7.83

	Logistic regression ID	Duration (day)	Temperature (°C)	pH range	Samples	рН ₅₀	β	pH_{10}
				8.10		(7.43 to)	(-0.52 to -	
						7.65) [∗]	0.07)	
				7.00 to		C	C	
	137	3	12.5	8.10	6	7.63 ^{<i>t</i>}	-0.31 ^{<i>t</i>}	N/A
				7.00 to		£	£	
	138	3	12.5	8.10	6	7.57 ^L	-0.36 ^L	N/A
						7.73	-0.23	
				7.00 to		(7.69 to	(-0.32 to -	
	139	3	12.5	8.10	6	$(7.78)^{\epsilon}$	0.14)	7.95
Strongylocentrotus				6.50 to		C	C	
droebachiensis	86	29	9	8.01	25	7.56^{L}	-0.29 ^t	N/A
Strongylocentrotus				7.52 to		C	C	
purpuratus	140	6	15.5	8.06 ^{°°}	3	6.92^{t}	-0.71 ^t	N/A
				7.52 to				
	141	6	15.5	8.06 ^{°°}	3	No fit found		N/A
				7.52 to		C	C	
	142	6	15.5	8.06 ^{°°}	3	7.44^{t}	-0.26^{t}	N/A
						7.01	-0.31	
				7.52 to		(6.94 to	(-0.45 to -	
	143	6	15.5	8.06 ^{°°}	3	7.07) [€]	0.18)	7.31
						7.02	-0.18	
				7.52 to		(6.97 to	(-0.28 to -	
	144	6	15.5	8.06 ^{°°}	3	7.06) [€]	0.07)	7.19
				7.52 to		0	0	
	145	6	15.5	8.06 ^{°°}	3	7.74^{t}	-0.03^{t}	N/A
				7.52 to		C	c	
	146	6	15.5	8.06 ^{°°}	3	7.76^{t}	-0.01 ^t	N/A
				7.52 to		C	C	
	147	6	15.5	8.06 [¤]	3	7.97 ^t	-0.01 [±]	N/A
	244	3	15.6	7 52 to	3	6.42^{f}	-2.46^{f}	N/A

	Logistic regression ID	Duration (day)	Temperature (°C)	pH range	Samples	рН ₅₀	β	pH_{10}
				8.06				
				7.52 to				
	245	6	15.6	8.06	3	6.84 [£] 6.97	-0.42 [£] -0.07	N/A
				7.52 to		(6.96 to	(-0.08 to -	
	246	3	15.6	8.06	3	$(6.98)^{\text{F}}$	0.06)	7.03
				7.52 to				
	247	6	15.6	8.06	3	$5.67^{\mathfrak{t}}$	-1.05^{\pounds}	N/A
				7.52 to				
	248	3	15.6	8.06	3	6.60^{t}	-0.97 [£] -0.05	N/A
				7.52 to		7.31	(-0.08 to -	
	249	6	15.6	8.06	3	$(7.3 \text{ to } 7.32)^{\text{€}}$	0.01)	7.35
				7.52 to				
	250	3	15.6	8.06	3	No fit found		N/A
				7.52 to				
	251	6	15.6	8.06	3	No fit found		N/A
Foraminifera								
				7.76 to				
Amphisorus hemprichii	95	84	27.5	8.17 [¤]	5	7.49^{f}	-0.52^{f}	N/A
				7.76 to				
	96	84	27.5	8.17 [¤]	5	7.6^{t}	-0.38^{f}	N/A
				7.76 to		<u>_</u>	C	
	97	84	27.5	8.17 ^{°°}	5	7.9 ^t	0.00^t	N/A
				7.76 to		c	C	
	105	84	27.5	8.17 ^{°°}	5	7.58 ^t	-0.01 ^t	N/A
				7.58 to		£	C	
Amphistegina radiata	233	40	27	8.10	4	7.82 ^t	-0.14 ^t	N/A
				7.76 to		£	c	
Baculogypsina sphaerulata	94	84	27.5	8.17 ^{°°}	5	7.55^{r}	-0.02^{t}	N/A

	Logistic regression ID	Duration (day)	Temperature (°C)	pH range	Samples	рН ₅₀	β	рН ₁₀
						7.64	-0.04	
				7.76 to		(7.63 to	(-0.08 to	
	98	84	27.5	8.17 [¤]	5	$(7.65)^{\text{¥}}$	0.00)	7.68
				7.76 to			,	
	99	84	27.5	8.17 [¤]	5	7.63^{f}	$-0.02^{\text{\pounds}}$	N/A
				7.76 to				
	100	84	27.5	8.17 [¤]	5	$7.90^{\text{\pounds}}$	-0.02^{\pounds}	N/A
				7.76 to			_	
Calcarina gaudichaudii	101	84	27.5	8.17 [¤]	5	$7.57^{\text{\pounds}}$	-0.01 [£]	N/A
				7.76 to				
	102	84	27.5	8.17 [¤]	5	7.57^{t}	-0.01^{\pounds}	N/A
				7.76 to		0	0	
	103	84	27.5	8.17 [¤]	5	7.49^{t}	-0.03^{f}	N/A
				7.76 to		0	2	
	104	84	27.5	8.17°	5	7.62^{t}	0.00^{t}	N/A
						7.76	-0.12	
				7.58 to		(7.74 to	(-0.16 to -	
Heterostegina depressa	234	40	27	8.10	4	$(7.78)^{4}$	0.08)	7.87
				7.58 to		C	C	
Marginopora vertebralis	235	40	27	8.10	4	7.76^{t}	-0.23 [£]	N/A
Haptophyta								
						7.72	-0.20	
				7.79 to		(7.66 to	(-0.31 to -	
Emiliania huxleyi	2	not clear	19	8.15	5	$(7.78)^{4}$	0.09)	7.91
				7.75 to		0	0	
	73	57	13	8.18	3	7.92^{t}	-0.23 [£]	N/A
				7.75 to		C	C	
	74	57	18	8.18	3	8.01^{t}	-0.02^{t}	N/A
				7.40 to				
	297	320	not clear	8.04 [¤]	3	No fit found		N/A

	Logistic regression ID	Duration (day)	Temperature (°C)	pH range	Samples	рН ₅₀	β	pH_{10}
				7.40 to				
	298	320	not clear	8.04 [¤]	3	$7.67^{\mathfrak{t}}$	-0.27^{f}	N/A
Heterokontophyta								
				7.83 to		c	c	
Turbinaria reniformis	199	11	26.5	8.07	3	7.41 ^t	-0.01^{t}	N/A
				7.81 to				
	200	11	29	8.04	3	No fit found		N/A
				7.83 to	_			
	201	23	26.5	8.07	3	No fit found		N/A
	202	22	20	7.81 to	2			
	202	23	29	8.04	3	No fit found		N/A
	210	22	26.5	7.81 to	2	c 70 ^f	0 (7 ^f	
	210	23	26.5	8.04	3	6.70*	-0.6/*	N/A
	211	23	29	7.81 to 8.04	3	7 13 [£]	-0.44^{f}	N/A
Mollusca	211	23		0.01	5	/.10	0.11	1 1/ 2 1
monuseu				7 20 to				
Argonauta nodosa	341	14	19	8 10	5	No fit found		N/A
in gonania nouosa	511		17	7 20 to	C	i to ili iouliu		1,11
	342	14	24	8.10	5	No fit found		N/A
	_			7.48 to	-			
Argopecten irradians	18	15	24	8.08	3	6.35 [£]	-0.47^{f}	N/A
				7.45 to				
	41	60	25	8.15	4	7.57^{\pounds}	-0.73^{f}	N/A
				7.80 to				
	231	20	24	8.21	3	$7.69^{\text{\pounds}}$	-0.13^{f}	N/A
				7.80 to				
	232	20	28	8.21	3	7.68^{t}	-0.23^{t}	N/A
				6.96 to		c	C C	
Chlamys farreri	299	<1	16	8.08	5	7.83 ^t	0.00^{t}	N/A

	Logistic regression ID	Duration (day)	Temperature (°C)	pH range	Samples	рН ₅₀	β	рН ₁₀
				7.55 to				
Crassostrea gigas	34	<1	20	8.07	20	$7.30^{\text{\pounds}}$	-0.84^{f}	N/A
						7.67	-0.04	
				7.41 to		(7.65 to)	(-0.07 to -	
	107	3	18.9	8.03	5	7.69) [*]	0.01)	7.71
				7.41 to		£	£	
	108	3	18.9	8.03	4	7.65 ^t	0.00^{L}	N/A
				7.64 to				
	339	1	0	7.97	3	No fit found		N/A
				7.64 to				
	340	3	0	7.97	3	No fit found		N/A
				7.48 to		c	£	
Crassostrea virginica	20	20	24	8.08	3	6.37^{t}	-0.14 ^t	N/A
				7.45 to		c	£	
	42	60	25	8.15	4	7.57 ^t	-0.74 ^t	N/A
						7.32	-0.30	
				7.42 to		(7.21 to)	(-0.50 to -	
Crepidula fornicata	43	60	25	8.09	4	7.44) [*]	0.09)	7.61
				7.66 to		c	c	
Limacina helicina	123	29	4.25	8.28 ^{°°}	4	7.57 ^t	-0.04 ^t	N/A
				7.74 to		c	£	
	125	7	2	8.10 ^¹	3	7.40^{t}	-0.35^{L}	N/A
				7.63 to		c	c	
	345	<1	0.5	8.17 ^{°°}	5	7.62^{t}	-0.02^{t}	N/A
				7.61 to		c	£	
	346	<1	3.9	8.18 ^¹	5	7.38^{L}	-0.03^{L}	N/A
				7.42 to		£	c	
Littorina littorea	47	60	25	8.09	4	6.99 ^r	-1.05 ^t	N/A
				7.48 to		6.41	-0.82	
Mercenaria mercenaria	23	18	24	8.08	3	(6.10 to	(-1.51 to -	7.20

	Logistic regression ID	Duration (day)	Temperature (°C)	pH range	Samples	рН ₅₀	β	pH_{10}
						6.72) [¥]	0.13)	
							-0.48	
				7.45 to		7.50	(-0.65 to -	
	48	60	25	8.15	4	$(7.40 \text{ to } 7.6)^{\text{€}}$	0.31)	7.96
				7.80 to				
	229	20	24	8.21	3	No fit found		N/A
						7.74	-0.20	
				7.80 to		(7.70 to	(-0.31 to -	
	230	20	28	8.21	3	7.79) [€]	0.09)	7.94
						6.83	-0.57	
				7.45 to		(6.73 to	(-0.74 to -	
Mya arenaria	37	60	25	8.15	4	$6.92)^{\text{``}}$	0.4)	7.37
				6.70 to				
Mytilus edulis	26	44	20	8.10	5	7.43^{f}	-0.44^{f}	N/A
				6.70 to				
	27	44	20	8.10	5	6.39 [£]	-1.55 [£]	N/A
						7.18	-0.35	
				7.46 to		(7.16 to	(-0.39 to -	
	35	<1	20	8.13	30	$(7.20)^{4}$	0.32)	7.52
				7.15 to				
	148	49	5	8.01	4	No fit found		N/A
				7.19 to				
	149	49	5	8.01	4	7.97^{t}	-0.01^{\pm}	N/A
				7.15 to				
	150	49	5	8.01	4	No fit found		N/A
				7.19 to			0	
	151	49	5	8.01	4	7.43 [£]	-0.27^{t}	N/A
				7.15 to			0	
	152	49	5	8.01	4	7.78^{t}	-0.48^{t}	N/A
	153	49	5	7.19 to	4	7.42^{f}	-0.56^{f}	N/A

	Logistic regression ID	Duration (day)	Temperature (°C)	pH range	Samples	рН ₅₀	β	рН ₁₀
				8.01				
				7.36 to				
	182	70	12.9	8.06 [¤]	3	7.21^{f}	-0.07^{f}	N/A
				7.80 to				
Ostrea lurida	285	9	20	8.00	3	$7.22^{\text{\pounds}}$	-0.58^{f}	N/A
						7.53	-0.30	
				7.80 to		(7.43 to	(-0.45 to -	
	286	16	20	8.00	3	$(7.63)^{\text{¥}}$	0.16)	7.82
				7.80 to		,	,	
	287	61	20	8.00	3	No fit found		N/A
				7.28 to				
Sepia officinalis	109	56	15	7.96	3	7.38^{f}	-0.85^{f}	N/A
1 55						7.77	-0.04	
				7.28 to		(7.76 to	(-0.08 to	
	110	56	15	7.96	3	$(7.78)^{4}$	0.00)	7.81
				7.28 to		,	,	
	111	56	15	7.96	3	$7.27^{\text{\pounds}}$	-0.70^{f}	N/A
				7.28 to				
	112	56	15	7.96	3	No fit found		N/A
				7.42 to				
Strombus alatus	39	60	25	8.09	4	$7.72^{\text{\pounds}}$	-0.32^{f}	N/A
				7.40 to				
Turbo cornutus	323	3	0	8.00	5	7.81 [£]	-0.01 [£]	N/A
				7.52 to				
	324	3	0	7.98	5	No fit found		N/A
				7.42 to				
Urosalpinx cinerea	40	60	25	8.09	4	$7.83^{\text{\pounds}}$	-0.31 [£]	N/A
Rhodophyta								N/A
1 2				7.70 to				
Corallina elongata	242	not clear	24.3	8.09	4	$7.26^{\text{\pounds}}$	-0.01^{f}	N/A
0								

	Logistic regression ID	Duration (day)	Temperature (°C)	pH range	Samples	pH ₅₀	β	pH_{10}
				7.70 to				
	243	not clear	24.3	8.09	4	No fit found		N/A
				7.72 to				
	270	30	18	8.09	4	7.43^{\pounds}	$-0.01^{\text{\pounds}}$	N/A
				7.72 to		c	c	
	271	30	18	8.09	4	8.00^{t}	-0.01^{t}	N/A
				7.68 to		£	£	
Lithothamnion corallioides	156	93	10	8.09 ^c	4	5.45 ^L	-2.05^{L}	N/A
				7.68 to		f	f	/ .
	157	93	16	8.07	4	8.46 ^{<i>r</i>}	0.16^{L}	N/A
				7.72 to				
	158	93	19	8.02~	4	No fit found		N/A
	1.50	0.2	10	7.68 to	4	7 2 of	o z of	NT / A
	159	93	10	8.09	4	7.39~	-0.79~	N/A
	1(0	02	16	/.68 to	4	7.24 [£]	0.00^{f}	
	160	93	10	8.07	4	1.34	0.00	N/A
	171	02	10	7.7210	1	7 55£	0.57 [£]	NT/A
	101	95	19	8.02 7.68 to	4	1.55	-0.37	1N/A
	162	03	10	7.08 10 8.00 [¤]	1	No fit found		NI/A
	102	75	10	0.09 7.68 to	4	NO III IOUIIU		1N/A
	163	93	16	8.07 [¤]	4	7.63 [£]	-0.24^{f}	N/A
	105))	10	7.72 to	-	7.05	-0.24	1 1/2 1
	164	93	19	8.02°	4	7.34^{f}	-0.28^{f}	N/A
	101	20	17	7 72 to	·	7.51	0.20	1,11
Lithothamnion glaciale	180	30	7	8 03 ^{°°}	4	No fit found		N/A
2	100	20	,	7 72 to		100 110 100		
	183	90	7	8.03	4	7.44^{f}	-0.01 [£]	N/A
	100		,	7.72 to				
	184	300	7	8.03	4	$7.52^{\text{\pounds}}$	-0.02^{f}	N/A

	Logistic regression ID	Duration (day)	Temperature (°C)	pH range	Samples	рН ₅₀	β	рН ₁₀
						7.67	-0.04	
				7.72 to		(7.65 to	(-0.07 to -	
	185	300	7	8.03	4	$(7.69)^{4}$	0.01)	7.71
				7.52 to				
	343	28	9	8.06 [¤]	4	8.06^{f}	$0.53^{\text{\pounds}}$	N/A
				7.53 to				
	344	28	6.8	8.07 [¤]	4	No fit found		N/A
				7.65 to				
Porolithon onkodes	53	56	25.5	8.20	3	7.15^{t}	-0.49 [£]	N/A
						6.71	-0.30	
				7.65 to		(6.70 to	(-0.31 to -	
	56	56	25.5	8.20	3	$(6.72)^{4}$	0.29)	7.00
				7.65 to				
	59	56	28.5	8.20	3	6.11 [£]	-1.52^{f}	N/A
						7.29	-0.26	
				7.65 to		(7.28 to	(-0.27 to -	
	60	56	28.5	8.20	3	7.30)€	0.25)	7.54
				7.71 to		,	,	
	266	14	27	8.05	3	8.42^{f}	0.12^{f}	N/A
				7.71 to				
	267	10	27	8.01	3	7.81^{f}	-0.08^{f}	N/A
				7.73 to				
	268	7	27	7.99	3	-13.86 [£]	-3.28^{f}	N/A
b) Reproduction								
Annelida								
				7.33 to				
Spirorbis spirorbis	191	30	16	8.11	3	7.64^{f}	-0.29 [£]	N/A
Arthropoda		- •			-			

	Logistic regression ID	Duration (day)	Temperature (°C)	pH range	Samples	рН ₅₀	β	рН ₁₀
				6.91 to			_	
Acartia erythraea	29	8	27	8.15	3	7.57^{f}	-0.25^{f}	N/A
				6.82 to		C	C	
	30	8	27	8.09	4	7.59^{t}	-0.32^{t}	N/A
				6.93 to	_	f	f	4 -
Acartia steueri	32	6	27	8.16	3	7.49 ²	-0.30 ²	N/A
						7.34	-0.25	
	171	7	0.0	6.89 to	4	$(7.31 \text{ to})^{\$}$	(-0.32 to -	7.50
Calanus finmarchicus	1/1		9.2	8.23	4	7.37)*	0.17)	7.58
				7 42 4-		7.03	-0.30	
Freehousin sure out a	112	10	0.5	/.43 to	2	$(6.98 to 7.07)^{\$}$	(-0.36 to -	7 22
Eupnausia superba	113	10	0.5	8.00	3	7.07)° 7.20	0.25)	1.32
				7 13 to		7.29	-0.31	
	114	10	0.5	8.06 [¤]	3	(7.25 to 7.33)€	(-0.39 to - 0.24)	7 59
	114	10	0.5	8.00	5	7.33) 7.18	-0.34	1.59
				7 43 to		(7.01 to)	(-0.54 to -	
	115	10	0.5	8.06 ^{°°}	3	(7.34) [€]	0 14)	75
	110	10	0.0	0.00	5	7.32	-0.27	1.0
				7.43 to		(7.29 to)	(-0.32 to -	
	116	10	0.5	8.06 [¤]	3	7.34)€	0.22)	7.58
Brvozoa						,	,	
				7.30 to				
Celleporella hyalina	177	15	15	8.10	3	7.27^{f}	-0.40^{f}	N/A
1 2						7.28	-0.31	
				7.30 to		(7.25 to	(-0.36 to -	
	178	15	19	8.10	3	7.31)€	0.25)	7.57
						7.16	-0.32	
				7.30 to		(6.98 to	(-0.52 to -	
	179	15	22	8.10	3	7.34) [§]	0.12)	7.46

	Logistic regression ID	Duration (day)	Temperature (°C)	pH range	Samples	рН ₅₀	β	\mathbf{pH}_{10}
Cnidaria								
						7.22	-0.30	
				7.72 to		(7.13 to	(-0.41 to -	
Acropora palmata	132	<1	28	7.99 ^{°°}	3	7.30) [€]	0.19)	7.5
				7.72 to		C	C	
	133	<1	28	7.99 [°]	3	7.26^{t}	-0.40^{t}	N/A
						7.19	-0.37	
				7.72 to		(6.97 to	(-0.67 to -	
	134	<1	28	7.99 ^{°°}	3	7.42) [§]	0.07)	7.55
				7.72 to		C	C	
	135	<1	28	7.99 ^{°°}	3	7.11 ^t	-0.31 ^{<i>t</i>}	N/A
						7.06	-0.30	
				7.60 to		(6.94 to	(-0.40 to -	
Balanophyllia elegans	69	93	0	8.00	3	7.18) [§]	0.20)	7.34
				7.60 to		c	c	
	70	93	0	8.00	3	7.67 ^t	-0.27 ^t	N/A
Echinodermata								
				6.78 to		C	C	
Echinometra mathaei	11	<1	24	8.11	6	7.66 ^t	-0.19^{t}	N/A
				6.80 to		C	C	
	24	<1	24	8.10	6	7.51 ^t	-0.43^{t}	N/A
						7.48	-0.29	
				6.80 to		(7.39 to	(-0.53 to -	
	25	<1	24	8.10	6	7.56) [§]	0.05)	7.76
		<1		7.60 to		C	C	
Heliocidaris erythrogramma	8		22	8.17	3	6.96 ^t	-0.99^{t}	N/A
		<1		7.60 to		C	C	
	9		24	8.17	3	7.19^{t}	-0.01 ^t	N/A
		<1		7.60 to		C	C	
	10		26	8.17	3	7.24^{t}	-0.03^{t}	N/A

	Logistic regression ID	Duration (day)	Temperature (°C)	pH range	Samples	рН ₅₀	β	\mathbf{pH}_{10}
		<1		7.77 to				
	15		24	8.20	4	7.75 [£]	-0.15^{f}	N/A
		<1		7.88 to				
	16		26	8.20	4	7.36^{f}	-0.71 [£]	N/A
		<1		7.02 to				
Hemicentrotus pulcherrimus	13		14	7.98	5	$7.78^{\mathfrak{t}}$	-0.19^{t}	N/A
		<1		7.00 to				
Odontaster validus	272		-0.5	8.10	4	Not fit found		N/A
		<1		7.00 to				
	273		-0.5	8.10	4	Not fit found		N/A
		<1		7.00 to		C	c	
	274		-0.5	8.10	4	-7.54 ^r	-2.34 ^t	N/A
		<1		7.00 to		C	C	
	275		-0.5	8.10	4	-7.54 ^r	-2.34 ^r	N/A
				7.00 to		c	£	
	276	58	-0.5	8.10	4	-7.54 ^r	-2.34^{L}	N/A
				7.70 to		£	£	
Ophiothrix fragilis	49	6	14	8.10	3	7.58 ^r	-0.24 ^{<i>r</i>}	N/A
	50	6	14	7.7 to 8.10	3	7.61 ^t	-0.32^{t}	N/A
		<1		6.80 to		C	c	
Paracentrotus lividus	300		14	8.00	4	-7.54 ^t	-2.34 ^t	N/A
		<1		6.80 to		C	C	
	301		14	8.00	4	-7.54 ^r	-2.34 ^t	N/A
		<1		6.80 to		C	C	
	302		14	8.00	4	7.14 ^t	-0.04^{t}	N/A
		<1		6.80 to		c	£	
	303		14	8.00	4	-7.54 ^r	-2.34 ^r	N/A
		<1		6.80 to		c	£	
	304		14	8.00	4	-7.54 ^r	-2.34 ^r	N/A
	305	<1	14	6.80 to	4	6.92^{t}	-1.33^{t}	N/A

Logist regress ID	ic ion	Duration (day)	Temperature (°C)	pH range	Samples	рН ₅₀	β	рН ₁₀
				8.00				
		<1		6.80 to				
	306		14	8.00	4	Not fit found		N/A
		<1		6.80 to				
	307		14	8.00	4	4.20^{f}	-1.8^{f}	N/A
		<1		6.80 to		7.52	-0.18	
				8.00		(7.42 to	(-0.31 to -	
	308		14		4	(7.61) [€]	0.06)	7.69
		<1		6.80 to		6.32	-0.69	
				8.00		(5.88 to	(-1.00 to -	
	309		14		4	6.75) [€]	0.38)	6.98
		<1		6.80 to		6.06	-0.91	
				8.00		(5.25 to	(-1.50 to -	
	310		14		4	6.88) [§]	0.32)	6.93
		<1		6.80 to		7.50	-0.18	
				8.00		(7.49 to	(-0.18 to -	
	311		14		4	7.51) [€]	0.17)	7.67
		<1		6.80 to		,	,	
	312		14	8.00	4	4.74^{f}	-2.25^{f}	N/A
		<1		6.80 to		7.61	-0.11	
				8.00		(7.60 to	(-0.12 to -	
	313		14		4		0.10)	7.72
		<1		6.80 to		,	,	
	314		14	8.00	4	7.71^{f}	-0.09 [£]	N/A
		<1		6.80 to				
	315		14	8.00	4	8.03^{f}	-0.01 [£]	N/A
		<1		6.80 to		7.95	-0.17	
				8.00		(7.88 to	(-0.31 to -	
	316		14		4		0.03)	8.11
	317	<1	14	6.80 to	4	$7.87^{\text{\pounds}}$	-0.28 [£]	N/A

	Logistic regression ID	Duration (day)	Temperature (°C)	pH range	Samples	pH ₅₀	β	рН ₁₀
				8.00				
		<1				7.40	-0.11	
Strongylocentrotus				7.59 to		(7.37 to	(-0.20 to -	
droebachiensis	252		0	8.05 [¤]	5	7.43) [§]	0.02)	7.51
		<1		7.59 to		2	2	
	253		0	8.05 [¤]	5	7.85^{t}	-0.79^{t}	N/A
		<1				7.69	-0.16	
				7.59 to		(7.65 to	(-0.24 to -	
	254		0	8.05 [¤]	5	7.73) [€]	0.08)	7.84
		<1		7.59 to				
	255		0	8.05 ^{°°}	5	Not fit found		N/A
		<1				7.13	-0.37	
Strongylocentrotus				7.47 to		(6.99 to	(-0.54 to -	
franciscanus	186		9	8.04	3	7.27) [§]	0.21)	7.49
		<1		7.47 to		£	£	
	187		9	8.04	3	7.54^{L}	-0.15 ^r	N/A
		_		7.60 to	_			/ .
Tripneustes gratilla	288	5	24	8.15	3	Not fit found		N/A
	• • • •	_		7.60 to				37/4
	289	5	27	8.15	3	Not fit found		N/A
	• • • •	-	2.0	7.60 to	2	2 o d	11 cf	
	290	5	30	8.15	3	-3.04	-4.16~	N/A
Mollusca								
						7.35	-0.24	
~	10.6		10.0	7.41 to		$(7.32 \text{ to})^{\delta}$	(-0.32 to -	
Crassostrea gigas	106	3	18.9	8.03	4	7.38)8	0.16)	7.58
		<]				7.15	-0.35	
TT 1 1			• •	7.68 to		(6.85 to	(-0.70 to -	7.40
Haliotis discus hannai	117		20	8.00~	4	7.45)	0.01)	7.48
	118	<1	20	7.68 to	4	7.34	-0.22	7.55

	Logistic regression ID	Duration (day)	Temperature (°C)	pH range	Samples	рН ₅₀	β	pH_{10}
				8.00 [¤]		(7.33 to	(-0.24 to -	
						7.35) [€]	0.20)	
		<1				7.23	-0.32	
				7.40 to		(7.12 to	(-0.48 to -	
	119		20	8.00°	5	7.34)€	0.16)	7.53
		<1				7.05	-0.29	
				7.40 to		(7.00 to	(-0.33 to -	
	120		20	8.00°	5	7.09) [§]	0.24)	7.32
				7.47 to		c	c	
Haliotis kamtschatkana	68	8	12	8.04	3	6.80^{t}	-0.50 [±]	
(c) Survival								
Arthropodo								
Artinopoda				6 01 to				
Acartia anythraaa	28	8	27	0.91 to 8 15	3	7 57 [£]	0.01^{f}	N/A
Acarna erynnaea	20	0	21	6.82 to	5	1.57	-0.01	1N/A
	31	8	27	8.09	1	6.87 [£]	_1 18 [£]	N/A
	51	0	21	6.93 to	-	0.07	-1.10	11/17
Acartia steveri	33	6	27	8 16	3	Not fit found		7 73
	55	0	21	0.10	5	7 60	-0.14	1.15
				7.26 to		(7.57 to)	(-0.22 to -	
Amphibalanus improvisus	165	56	12	8 04 [¤]	3	$(7.63)^{\P}$	0.06)	7 73
	100			0.0.1	C	7 84	-0.13	1110
				7.32 to		(7.79 to	(-0.20 to -	
	166	56	20	8.11 [¤]	3	7.88) [€]	0.05)	7.96
			-	7.44 to	_	,	,	
	167	56	27	8.18 [¤]	3	7.60^{f}	-0.01 [£]	N/A
				7.26 to				
	168	28	12	8.04 [¤]	3	6.33 [£]	-0.70^{f}	N/A

	Logistic regression ID	Duration (day)	Temperature (°C)	pH range	Samples	рН ₅₀	β	pH_{10}
				7.32 to				
	169	28	20	8.11 [¤]	3	7.41^{\pounds}	-0.33^{f}	N/A
				7.44 to				
	170	28	27	8.18 ^{°°}	3	Not fit found		N/A
		_		6.94 to		f	f	N/A
Calanus finmarchicus	172	7	9.5	8.23	4	6.62^{2}	-1.24^{2}	37/4
	150	-	o -	6.94 to		a aof	ootf	N/A
	173	1	9.5	8.23	4	1.12~	-0.01~	
Cnidaria				7 20 /				
1	1.5.4	2	07	7.30 to	2	5 01f	o oof	
Acropora digitifera	154	3	27	8.00	3	5.91~	-0.09~	N/A
				7.30 to		/.00 (7.62.to	-0.09	
	155	7	27	8.00	2	(7.02.00)	$(-0.14 \ 10 \ -0.02)$	7 75
	155	/	27	7 30 to	3	/./1)*	0.03)	7.73 N/A
	337	7	26.8	8.00	3	6 77 [£]	-1 04 [£]	1N/A
	166	7	20.0	7 30 to	5	0.77	-1.04	N/A
Acronora tenuis	338	7	26.8	8.00	3	6.85^{f}	-1.10^{f}	1 1/2 1
neropora tentais	550	7	20.0	7.60 to	5	0.05	1.10	N/A
Balanophyllia elegans	71	84	0	8.00	3	7.56^{f}	-0.03^{f}	1 1/11
				7.60 to				
	72	84	0	8.00	3	No fit found		N/A
Echinodermata								
				6.00 to				N/A
Evechinus chloroticus	4	13	15	8.10	6	$7.86^{\text{\pounds}}$	-0.41 [£]	
				7.70 to				N/A
Ophiothrix fragilis	51	8	14	8.10	3	$6.84^{\text{\pounds}}$	-0.45^{f}	
						7.36	-0.04	
				7.70 to		(7.34 to	(-0.05 to -	
	52	8	14	8.10	3	7.37) [¶]	0.03)	7.39

	Logistic regression ID	Duration (day)	Temperature (°C)	pH range	Samples	рН ₅₀	β	рН ₁₀
				6.00 to		_		N/A
Pseudechinus huttoni	5	9	12	8.15	6	7.87^{\pounds}	$-0.36^{\text{\pounds}}$	
				6.00 to		C	C	N/A
Sterechinus neumayeri	6	7	-1.9	8.00	5	7.74 ^t	-0.42^{t}	
Strongylocentrotus				6.97 to		£	£	N/A
droebachiensis	87	29	9	8.01	22	7.07 ^t	-0.48^{t}	
				6.00 to		£	£	N/A
Tripneustes gratilla	7	4	26	8.10	7	7.73 ^L	-0.47 ^t	
Foraminifera								
				7.27 to		c	C	N/A
Ammonia aomoriensis	277	56	8	8.10	4	7.66 ^t	-0.20^{t}	
				7.26 to		£	£	N/A
	278	56	8	8.06	4	1.19 ^r	-3.76 ^L	
				7.26 to	_			/ .
	279	56	8	8.11	4	Not fit found		N/A
				7.26 to	_	f	f	/ .
	280	56	13	8.09	4	8.06 ²	-0.01^{2}	N/A
				7.25 to				
	281	56	13	8.05	4	Not fit found		N/A
	202		10	7.27 to		– – 1 f	o 5 1f	37/4
	282	56	13	8.07	4	7.51~	-0.51~	N/A
				7.00		7.26	-0.43	
	202		10	7.20 to	4	(7.22 to	(-0.48 to -	
	283	56	18	8.05	4	7.30)°	0.38)	7.67
				7.05.		/.04	-0.4 /	
	204	5.0	10	7.25 to	4	(6.94 to	(-0./9 to -	7 40
TT 1 .	284	56	18	8.10	4	/.14)"	0.14)	/.48
Haptophyta				7 7 0 /				
	2	. 1	10	/./8 to				N/A
Emiliania huxleyi	3	not clear	19	8.17	4	Not fit found		

	Logistic regression ID	Duration (day)	Temperature (°C)	pH range	Samples	рН ₅₀	β	\mathbf{pH}_{10}
Mollusca								
				7.48 to		C	c	N/A
Argopecten irradians	17	19	24	8.08	3	7.70^{t}	-0.44^{t}	
				7.80 to		C	c	N/A
	227	20	24	8.21	3	7.25 ^t	-0.56^{t}	
				7.80 to				
	228	20	28	8.21	3	Not fit found		N/A
				7.48 to			_	N/A
Crassostrea virginica	19	20	24	8.08	3	$7.72^{\mathfrak{t}}$	-0.37 [£]	
		<1		7.68 to				N/A
Haliotis discus hannai	121		20	8.00 [¤]	4	7.06^{f}	-0.56^{f}	
		<1		7.40 to				N/A
	122		20	8.00 [¤]	5	7.13 [£]	-0.41 [£]	
				7.47 to				N/A
Haliotis kamtschatkana	67	8	12	8.04	3	7.11^{f}	-0.23^{f}	
				7.66 to				N/A
Limacina helicina	124	29	4.25	8.28 [¤]	4	7.24^{f}	-0.33^{f}	
				7.79 to				N/A
Mercenaria mercenaria	21	15	24	8.02	4	7.72^{f}	-0.32^{f}	
				7.48 to				N/A
	22	18	24	8.08	3	7.75^{f}	-0.30^{f}	
				7.80 to				
	225	20	24	8.21	3	Not fit found		N/A
				7.80 to				N/A
	226	20	28	8.21	3	7.51 [£]	-0.27^{f}	
				7.41 to	-	-		N/A
Turbo cornutus	318	3	0	8.02	5	5.69^{f}	-1.32^{f}	
	210	5	0	7.52 to	C			N/A
	319	3	0	7.98	5	7.70^{f}	-0.35^{f}	
	320	3	0	7 40 to	5	7.05^{f}	-0.74^{f}	N/A
	520	5	0	7.40 10	5	1.05	-0./+	1 1/ 1 1

	Logistic regression ID	Duration (day)	Temperature (°C)	pH range	Samples	рН ₅₀	β	pH_{10}
				8.00				
						7.11	-0.57	
				7.41 to		(6.82 to	(-1.11 to -	
	321	3	0	8.02	5	7.39) [¶]	0.03)	7.65
						7.17	-0.56	
				7.52 to		(6.98 to	(-0.96 to -	
	322	3	0	7.98	5	7.36) [€]	0.16)	7.7
Rhodophyta								
				7.55 to				
Phymatolithon lenormandii	256	14	18	8.00	8	7.49^{f}	-0.17 [£]	N/A
				7.65 to				
Porolithon onkodes	77	56	26	8.20	3	Not fit found		N/A
				7.65 to		<u>_</u>	0	N/A
	78	56	29	8.20	3	7.37 [±]	-0.03^{\pm}	
				7.65 to		<u>_</u>	0	N/A
	79	56	26	8.20	3	7.33 [±]	-0.05^{\pm}	
				7.65 to		C	C	N/A
	80	56	29	8.20	3	7.06 ^t	-0.44 ^t	
				7.65 to		C	C	N/A
	81	56	26	8.20	3	6.29 ^t	-0.90 ^t	
				7.65 to		£	£	N/A
	82	56	29	8.20	3	7.09 ^t	-0.51 ^t	
				7.60 to		£	£	N/A
	269	3	25	7.98	3	7.55^{r}	-0.50^{L}	

^{\square} Experiments where pCO₂ was converted to pH (see conversion in appendix S2). ^{\square} Logistic regression returned pH₅₀ or β coefficients non-different from zero or p value > 0.05 ^{\square} pH₅₀ not used in the PAF derivation because a higher pH₅₀ is available for the same species and life process ^{\square} pH₅₀ used in the derivation of PAF for growth (also illustrated in Figure 1a of the main text)

 ${}^{\$}_{p}$ PH₅₀ used in the derivation of PAF for reproduction (also illustrated in Figure 1b of the main text)

pH₅₀ used in the derivation of PAF for survival (also illustrated in Figure 1c of the main text)

Table S3.2 Literature list from which the underlying data for logistic regressions were obtained and their reported effect. The ID of each logistic regression is listed in Table S3.1 and the location of each regression is illustrated in Figure S3.1.

IDReference1Wood et al.2Figg diameter Growth rate and detaching coccolith number2,3Iglesias-Rodriguez3coccolith number4-7Clark et al.4Relative mortality Fertilization and gastrulation success8-10Byrne et al.5Hatching and mortality rate, number of eggs, fertilization Fertilization and gastrulation11-14Kurihara et al.6success, and length Fertilization and gastrulation15,16Byrne et al.7success17-23Talmage & Gobler8Calcification rate24,25Kurihara & Shirayama9Relative embryo number26,27Berge et al.10Relative growth increase Hatching and mortality rate, number of eggs, fertilization28-33Kurihara et al.11success, and length34.35Gazcau et al.12Calcification rate28-34Ries et al.13Calcification rate29-52Dupont et al.14and mortality rate, Percentile of normal and symetric larvae, body length, and mortality rate37,74De Bodt et al.18Cell density and growth rate69-72Crook et al.17 Mumber of larvae and relative Relative healthy, dead, and pale77-82Diaz-Pulido et al.29 Monbue et al.21Weight Relative healthy, dead, and pale83,84Donohue et al.21 PoroyKirsue area Growth rate and POC productionGrowth rate and weight77-82Diaz-Pulido et al.29 Porey et al.23Growth rate and weight84,89Eberlein et al.24 Porey et al.23Growth rate and weight	Logistic regression		Reported effect
1Wood et al.2Egg diameter Growth rate and detaching coccolith number2,3Iglesias-Rodriguez3coccolith number4-7Clark et al.4Relative mortality8-10Byrne et al.5success8-10Byrne et al.6success, and length11-14Kurihara et al.6Fertilization and gastrulation15,16Byrne et al.7success, and length15,16Byrne et al.7success17-23Talmage & Gobler8Calcification rate24,25Kurihara & Shirayama9Relative embryo number26,27Berge et al.10Relative growth increase43,35Gazeau et al.12Success, and length28-33Kurihara et al.11success, and length34,35Gazeau et al.12Calcification rate26-27Dupont et al.13Calcification rate27Gazeau et al.14Success, and length49-52Dupont et al.14symetric larvae, body length,37,40De Bodt et al.15productivity rate67,68Crim et al.16Percentile of normal larvae and73,74De Bodt et al.18Cell density and growth rate77-82Diaz-Pulido et al.20Weight78,576de Putron et al.20Success77-82Diaz-Pulido et al.20Sissue area83,84Donohue et al.21Mineralization85Doo et al.22Growth rate and POC85,89Eberlein et al.24Growth rate and weight90-92Form & Riebesell 25Growth rate	ID	Reference	-
2,3Iglesias-Rodriguez ³ cocolith numberGrowth rate and detaching cocolith number4-7Clark et al. ⁴ Relative mortality Fertilization and gastrulation success8-10Byrne et al. ⁵ Hatching and mortality rate, number of eggs, fertilization success, and length11-14Kurihara et al. ⁶ success17-23Talmage & Gobler ⁸ Calcification rate24,25Kurihara et al. ¹⁰ Relative embryo number26,27Berge et al. ¹⁰ Relative embryo number28-33Kurihara et al. ¹¹ success, and length34,35Gazeau et al. ¹² Calcification rate36-48Rics et al. ¹³ Calcification rate49-52Dupont et al. ¹⁴ and mortality rate, Percentile of normal and symetric larvae, body length, and mortality rate49-52Dupont et al. ¹⁴ Relative call rate Percentile of normal and symetric larvae, body length, Relative call rate and relative Percentile of normal and symetric larvae, body length, Relative and relative Percentile of normal larvae and number of larvae Number of larvae and relative Relative datify digueniles73,74De Bodt et al. ¹⁸ Cell density and growth rate tissue area75,76de Putron et al. ²⁰ Weight Relative healthy, dead, and pale tissue area85,89Eberlein et al. ²⁴ PorductionGrowth rate and POC growth rate and POC growth rate and POC production89-92Form & Riebesell ²⁵ Or Cork et al. ²⁶ Growth rate and weight	1	Wood et al. ²	Egg diameter
2,3Iglesias-Rodriguez ³ coccolith number4-7Clark et al.4Relative mortality Fertilization and gastrulation8-10Byrne et al.5success Hatching and mortality rate, number of eggs, fertilization11-14Kurihara et al.6success Fertilization and gastrulation11-14Kurihara et al.6success, and gastrulation15.16Byrne et al.7success17-23Talmage & Gobler ⁸ Calcification rate24,25Kurihara & Shirayama ⁹ Relative embryo number26,27Berge et al.10Relative growth increase Hatching and mortality rate, number of eggs, fertilization28-33Kurihara et al.11success, and length34,35Gazeau et al.12Calcification rate36-48Ries et al.13Calcification rate9-52Dupont et al.14and mortality rate Percentile of normal and symetric larvae, body length, and mortality rate49-52Dupont et al.16number of larvae and relative Portality of juveniles67,68Crim et al.16number of larvae Number of larvae and relative Portality of juveniles73,74De Bodt et al.18Cell density and growth rate75,76de Putron et al.20Keight Relative calthy, dead, and pale tissue arca83,84Donohue et al.21Mineralization85Doo et al.22Arm length Growth rate and POC growth rate and POC growth rate and POC production86,87Dorey et al.24Forduction Corowth rate and weight			Growth rate and detaching
4-7Clark et al.4Relative mortality Fertilization and gastrulation success Hatching and mortality rate, number of eggs, fertilization success8-10Byrne et al.5Hatching and mortality rate, number of eggs, fertilization success11-14Kurihara et al.6success15,16Byrne et al.7success24,25Kurihara & Shirayama9Relative embryo number26,27Berge et al.10Relative growth increase Hatching and mortality rate, number of eggs, fertilization success, and length28-33Kurihara et al.11success, and length34,35Gazeau et al.12Calcification rate36-48Ries et al.13Calcification rate Percentile of normal and symetric larvae, body length, and mortality rate Percentile of normal and symetric larvae, body length, and mortality rate Relative calcification and errentile of normal and symetric larvae, body length, and mortality rate Percentile of normal and symetric larvae, body length, and mortality rate Relative calcification and percentile of normal and symetric larvae, body length, and mortality rate Percentile of normal and symetric larvae, body length, and mortality rate Percentile of normal and symetric larvae, body length, and mortality rate Percentile of normal larvae and number of larvae Number of larvae Number of larvae Relative healthy, dead, and pale tisse area53,66Anthony et al.16Number of larvae Relative healthy, dead, and pale tisse area69-72Crook et al.17 MineralizationMineralization7,74De Bodt et al.20 Boohu et al.21Mineralization<	2,3	Iglesias-Rodriguez ³	coccolith number
8-10Byrne et al.5Fertilization and gastrulation success8-10Byrne et al.5Hatching and mortality rate, number of eggs, fertilization11-14Kurihara et al.6success, and length Fertilization and gastrulation11-14Kurihara et al.7success15.16Byrne et al.7success17-23Talmage & Gobler8Calcification rate24,25Kurihara & Shirayama9Relative embryo number26,27Berge et al.10Relative growth increase Hatching and mortality rate, number of eggs, fertilization28-33Kurihara et al.11success, and length34,35Gazeau et al.12Calcification rate26-48Ries et al.13Calcification rate9-52Dupont et al.14and mortality rate Percentile of normal and symetric larvae, body length, and mortality rate49-52Dupont et al.14and mortality rate Percentile of normal and symetric larvae, body length, and mortality rate67,68Crim et al.16number of larvae and Number of larvae and relative69-72Crook et al.17 Mortality of juvenilesNumber of larvae and relative77.82Diaz-Pulido et al.20 Sa,84Donohue et al.21 MineralizationMineralization85Doo et al.22 Mas,84Sono et al.22 MineralizationArm length Mineralization85Doo et al.22 Mas,84Growth rate and mortality rate Growth rate and POC Growth rate and POC Mineralization85Doo et al.24 MineralizationGrowth rate and POC Growth rate and	4-7	Clark et al. ⁴	Relative mortality
8-10Byrne et al. 5success Hatching and mortality rate, number of eggs, fertilization11-14Kurihara et al. 6success, and length Fertilization and gastrulation15,16Byrne et al. 7success17-23Talmage & Gobler 8Calcification rate24,25Kurihara & Shirayama 9Relative embryo number26,27Berge et al. 10Relative growth increase Hatching and mortality rate, number of eggs, fertilization28-33Kurihara et al. 11success, and length34,35Gazeau et al. 12Calcification rate36-48Ries et al. 13Calcification rate9-52Dupont et al. 14symetric larvae, body length, and mortality rate Percentile of normal and symetric larvae, body length, and mortality rate49-52Dupont et al. 15productivity rate Percentile of normal and symetric larvae, body length, and mortality rate67,68Crim et al. 16number of larvae and relative Mumber of larvae and relative Mumber of larvae and relative Relative healthy, dead, and pale tissue area75,76de Putron et al. 19Weight Relative healthy, dead, and pale77-82Diaz-Pulido et al. 20Kisue area83,84Donohue et al. 21Mineralization86,87Dorey et al. 22Growth rate and POC production Growth rate and POC88,89Eberlein et al. 24production production90-92Form & Riebesell 25Growth rate and weight			Fertilization and gastrulation
Hatching and mortality rate, number of eggs, fertilization11-14Kurihara et al. ⁶ 15,16Byrne et al. ⁷ 15,16Byrne et al. ⁷ 24,25Kurihara & Shirayama ⁹ 26,27Berge et al. ¹⁰ 28-33Kurihara et al. ¹¹ 34,35Gazcau et al. ¹² 36-48Ries et al. ¹³ 29-52Dupont et al. ¹⁴ 49-52Dupont et al. ¹⁴ 37-66Anthony et al. ¹⁵ 67,68Crim et al. ¹⁶ 67,68Crim et al. ¹⁷ 67,68Crim et al. ¹⁸ 73,74De Bodt et al. ¹⁹ 73,74De Bodt et al. ¹⁹ 75,76de Putron et al. ²⁰ 77,74Diaz-Pulido et al. ²⁰ 77,74Diaz-Pulido et al. ²⁰ 77,74Diaz-Pulido et al. ²⁰ 77,74Diaz-Pulido et al. ²⁰ 75,76Berge et al. ²¹ 75,76Diaz-Pulido et al. ²⁰ 77,782Diaz-Pulido et al. ²⁰ 78,89Eberlein et al. ²⁴ 79,79Dorote al. ²² 76Growth and mortality rate77,82Diaz-Pulido et al. ²¹ 78,89Eberlein et al. ²⁴ 79,79Dorote al. ²² 79,74Diaz-Pulido et al. ²⁰ 74Cell density and growth rate75,76Growth and mortality rate76,78Growth and mortality rate77,74Diaz-Pulido et al. ²⁰ 78,74Diaz-Pulido et al. ²⁰ 79,75Growth and mortality rate79,76Growth rate and POC <t< td=""><td>8-10</td><td>Byrne et al.⁵</td><td>success</td></t<>	8-10	Byrne et al. ⁵	success
11-14Kurihara et al. ⁶ number of eggs, fertilization success, and length Fertilization and gastrulation15,16Byrne et al. ⁷ success17-23Talmage & Gobler ⁸ Calcification rate24,25Kurihara & Shirayama ⁹ Relative embryo number26,27Berge et al. ¹⁰ Relative growth increase Hatching and mortality rate, number of eggs, fertilization28-33Kurihara et al. ¹¹ success, and length34,35Gazeau et al. ¹² Calcification rate36-48Ries et al. ¹³ Calcification rate Percentile of normal and symetric larvae, body length, and mortality rate Relative calcification and49-52Dupont et al. ¹⁴ and mortality rate Percentile of normal and symetric larvae, body length, and mortality rate69-72Crook et al. ¹⁷ mortality of juveniles73,74De Bodt et al. ¹⁸ Cell density and growth rate75,76de Putron et al. ²⁰ Kelative healthy, dead, and pale77-82Diaz-Pulido et al. ²⁰ tissue area83,84Donohue et al. ²¹ Mineralization86,87Dor et al. ²² Growth and mortality rate Relative healthy, dead, and pale78,89Eberlein et al. ²⁴ production86,89Eberlein et al. ²⁴ Growth rate and POC production90-92Form & Riebesell ²⁵ Growth rate and weight			Hatching and mortality rate,
11-14Kurihara et al.6success, and length Fertilization and gastrulation15,16Byrne et al.7success17-23Talmage & Gobler8Calcification rate24,25Kurihara & Shirayama9Relative embryo number26,27Berge et al.10Relative growth increase Hatching and mortality rate, number of eggs, fertilization28-33Kurihara et al.11success, and length34,35Gazeau et al.12Calcification rate36-48Ries et al.13Calcification rate9-52Dupont et al.14Percentile of normal and symetric larvae, body length, and mortality rate Precentile of normal larvae and productivity rate67,68Crim et al.16number of larvae Precentile of normal larvae and number of larvae69-72Crook et al.17 De Bodt et al.18Cell density and growth rate75,76de Putron et al.19Weight Relative healthy, dead, and pale77-82Diaz-Pulido et al.20tissue area83,84Donohue et al.21 Dorey et al.23Mincralization86,87Dorey et al.23 Crow th al.24 Dorey et al.23Growth and mortality rate drowth and mortality rate drowth and and productivity rate productivity rate88,89Eberlein et al.24 Porey et al.25Growth rate and POC production90-92Form & Riebesell 25 Crowth rate and weightGrowth rate and weight		,	number of eggs, fertilization
15,16Byrne et al.7Fertilization and gastrulation15,16Byrne et al.7success17-23Talmage & Gobler ⁸ Calcification rate24,25Kurihara & Shirayama ⁹ Relative embryo number26,27Berge et al. ¹⁰ Relative growth increaseHatching and mortality rate, number of eggs, fertilizationnumber of eggs, fertilization28-33Kurihara et al. ¹¹ success, and length34,35Gazeau et al. ¹² Calcification rate36-48Ries et al. ¹³ Calcification rate9-52Dupont et al. ¹⁴ and mortality rate Percentile of normal and symetric larvae, body length, and mortality rate49-52Dupont et al. ¹⁶ productivity rate67,68Crim et al. ¹⁶ number of larvae Number of larvae and relative mortality of juveniles69-72Crook et al. ¹⁷ mortality of juveniles73,74De Bodt et al. ¹⁸ Cell density and growth rate75,76de Putron et al. ²⁰ tissue area83,84Donohue et al. ²¹ Mineralization85Doo et al. ²² Arm length86,87Dorey et al. ²³ Growth and mortality rate growth ate and POC88,89Eberlein et al. ²⁶ Growth rate and weight	11-14	Kurihara et al. ⁶	success, and length
15,16Byrne et al.'success17-23Talmage & Gobler 8 Calcification rate24,25Kurihara & Shirayama 9 Relative embryo number26,27Berge et al. 10 Relative growth increase Hatching and mortality rate, number of eggs, fertilization28-33Kurihara et al. 11 success, and length34,35Gazeau et al. 12 Calcification rate36-48Ries et al. 13 Calcification rate9-52Dupont et al. 14 and mortality rate Percentile of normal and symetric larvae, body length, and mortality rate49-52Dupont et al. 16 productivity rate Percentile of normal larvae and number of larvae and relative mortality of juveniles67,68Crim et al. 16 Number of larvae and relative mortality of juveniles73,74De Bodt et al. 19 Weight Relative healthy, dead, and pale tisse area78,84Donohue et al. 20 Kuineralization85Doo et al. 22 Arm length Growth rate and POC production88,89Eberlein et al. 24 production Growth rate and weight		7	Fertilization and gastrulation
17-23Talmage & Gobler ⁸ Calcification rate $24,25$ Kurihara & Shirayama ⁹ Relative embryo number $26,27$ Berge et al. ¹⁰ Relative growth increase $26,27$ Berge et al. ¹⁰ Relative growth increase $28-33$ Kurihara et al. ¹¹ success, and length $34,35$ Gazeau et al. ¹² Calcification rate $36-48$ Ries et al. ¹³ Calcification rate $9-52$ Dupont et al. ¹⁴ Calcification and $53-66$ Anthony et al. ¹⁵ productivity rate $67,68$ Crim et al. ¹⁶ productivity rate $69-72$ Crook et al. ¹⁷ mortality of juveniles $73,74$ De Bodt et al. ¹⁸ Cell density and growth rate $75,76$ de Putron et al. ²⁰ tissue area $83,84$ Donohue et al. ²¹ Mineralization 85 Doe et al. ²² Arm length $86,87$ Dorey et al. ²³ Growth and mortality rate $90-92$ Form & Riebesell ²⁵ Growth rate and weight	15,16	Byrne et al.	success
24,25Kurihara & Shirayama9Relative embryo number26,27Berge et al. 10 Relative growth increase Hatching and mortality rate, number of eggs, fertilization28-33Kurihara et al. 11 success, and length34,35Gazeau et al. 12 Calcification rate36-48Ries et al. 13 Calcification rate49-52Dupont et al. 14 and mortality rate Percentile of normal and symetric larvae, body length, and mortality rate49-52Dupont et al. 14 Relative calcification and productivity rate67,68Crim et al. 16 number of larvae69-72Crook et al. 17 mortality of juveniles73,74De Bodt et al. 19 Weight Relative healthy, dead, and pale tissue area77-82Diaz-Pulido et al. 20 tissue area83,84Donohue et al. 21 Mineralization Growth and mortality rate Growth rate and POC production85Do et al. 22 Arm length Growth rate and POC production88,89Eberlein et al. 24 productionproduction Growth rate and weight	17-23	Talmage & Gobler ⁸	Calcification rate
26,27Berge et al. 10 Relative growth increase Hatching and mortality rate, number of eggs, fertilization28-33Kurihara et al. 11 success, and length34,35Gazeau et al. 12 Calcification rate36-48Ries et al. 13 Calcification rate49-52Dupont et al. 14 and mortality rate Percentile of normal and symetric larvae, body length, and mortality rate49-52Dupont et al. 14 Relative calcification and symetric larvae, body length, and mortality rate53-66Anthony et al. 15 productivity rate Percentile of normal larvae and number of larvae67,68Crim et al. 16 Number of larvae Number of larvae69-72Crook et al. 17 mortality of juveniles73,74De Bodt et al. 18 Cell density and growth rate75,76de Putron et al. 20 tissue area83,84Donohue et al. 21 Mineralization85Doo et al. 22 Arm length86,87Dorey et al. 23 Growth and mortality rate Growth rate and POC production88,89Eberlein et al. 24 production growth rate and POC production90-92Form & Riebesell 25 Growth rate and weight	24,25	Kurihara & Shirayama ⁹	Relative embryo number
28-33Kurihara et al. ¹¹ Hatching and mortality rate, number of eggs, fertilization34,35Gazeau et al. ¹² Calcification rate36-48Ries et al. ¹³ Calcification rate9-52Dupont et al. ¹⁴ Percentile of normal and symetric larvae, body length, and mortality rate49-52Dupont et al. ¹⁵ productivity rate67,68Crim et al. ¹⁶ number of larvae69-72Crook et al. ¹⁷ mortality of juveniles73,74De Bodt et al. ¹⁸ Cell density and growth rate75,76de Putron et al. ²⁰ Kelative healthy, dead, and pale77-82Diaz-Pulido et al. ²⁰ tissue area83,84Donohue et al. ²¹ Mineralization85Do et al. ²² Arm length86,87Dorey et al. ²³ Growth and mortality rate roduction90-92Form & Riebesell ²⁵ Growth rate and weight	26,27	Berge et al. ¹⁰	Relative growth increase
28-33Kurihara et al. 11 number of eggs, fertilization34,35Gazeau et al. 12 Calcification rate36-48Ries et al.Calcification rate96-48Ries et al.Percentile of normal and symetric larvae, body length, and mortality rate49-52Dupont et al.Relative calcification and productivity rate53-66Anthony et al.Percentile of normal larvae and number of larvae67,68Crim et al.Number of larvae and relative69-72Crook et al.Number of larvae and relative73,74De Bodt et al.Cell density and growth rate75,76de Putron et al.Weight77-82Diaz-Pulido et al.Mineralization83,84Donohue et al.Mineralization85Doo et al.Growth and mortality rate Growth rate and POC production88,89Eberlein et al.Growth rate and POC production90-92Form & Riebesell 25Growth rate and weight			Hatching and mortality rate,
28-33Kurihara et al.11success, and length34,35Gazeau et al.12Calcification rate36-48Ries et al.13Calcification rate96-48Ries et al.13Calcification rate97-52Dupont et al.14Percentile of normal and symetric larvae, body length, and mortality rate49-52Dupont et al.14Relative calcification and productivity rate53-66Anthony et al.15Percentile of normal larvae and number of larvae67,68Crim et al.16Number of larvae and relative69-72Crook et al.17mortality of juveniles73,74De Bodt et al.18Cell density and growth rate75,76de Putron et al.20tissue area83,84Donohue et al.21Mineralization85Doo et al.22Arm length86,87Dorey et al.23Growth and mortality rate Growth rate and POC production88,89Eberlein et al.24 PorductionGrowth rate and weight90-92Form & Riebesell 25Growth rate and weight			number of eggs, fertilization
34,35Gazeau et al. ¹² Calcification rate $36-48$ Ries et al. ¹³ Calcification rate $36-48$ Ries et al. ¹³ Calcification rate $49-52$ Dupont et al. ¹⁴ Percentile of normal and symetric larvae, body length, and mortality rate Relative calcification and productivity rate Percentile of normal larvae and number of larvae $53-66$ Anthony et al. ¹⁵ productivity rate Percentile of normal larvae and number of larvae $67,68$ Crim et al. ¹⁶ number of larvae Number of larvae and relative $69-72$ Crook et al. ¹⁷ mortality of juveniles $73,74$ De Bodt et al. ¹⁸ Cell density and growth rate $75,76$ de Putron et al. ²⁰ tissue area $83,84$ Donohue et al. ²¹ Mineralization 85 Doo et al. ²² Arm length $86,87$ Dorey et al. ²³ Growth and mortality rate Growth rate and POC production $88,89$ Eberlein et al. ²⁴ production $90-92$ Form & Riebesell ²⁵ Growth rate and weight	28-33	Kurihara et al. ¹¹	success, and length
$36-48$ Ries et al. 13 Calcification rate Percentile of normal and symetric larvae, body length, and mortality rate Relative calcification and productivity rate Percentile of normal larvae and number of larvae $49-52$ Dupont et al. 14 and mortality rate Relative calcification and productivity rate Percentile of normal larvae and number of larvae $53-66$ Anthony et al. 15 productivity rate Percentile of normal larvae and number of larvae $67,68$ Crim et al. 16 number of larvae mortality of juveniles $69-72$ Crook et al. 17 mortality of juveniles $73,74$ De Bodt et al. 18 Cell density and growth rate $75,76$ de Putron et al. 19 Weight Relative healthy, dead, and pale $77-82$ Diaz-Pulido et al. 20 tissue area $83,84$ Donohue et al. 21 Mineralization 85 Doo et al. 22 Arm length $86,87$ Dorey et al. 23 Growth and mortality rate Growth rate and POC $88,89$ Eberlein et al. 24 production $90-92$ Form & Riebesell 25 Growth rate and weight	34,35	Gazeau et al. ¹²	Calcification rate
49-52Dupont et al. 14 Percentile of normal and symetric larvae, body length, and mortality rate Relative calcification and productivity rate Percentile of normal larvae and number of larvae53-66Anthony et al. 15 productivity rate Percentile of normal larvae and number of larvae67,68Crim et al. 16 number of larvae mortality of juveniles69-72Crook et al. 17 mortality of juveniles73,74De Bodt et al. 18 Cell density and growth rate75,76de Putron et al. 19 Weight Relative healthy, dead, and pale77-82Diaz-Pulido et al. 20 tissue area83,84Donohue et al. 21 Mineralization85Doo et al. 22 Arm length86,87Dorey et al. 23 Growth rate and POC production88,89Eberlein et al. 24 production90-92Form & Riebesell 25 Growth rate and weight	36-48	Ries et al. ¹³	Calcification rate
49-52Dupont et al.14symetric larvae, body length, and mortality rate Relative calcification and productivity rate Percentile of normal larvae and number of larvae Number of larvae and relative67,68Crim et al.16number of larvae Number of larvae and relative mortality of juveniles69-72Crook et al.17mortality of juveniles73,74De Bodt et al.18Cell density and growth rate75,76de Putron et al.19Weight Relative healthy, dead, and pale77-82Diaz-Pulido et al.20tissue area83,84Donohue et al.21Mineralization85Doo et al.22Arm length86,87Dorey et al.23Growth rate and POC production88,89Eberlein et al.24production90-92Form & Riebesell 25Growth rate and weight			Percentile of normal and
49-52Dupont et al.14and mortality rate Relative calcification and productivity rate53-66Anthony et al.15Percentile of normal larvae and number of larvae67,68Crim et al.16Number of larvae Number of larvae and relative mortality of juveniles69-72Crook et al.17mortality of juveniles73,74De Bodt et al.18Cell density and growth rate75,76de Putron et al.19Weight Relative healthy, dead, and pale77-82Diaz-Pulido et al.20tissue area83,84Donohue et al.21Mineralization85Doo et al.22Arm length86,87Dorey et al.23Growth and mortality rate Growth rate and POC88,89Eberlein et al.24production90-92Form & Riebesell 25Growth rate and weight		14	symetric larvae, body length,
53-66Anthony et al. ¹⁵ Relative calcification and productivity rate Percentile of normal larvae and number of larvae67,68Crim et al. ¹⁶ number of larvae mortality of juveniles69-72Crook et al. ¹⁷ mortality of juveniles73,74De Bodt et al. ¹⁸ Cell density and growth rate75,76de Putron et al. ¹⁹ Weight Relative healthy, dead, and pale77-82Diaz-Pulido et al. ²⁰ tissue area83,84Donohue et al. ²¹ Mineralization85Doo et al. ²² Arm length86,87Dorey et al. ²³ Growth and mortality rate Growth rate and POC88,89Eberlein et al. ²⁴ production90-92Form & Riebesell ²⁵ Growth rate and weight	49-52	Dupont et al. ¹⁴	and mortality rate
53-66Anthony et al. 1^{10} productivity rate Percentile of normal larvae and number of larvae Number of larvae and relative mortality of juveniles69-72Crook et al. 1^{10} Number of larvae and relative mortality of juveniles69-72Crook et al. 1^{17} mortality of juveniles73,74De Bodt et al. 1^{18} Cell density and growth rate75,76de Putron et al. 1^{19} Weight Relative healthy, dead, and pale77-82Diaz-Pulido et al. 2^{20} tissue area83,84Donohue et al. 2^{11} Mineralization85Doo et al. 2^{22} Arm length86,87Dorey et al. 2^{23} Growth and mortality rate Growth rate and POC88,89Eberlein et al. 2^{24} production90-92Form & Riebesell 2^{25} Growth rate and weight	-0 <i>c c</i>		Relative calcification and
67,68Crim et al. ¹⁶ Percentile of normal larvae and number of larvae69-72Crook et al. ¹⁷ number of larvae and relative mortality of juveniles73,74De Bodt et al. ¹⁸ Cell density and growth rate75,76de Putron et al. ¹⁹ Weight Relative healthy, dead, and pale77-82Diaz-Pulido et al. ²⁰ tissue area83,84Donohue et al. ²¹ Mineralization85Doo et al. ²² Arm length86,87Dorey et al. ²³ Growth and mortality rate Growth rate and POC88,89Eberlein et al. ²⁴ production90-92Form & Riebesell ²⁵ Growth rate and weight	53-66	Anthony et al. ¹⁵	productivity rate
67,68Crim et al.number of larvae69-72Crook et al.Number of larvae and relative73,74De Bodt et al.mortality of juveniles73,74De Bodt et al.Cell density and growth rate75,76de Putron et al.Weight77-82Diaz-Pulido et al.Weight83,84Donohue et al.Mineralization85Doo et al.Arm length86,87Dorey et al.Growth and mortality rate90-92Form & RiebesellGrowth rate and weight	(7,0)	Crime et al 16	Percentile of normal larvae and
69-72Crook et al. 17mortality of juveniles73,74De Bodt et al. 18Cell density and growth rate75,76de Putron et al. 19Weight77-82Diaz-Pulido et al. 20tissue area83,84Donohue et al. 21Mineralization85Doo et al. 22Arm length86,87Dorey et al. 23Growth and mortality rate69-72Form & Riebesell 25Growth rate and Weight	07,08	Crim et al.	number of larvae
73,74De Bodt et al.18Cell density and growth rate75,76de Putron et al.19Weight77-82Diaz-Pulido et al.20tissue area83,84Donohue et al.21Mineralization85Doo et al.22Arm length86,87Dorey et al.23Growth and mortality rate88,89Eberlein et al.24production90-92Form & Riebesell25Growth rate and weight	60.72	Crook at al ¹⁷	mortality of invention
75,74De Bout et al.Cen density and growth rate75,76de Putron et al.19Weight77-82Diaz-Pulido et al.Relative healthy, dead, and pale83,84Donohue et al.21Mineralization85Doo et al.22Arm length86,87Dorey et al.Crowth and mortality rate88,89Eberlein et al.2490-92Form & Riebesell2561Crowth rate and weight82Ath is k 0. k and 100 km	73 74	Do Rodt at al 18	Coll density and growth rate
73,70de Fution et al.weight Relative healthy, dead, and pale77-82Diaz-Pulido et al.20tissue area83,84Donohue et al.21Mineralization85Doo et al.22Arm length86,87Dorey et al.23Growth and mortality rate Growth rate and POC88,89Eberlein et al.24production90-92Form & Riebesell 25Growth rate and weight	75,74	de Dutron et al. ¹⁹	Weight
77-82Diaz-Pulido et al.20Kclative heating, dead, and pare83,84Donohue et al.21Mineralization85Doo et al.22Arm length86,87Dorey et al.23Growth and mortality rate88,89Eberlein et al.24production90-92Form & Riebesell 25Growth rate and weight	73,70	de rution et al.	Weight Relative healthy dead, and pale
17.02Dial Fundo et al.Institutio et al.83,84Donohue et al.21Mineralization85Doo et al.22Arm length86,87Dorey et al.23Growth and mortality rate88,89Eberlein et al.24production90-92Form & Riebesell25Growth rate and weight	77-82	Diaz-Pulido et al ²⁰	tissue area
85,84Dononde et al.Interfatization85Doo et al.2286,87Dorey et al.2388,89Eberlein et al.2490-92Form & Riebesell2590Form & Riebesell26	83 84	Dopohue et al 21	Mineralization
85Doo et al.Ann tengin86,87Dorey et al.Growth and mortality rate Growth rate and POC88,89Eberlein et al.production90-92Form & RiebesellGrowth rate and weight20Ann tengin	85	Dono et al 2^2	Arm length
80,87Dorcy et al.Growth and mortanty factor88,89Eberlein et al.24production90-92Form & Riebesell 25Growth rate and weight20All with the All and 26State and weight	86.87	Dot et al. 2^3	Growth and mortality rate
88,89Eberlein et al.24production90-92Form & Riebesell 25Growth rate and weight	00,07		Growth rate and POC
90-92 Form & Riebesell ²⁵ Growth rate and weight	88 89	Eberlein et al ²⁴	production
of the second se	90-92	Form & Riebesell ²⁵	Growth rate and weight
93 Albright & Langdon ²⁹ Growth rate	93	Albright & Langdon ²⁶	Growth rate

Demented off

94-105	Fujita et al. ²⁷	Shell weight
		Hatching and calcium
106 100	Correspondent al 28	incorporation rate, shell area
106-108	Gazeau et al.	Embrue monthe length embrue
100 112	Up at al 29	and hatching hody mass
109-112	Hu et al. Kowa zwahi at al ³⁰	Latahing rate
113-110	Kawaguchi et al.	Fertilization success and
117-122	Kimura et al ³¹	mortality rate
		Relative degradation state and
123-125	Lischka et al. ³²	mortality rate
126-130	Maier et al. ³³	Growth rate
132-135	Albright et al. ³⁴	Fertilization success
136-139	Martin et al. ³⁵	Size of rods, arms, and width
140-147	Matson et al. ³⁶	Arm length and total length
		Mass growth and relative nacre
148-153	Melzner et al. ³⁷	dissolution
154,155	Nakamura et al. ³⁸	Survival rate
156-164	Noisette et al. ³⁹	Calcification rate
165-170	Pansch et al. ⁴⁰	Survival rate and larvae success
171-173	Pedersen et al. ⁴¹	Hatching and survival rate
		Growth rate and reproductive
174-179	Pistevos et al. ⁴²	investment
180	Ragazzola et al. ⁴³	Cell growth
		Relative biomass increase and
181,182	Appelhans et al. ⁴⁴	relative shell growth
183-185	Ragazzola et al. ⁴⁵	Calcite volume and growth rate
186,187	Reuter et al. ⁴⁶	Time of polyspermy
	47	Calcification and dissolution
188,189	Rodolfo-Metalpa et al. ⁴⁷	rate
100.101	a 1 a w 11 ⁴⁸	Growth rate of juvenile, growth
190-194	Saderne & Wahl	rate and juvenile settling rate
105 210	Schoorf at al 49	Calcification rate and tissue
195-218	Schoepf et al. 50	biomass
219-224	Takanashi & Kurinara	Larvae growth and length
225-232	Talmage & Gobler ⁸	mortality and survival rate
233-235	Vogel & Uthicke ⁵¹	Growth rate
		Organism diameter and spine
236-241	Wolfe K., Dworjanyn S.A., Byrne M.	length
242,243	Asnaghi et al. ⁵²	Relative weight loss
244-251	Yu et al. ⁵³	Larval length
		Fertilization success and
		proportion of eggs with hyaline
252-255	Bogner et al. ⁵⁴	bleb

256	Bradassi et al. ⁵⁵	Mortality rate
257-268	Comeau et al. ⁵⁶	Calcification rate
269	Doropoulos & Diaz-Pulido ⁵⁷	Larvae mortality
270,271	Egilsdottir et al. ⁵⁸	Calcification rate
	70	Fertilization success and larvae
272-276	Gonzalez-Bernat et al. ⁵⁹	survival
277-284	Haynert & Schönfeld ⁶⁰	Growth rate of larvae
285-287	Hettinger et al. ⁶¹	Growth rate of juvenile
288-290	Sheppard Brennand et al. ⁶²	Percentile of normal larvae
		Relative calcification and total
291-296	Iguchi et al. ⁶³	calcification rate
297,298	Lohbeck et al. ⁶⁴	Cell diameter
299	Mingliang et al. ⁶⁵	Calcification rate
300-317	Moullin et al. ⁶⁶	Fertilization success
		Embrio and larvae success and
318-324	Onitsuka et al. ⁶⁷	shell length
325-336	Sinutok et al. ⁶⁸	Tissue biomass
337,338	Suwa et al. ⁶⁹	Calcification rate
339,340	Timmins-Schiffman et al. ⁷⁰	Shell weight
341,342	Wolfe et al. ⁷¹	Weight loss
343,344	Büdenbender et al. ⁷²	Relative calcification rate
345,346	Comeau et al. ⁷³	CaCO ₃ precipitation rate

Figure S3.1 Location of literature studies from which the underlying data for logistic regressions (a) growth, (b) reproduction, and (c) survival were collected. The ID of each logistic regression is listed in Table S3.1. The location of occasional studies was unclear so they are not illustrated in this figure. The logistic regressions for unclear study locations are 28 - 33, 36 - 48, and 69 - 72 (see their corresponding literature in Table S3.2).

Appendix S4 Influence of water temperature and experiment duration

We tested the influence of temperature and experiment duration on pH_{50} and pH_{10} results employed in the species sensitivity distribution. Results are shown below in Table S4.1.

Table S4.1 Results of the Pearson correlation (coefficient / p value) between pH_{50} and duration and pH_{50} and temperature for **(a)** growth, **(b)** reproduction, and **(c)** survival.

	pH_{50}	pH_{10}
(a) Growth		
Duration	0.192 / 0.335	0.058 / 0.772
Temperature	0.020 / 0.583	0.229 / 0.240
(b) Reproduction		
Duration	-0.031 / 0.928	-0.507 / 0.111
Temperature	0.067 / 0.845	0.126 / 0.873
(c) Survival		
Duration	-0.072 / 0.908	0.135 / 0.864
Temperature	0.521 / 0.368	0.080 / 0.814

REFERENCES

1. Feely, R. A.; Doney, S. C.; Cooley, S. R., Ocean acidification: present conditions and future changes in a high-CO₂ world. *Oceanography* **2009**, *22*, (4), 36-47.

2. Wood, H. L.; Spicer, J. I.; Widdicombe, S., Ocean acidification may increase calcification rates, but at a cost. *Proceedings of the Royal Society B: Biological Sciences* **2008**, *275*, (1644), 1767-1773.

3. Iglesias-Rodriguez, M. D.; Halloran, P. R.; Rickaby, R. E. M.; Hall, I. R.; Colmenero-Hidalgo, E.; Gittins, J. R.; Green, D. R. H.; Tyrrell, T.; Gibbs, S. J.; Von Dassow, P.; Rehm, E.; Armbrust, E. V.; Boessenkool, K. P., Phytoplankton calcification in a high-CO₂ world. *Science* **2008**, *320*, (5874), 336-340.

4. Clark, D.; Lamare, M.; Barker, M., Response of sea urchin pluteus larvae (Echinodermata: Echinoidea) to reduced seawater pH: a comparison among a tropical, temperate, and a polar species. *Marine Biology* **2009**, *156*, (6), 1125-1137.

5. Byrne, M.; Soars, N.; Selvakumaraswamy, P.; Dworjanyn, S. A.; Davis, A. R., Sea urchin fertilization in a warm, acidified and high pCO₂ ocean across a range of sperm densities. *Marine Environmental Research* **2010**, *69*, (4), 234-239.

6. Kurihara, H.; Shimode, S.; Shirayama, Y., Sub-lethal effects of elevated concentration of CO₂ on planktonic copepods and sea urchins. *Journal of Oceanography* **2004**, *60*, (4), 743-750.

7. Byrne, M.; Ho, M.; Selvakumaraswamy, P.; Nguyen, H. D.; Dworjanyn, S. A.; Davis, A. R., Temperature, but not pH, compromises sea urchin fertilization and early development under near-future climate change scenarios. *Proceedings of the Royal Society B: Biological Sciences* **2009**.

8. Talmage, S. C.; Gobler, C. J., The effects of elevated carbon dioxide concentrations on the metamorphosis, size, and survival of larval hard clams (*Mercenaria mercenaria*), bay scallops (*Argopecten irradians*), and Eastern oysters (*Crassostrea virginica*). *Limnology and Oceanography* **2009**, *54*, (6), 2072-2080.

9. Kurihara, H.; Shirayama, Y., Effects of increased atmospheric CO₂ and decreased pH on sea urchin embryos and gametes. *Proceedings of the 11th International Echinoderm Conference,* 6-10 October 2003, Munich, Germany. Taylor & Francis. **2004**, 31-36.

10. Berge, J. A.; Bjerkeng, B.; Pettersen, O.; Schaanning, M. T.; Øxnevad, S., Effects of increased sea water concentrations of CO_2 on growth of the bivalve *Mytilus edulis* L. *Chemosphere* **2006**, *62*, (4), 681-687.

11. Kurihara, H.; Shimode, S.; Shirayama, Y., Effects of raised CO₂ concentration on the egg production rate and early development of two marine copepods (*Acartia steueri* and *Acartia erythraea*). *Marine Pollution Bulletin* **2004**, *49*, (9-10), 721-727.

12. Gazeau, F.; Quiblier, C.; Jansen, J. M.; Gattuso, J.-P.; Middelburg, J. J.; Heip, C. H. R., Impact of elevated CO₂ on shellfish calcification. *Geophysical Research Letters* **2007**, *34*, (7).

13. Ries, J. B.; Cohen, A. L.; McCorkle, D. C., Marine calcifiers exhibit mixed responses to CO₂-induced ocean acidification. *Geology* **2009**, *37*, (12), 1131-1134.

14. Dupont, S.; Havenhand, J.; Thorndyke, W.; Peck, L.; Thorndyke, M., Near-future level of CO₂-driven ocean acidification radically affects larval survival and development in the brittlestar *Ophiothrix fragilis. Marine Ecology Progress Series* **2008**, *373*, 285-294.

15. Anthony, K. R. N.; Kline, D. I.; Diaz-Pulido, G.; Dove, S.; Hoegh-Guldberg, O., Ocean acidification causes bleaching and productivity loss in coral reef builders. *Proceedings of the National Academy of Sciences of the United States of America* **2008**, *105*, (45), 17442-17446.

16. Crim, R. N.; Sunday, J. M.; Harley, C. D. G., Elevated seawater CO₂ concentrations impair larval development and reduce larval survival in endangered northern abalone (*Haliotis kamtschatkana*). *Journal of Experimental Marine Biology and Ecology* **2011**, *400*, (1–2), 272-277.

17. Crook, E. D.; Cooper, H.; Potts, D. C.; Lambert, T.; Paytan, A., Impacts of food availability and pCO₂ on planulation, juvenile survival, and calcification of the azooxanthellate scleractinian coral *Balanophyllia elegans*. *Biogeosciences* **2013**, *10*, (11), 7599-7608.

18. De Bodt, C.; Van Oostende, N.; Harlay, J.; Sabbe, K.; Chou, L., Individual and interacting effects of pCO_2 and temperature on *Emiliania huxleyi* calcification: Study of the calcite production, the coccolith morphology and the coccosphere size. *Biogeosciences* **2010**, *7*, (5), 1401-1412.

19. de Putron, S. J.; McCorkle, D. C.; Cohen, A. L.; Dillon, A. B., The impact of seawater saturation state and bicarbonate ion concentration on calcification by new recruits of two Atlantic corals. *Coral Reefs* **2011**, *30*, (2), 321-328.

20. Diaz-Pulido, G.; Anthony, K. R. N.; Kline, D. I.; Dove, S.; Hoegh-Guldberg, O., Interactions between ocean acidification and warming on the mortality and dissolution of coralline algae. *Journal of Phycology* **2012**, *48*, (1), 32-39.

21. Donohue, P. J. C.; Calosi, P.; Bates, A. H.; Laverock, B.; Rastrick, S.; Mark, F. C.; Strobel, A.; Widdicombe, S., Impact of exposure to elevated pCO₂ on the physiology and Behaviour of an important ecosystem engineer, the burrowing shrimp *Upogebia deltaura*. *Aquatic Biology* **2012**, *15*, (1), 73-86.

22. Doo, S. S.; Dworjanyn, S. A.; Foo, S. A.; Soars, N. A.; Byrne, M., Impacts of ocean acidification on development of the meroplanktonic larval stage of the sea urchin *Centrostephanus rodgersii. ICES Journal of Marine Science* **2012**, *69*, (3), 460–464.

Dorey, N.; Lançon, P.; Thorndyke, M.; Dupont, S., Assessing physiological tipping point of sea urchin larvae exposed to a broad range of pH. *Global Change Biology* 2013, *19*, (11), 3355-3367.

24. Eberlein, T.; Van de Waal, D. B.; Rost, B., Differential effects of ocean acidification on carbon acquisition in two bloom-forming dinoflagellate species. *Physiologia Plantarum* **2014**, *151*, (4), 468-479.

25. Form, A. U.; Riebesell, U., Acclimation to ocean acidification during long-term CO₂ exposure in the cold-water coral *Lophelia pertusa*. *Global Change Biology* **2012**, *18*, (3), 843-853.

26. Albright, R.; Langdon, C., Ocean acidification impacts multiple early life history processes of the Caribbean coral *Porites astreoides*. *Global Change Biology* **2011**, *17*, (7), 2478-2487.

27. Fujita, K.; Hikami, M.; Suzuki, A.; Kuroyanagi, A.; Sakai, K.; Kawahata, H.; Nojiri, Y., Effects of ocean acidification on calcification of symbiont-bearing reef foraminifers. *Biogeosciences* **2011**, *8*, (8), 2089-2098.

28. Gazeau, F.; Gattuso, J. P.; Greaves, M.; Elderfield, H.; Peene, J.; Heip, C. H. R.; Middelburg, J. J., Effect of carbonate chemistry alteration on the early embryonic development of the pacific oyster (*Crassostrea gigas*). *PLoS ONE* **2011**, *6*, (8).

29. Hu, M. Y.; Tseng, Y. C.; Stumpp, M.; Gutowska, M. A.; Kiko, R.; Lucassen, M.; Melzner, F., Elevated seawater pCO₂ differentially affects branchial acid-base transporters over the course of development in the cephalopod *Sepia officinalis*. *American Journal of Physiology* - *Regulatory Integrative and Comparative Physiology* **2011**, *300*, (5), R1100-R1114.

30. Kawaguchi, S.; Kurihara, H.; King, R.; Hale, L.; Berli, T.; Robinson, J. P.; Ishida, A.; Wakita, M.; Virtue, P.; Nicol, S.; Ishimatsu, A., Will krill fare well under Southern Ocean acidification? *Biology Letters* **2011**, *7*, (2), 288-291.

31. Kimura, R. Y. O.; Takami, H.; Ono, T.; Onitsuka, T.; Nojiri, Y., Effects of elevated pCO₂ on the early development of the commercially important gastropod, Ezo abalone *Haliotis discus hannai*. *Fisheries Oceanography* **2011**, *20*, (5), 357-366.

32. Lischka, S.; Büdenbender, J.; Boxhammer, T.; Riebesell, U., Impact of ocean acidification and elevated temperatures on early juveniles of the polar shelled pteropod *Limacina helicina*: Mortality, shell degradation, and shell growth. *Biogeosciences* **2011**, *8*, (4), 919-932.

33. Maier, C.; Schubert, A.; Berzunza Sànchez, M. M.; Weinbauer, M. G.; Watremez, P.; Gattuso, J. P., End of the Century pCO₂ Levels Do Not Impact Calcification in Mediterranean Cold-Water Corals. *PLoS ONE* **2013**, *8*, (4).

34. Albright, R.; Mason, B.; Miller, M.; Langdon, C., Ocean acidification compromises recruitment success of the threatened Caribbean coral *Acropora palmata*. *Proceedings of the National Academy of Sciences of the United States of America* **2010**, *107*, (47), 20400-20404.

35. Martin, S.; Richier, S.; Pedrotti, M. L.; Dupont, S.; Castejon, C.; Gerakis, Y.; Kerros, M. E.; Oberhänsli, F.; Teyssié, J. L.; Jeffree, R.; Gattuso, J. P., Early development and molecular plasticity in the Mediterranean sea urchin *Paracentrotus lividus* exposed to CO₂-driven acidification. *Journal of Experimental Biology* **2011**, *214*, (8), 1357-1368.

36. Matson, P. G.; Yu, P. C.; Sewell, M. A.; Hofmann, G. E., Development under elevated pCO₂ conditions does not affect lipid utilization and protein content in early life-history stages of the purple sea urchin, *Strongylocentrotus purpuratus*. *Biological Bulletin* **2012**, *223*, (3), 312-327.

37. Melzner, F.; Stange, P.; Trübenbach, K.; Thomsen, J.; Casties, I.; Panknin, U.; Gorb, S. N.; Gutowska, M. A., Food supply and seawater pCO₂ impact calcification and internal shell dissolution in the blue mussel *Mytilus edulis*. *PLoS ONE* **2011**, *6*, (9).

38. Nakamura, M.; Ohki, S.; Suzuki, A.; Sakai, K., Coral larvae under ocean acidification: Survival, metabolism, and metamorphosis. *PLoS ONE* **2011**, *6*, (1).

39. Noisette, F.; Duong, G.; Six, C.; Davoult, D.; Martin, S., Effects of elevated pCO₂ on the metabolism of a temperate rhodolith Lithothamnion corallioides grown under different temperatures. *Journal of Phycology* **2013**, *49*, (4), 746-757.

40. Pansch, C.; Nasrolahi, A.; Appelhans, Y. S.; Wahl, M., Impacts of ocean warming and acidification on the larval development of the barnacle *Amphibalanus improvisus*. *Journal of Experimental Marine Biology and Ecology* **2012**, *420-421*, 48-55.

41. Pedersen, S. A.; Våge, V. T.; Olsen, A. J.; Hammer, K. M.; Altin, D., Effects of elevated carbon dioxide (CO₂) concentrations on early developmental stages of the marine copepod *Calanus finmarchicus gunnerus* (Copepoda: Calanoidae). *Journal of Toxicology and Environmental Health - Part A: Current Issues* **2014**, *77*, (9-11), 535-549.

42. Pistevos, J. C. A.; Calosi, P.; Widdicombe, S.; Bishop, J. D. D., Will variation among genetic individuals influence species responses to global climate change? *Oikos* **2011**, *120*, (5), 675-689.

43. Ragazzola, F.; Foster, L. C.; Form, A.; Anderson, P. S.; Hansteen, T. H.; Fietzke, J., Ocean acidification weakens the structural integrity of coralline algae. *Global Change Biology* **2012**, *18*, (9), 2804-2812.

44. Appelhans, Y. S.; Thomsen, J.; Pansch, C.; Melzner, F.; Wahl, M., Sour times: Seawater acidification effects on growth, feeding behaviour and acid-base status of *Asterias rubens* and *Carcinus maenas*. *Marine Ecology Progress Series* **2012**, *459*, 85-97.

45. Ragazzola, F.; Foster, L. C.; Form, A. U.; Büscher, J.; Hansteen, T. H.; Fietzke, J., Phenotypic plasticity of coralline algae in a High CO₂ world. *Ecology and Evolution* **2013**, *3*, (10), 3436-3446.

46. Reuter, K. E.; Lotterhos, K. E.; Crim, R. N.; Thompson, C. A.; Harley, C. D. G., Elevated pCO₂ increases sperm limitation and risk of polyspermy in the red sea urchin *Strongylocentrotus franciscanus*. *Global Change Biology* **2011**, *17*, (1), 163-171.

47. Rodolfo-Metalpa, R.; Lombardi, C.; Cocito, S.; Hall-Spencer, J. M.; Gambi, M. C., Effects of ocean acidification and high temperatures on the bryozoan *Myriapora truncata* at natural CO₂ vents. *Marine Ecology* **2010**, *31*, (3), 447-456.

48. Saderne, V.; Wahl, M., Differential Responses of Calcifying and Non-Calcifying Epibionts of a Brown Macroalga to Present-Day and Future Upwelling pCO₂. *PLoS ONE* **2013**, *8*, (7).

49. Schoepf, V.; Grottoli, A. G.; Warner, M. E.; Cai, W. J.; Melman, T. F.; Hoadley, K. D.;
Pettay, D. T.; Hu, X.; Li, Q.; Xu, H.; Wang, Y.; Matsui, Y.; Baumann, J. H., Coral Energy
Reserves and Calcification in a High-CO₂ World at Two Temperatures. *PLoS ONE* 2013, *8*, (10).
50. Takahashi, A.; Kurihara, H., Ocean acidification does not affect the physiology of the

tropical coral *Acropora digitifera* during a 5-week experiment. *Coral Reefs* **2013**, *32*, (1), 305-314.

51. Vogel, N.; Uthicke, S., Calcification and photobiology in symbiont-bearing benthic foraminifera and responses to a high CO₂ environment. *Journal of Experimental Marine Biology and Ecology* **2012**, *424-425*, 15-24.

52. Asnaghi, V.; Chiantore, M.; Mangialajo, L.; Gazeau, F.; Francour, P.; Alliouane, S.; Gattuso, J. P., Cascading Effects of Ocean Acidification in a Rocky Subtidal Community. *PLoS ONE* **2013**, *8*, (4).

53. Yu, P. C.; Matson, P. G.; Martz, T. R.; Hofmann, G. E., The ocean acidification seascape and its relationship to the performance of calcifying marine invertebrates: Laboratory experiments on the development of urchin larvae framed by environmentally-relevant pCO₂/pH. *Journal of Experimental Marine Biology and Ecology* **2011**, *400*, (1-2), 288-295.

54. Bögner, D.; Bickmeyer, U.; Köhler, A., CO₂-induced fertilization impairment in *Strongylocentrotus droebachiensis* collected in the Arctic. *Helgoland Marine Research* **2014**, *68*, (2), 341-356.

55. Bradassi, F.; Cumani, F.; Bressan, G.; Dupont, S., Early reproductive stages in the crustose coralline alga *Phymatolithon lenormandii* are strongly affected by mild ocean acidification. *Marine Biology* **2013**, *160*, (8), 2261-2269.

56. Comeau, S.; Carpenter, R. C.; Nojiri, Y.; Putnam, H. M.; Sakai, K.; Edmunds, P. J., Pacific-wide contrast highlights resistance of reef calcifiers to ocean acidification. *Proceedings* of the Royal Society B: Biological Sciences **2014**, 281, (1790).

57. Doropoulos, C.; Diaz-Pulido, G., High CO₂ reduces the settlement of a spawning coral on three common species of crustose coralline algae. *Marine Ecology Progress Series* **2013**, *475*, 93-99.

58. Egilsdottir, H.; Noisette, F.; Noël, L. M. L. J.; Olafsson, J.; Martin, S., Effects of pCO₂ on physiology and skeletal mineralogy in a tidal pool coralline alga *Corallina elongata*. *Marine Biology* **2013**, *160*, (8), 2103-2112.

59. Gonzalez-Bernat, M. J.; Lamare, M.; Barker, M., Effects of reduced seawater pH on fertilisation, embryogenesis and larval development in the Antarctic seastar *Odontaster validus*. *Polar Biology* **2013**, *36*, (2), 235-247.

60. Haynert, K.; Schönfeld, J., Impact of changing carbonate chemistry, temperature, and salinity on growth and test degradation of the benthic foraminifer *Ammonia aomoriensis*. *Journal of Foraminiferal Research* **2014**, *44*, (2), 76-89.

61. Hettinger, A.; Sanford, E.; Hill, T. M.; Russell, A. D.; Sato, K. N. S.; Hoey, J.; Forsch, M.; Page, H. N.; Gaylord, B., Persistent carry-over effects of planktonic exposure to ocean acidification in the Olympia oyster. *Ecology* **2012**, *93*, (12), 2758-2768.

62. Sheppard Brennand, H.; Soars, N.; Dworjanyn, S. A.; Davis, A. R.; Byrne, M., Impact of ocean warming and ocean acidification on larval development and calcification in the sea urchin *Tripneustes gratilla*. *PLoS ONE* **2010**, *5*, (6).

63. Iguchi, A.; Ozaki, S.; Nakamura, T.; Inoue, M.; Tanaka, Y.; Suzuki, A.; Kawahata, H.; Sakai, K., Effects of acidified seawater on coral calcification and symbiotic algae on the massive coral *Porites australiensis*. *Marine Environmental Research* **2012**, *73*, 32-36.

64. Lohbeck, K. T.; Riebesell, U.; Reusch, T. B. H., Adaptive evolution of a key phytoplankton species to ocean acidification. *Nature Geoscience* **2012**, *5*, (5), 346-351.

65. Mingliang, Z.; Jianguang, F.; Jihong, Z.; Bin, L.; Shengmin, R.; Yuze, M.; Yaping, G., Effect of marine acidification on calcification and respiration of Chlamys farreri. *Journal of Shellfish Research* **2011**, *30*, (2), 267-271.

66. Moulin, L.; Catarino, A. I.; Claessens, T.; Dubois, P., Effects of seawater acidification on early development of the intertidal sea urchin *Paracentrotus lividus* (Lamarck 1816). *Marine Pollution Bulletin* **2011**, *62*, (1), 48-54.

67. Onitsuka, T.; Kimura, R.; Ono, T.; Takami, H.; Nojiri, Y., Effects of ocean acidification on the early developmental stages of the horned turban, *Turbo cornutus. Marine Biology* **2014**, *161*, (5), 1127-1138.

68. Sinutok, S.; Hill, R.; Doblin, M. A.; Wuhrer, R.; Ralph, P. J., Warmer more acidic conditions cause decreased productivity and calcification in subtropical coral reef sediment-dwelling calcifiers. *Limnology and Oceanography* **2011**, *56*, (4), 1200-1212.

69. Suwa, R.; Nakamura, M.; Morita, M.; Shimada, K.; Iguchi, A.; Sakai, K.; Suzuki, A., Effects of acidified seawater on early life stages of scleractinian corals (Genus *Acropora*). *Fish Sci* **2010**, *76*, (1), 93-99.

70. Timmins-Schiffman, E.; O'Donnell, M. J.; Friedman, C. S.; Roberts, S. B., Elevated pCO₂ causes developmental delay in early larval Pacific oysters, *Crassostrea gigas. Marine Biology* **2013**, *160*, (8), 1973-1982.

71. Wolfe, K.; Smith, A. M.; Trimby, P.; Byrne, M., Vulnerability of the paper nautilus (*Argonauta nodosa*) shell to a climate-change ocean: Potential for extinction by dissolution. *Biological Bulletin* **2012**, *223*, (2), 236-244.

72. Büdenbender, J.; Riebesell, U.; Form, A., Calcification of the Arctic coralline red algae *Lithothamnion glaciale* in response to elevated CO₂. *Marine Ecology Progress Series* **2011**, *441*, 79-87.

73. Comeau, S.; Jeffree, R.; Teyssié, J. L.; Gattuso, J. P., Response of the arctic pteropod *Limacina helicina* to projected future environmental conditions. *PLoS ONE* **2010**, *5*, (6).