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Supplementary Information 

Table S1 The proportion of queens in A) the pesticide or control treatment groups, B) short or long hibernation groups, C) a combination of 
these, which laid eggs by 10 weeks, reared adult offspring (shown as both a proportion of the total number of queens in the experiment, and as a 
proportion of egg laying queens only). Data shown only includes queens which survived the whole experiment. 

*Mean (S.E.) number of adult workers reared after 14 weeks of the experiment 

Treatment N 
Queens  

N Queens 
which laid 

eggs 

% Queens 
which laid 

eggs 

N Queens 
which reared 

adult 
offspring 

% Queens (of 
total) which 

reared adults 

Number of 
adult workers 

produced* 

% Queens (inc. 
egg layers only) 

which reared 
adults 

A Pesticide 
Control 98 51 52 19 19 14 (3.3) 37 

Pesticide 99 38 38 25 25 9 (1.9) 66 

B Hibernation 
Short Hib 99 28 28 18 18 7 (1.9) 64 
Long Hib 98 61 62 26 27 14 (2.7) 43 

C 

Hibernation 
Short 

Control 50 16 32 8 16 9 (11.2) 50 
Pesticide  49 12 24 10 20 5 (3.6) 83 

Hibernation 
Long 

Control 48 35 73 11 23 18 (15.0) 31 
Pesticide  50 26 52 15 30 12 (11.6) 58 
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Table S2 The average daily syrup consumption (ml) of queens during the two week pesticide treatment phase of the experiment. Data includes 
all queens included in the final analysis for syrup consumption (and excludes individuals for which no data were available for any of the 
variables in the analysis.) 

 

Treatment N Queens 
 

Average daily syrup consumption (ml) S.E. 

Pesticide Control 107 0.66 0.037 
Pesticide 113 0.67 0.037 

Hibernation 
Short 111 0.53 0.037 
Long 109 0.81 0.032 

Parasite Uninfected 139 0.68 0.033 
Infected 81 0.65 0.043 

	

 

 

 

 

 

 

  



3	
	

Model Selection Tables  

Table S3 Model selection table showing candidate generalised linear models for queen survival after hibernation. Models in bold are those 
within two AICc units of the best fitting model. 

Candidate	models:	fixed	factors	 Loglik	 AICc	 Delta	 Weight	
NULL	 -182.487	 365	 0	 0.235	
Thorax	 -182.148	 366.3	 1.34	 0.12	
Pesticide	 -182.324	 366.7	 1.69	 0.101	
Infection	 -182.337	 366.7	 1.72	 0.099	

Hibernation	 -182.418	 366.9	 1.88	 0.092	
Pesticide	+	Thorax	 -181.937	 367.9	 2.95	 0.054	
Infection	+	Thorax	 -181.954	 368	 2.99	 0.053	

Hibernation	+	Thorax	 -182.103	 368.3	 3.28	 0.045	
Pesticide	+	Infection	 -182.168	 368.4	 3.42	 0.043	

Hibernation	+	Infection	 -182.252	 368.6	 3.58	 0.039	
Hibernation	+	Pesticide	 -182.252	 368.6	 3.58	 0.039	
Hibernation	*	Infection	 -181.74	 369.6	 4.61	 0.023	
Hibernation	*	Pesticide	 -181.986	 370.1	 5.1	 0.018	

Hibernation	+	Pesticide	+	Infection	 -182.08	 370.3	 5.29	 0.017	
Pesticide	*	Infection	 -182.148	 370.4	 5.43	 0.016	

Hibernation	+	Pesticide	+	Infection	+	Thorax	 -181.889	 372	 6.98	 0.007	
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Table S4 Model selection table showing candidate linear models for syrup consumption by queens during the two-week pesticide exposure 
period. Models in bold are those within two AICc units of the best fitting model. 

Fixed	factors	 Loglik	 AICc	 Delta	 Weight	

Hibernation	 -86.83	 179.8	 0	 0.422	
Pesticide	+	Hibernation	 -86.709	 181.6	 1.83	 0.169	
Hibernation	+	Infection	 -86.806	 181.8	 2.03	 0.153	
Pesticide	*	Hibernation	 -86.16	 182.6	 2.83	 0.103	

Pesticide	+	Hibernation	+	Infection	 -86.685	 183.6	 3.88	 0.061	
Hibernation	*	Infection	 -86.757	 183.8	 4.02	 0.056	

Pesticide	+	Hibernation	+	Infection	+	Thorax	 -86.155	 184.7	 4.93	 0.036	
null	 -102.161	 208.4	 28.61	 0	

Infection	 -102.026	 210.2	 30.39	 0	
Thorax	 -102.069	 210.2	 30.48	 0	
Pesticide	 -102.095	 210.3	 30.53	 0	

Pesticide	+	Infection	 -101.959	 212.1	 32.33	 0	
Pesticide	*	Infection	 -101.092	 212.5	 32.69	 0	
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Table S5 Model selection table showing candidate binomial generalised linear models for presence or absence of egg laying by queens. Models 
in bold are those within two AICc units of the bet fitting model. 

Candidate	models:	fixed	factors	 Loglik	 AICc	 Delta	 Weight	
Hibernation	+	Pesticide	+	Thorax	 -120.262	 248.7	 0.00	 0.298	
Hibernation	+	Pesticide	 -121.647	 249.4	 0.69	 0.211	
Hibernation	+	Thorax	 -122.166	 250.5	 1.73	 0.126	
Hibernation	*	Pesticide	 -121.273	 250.8	 2.02	 0.108	
Hibernation	+	Pesticide	+	Infection	+	Thorax	 -120.245	 250.8	 2.07	 0.106	
Hibernation	 -123.924	 251.9	 3.18	 0.061	
Hibernation	+	Infection	+	Thorax	 -122.16	 252.5	 3.80	 0.045	
Hibernation	*	Infection	 -122.825	 253.9	 5.13	 0.023	
Hibernation	+	Infection	 -123.895	 253.9	 5.18	 0.022	
Pesticide	 -133.772	 271.6	 22.87	 0	
Pesticide	+	Thorax	 -133.112	 272.3	 23.62	 0	
Null	 -135.632	 273.3	 24.55	 0	
Thorax	 -134.734	 273.5	 24.80	 0	
Pesticide	+	Infection	 -133.764	 273.7	 24.92	 0	
Pesticide	+	Infection	+	Thorax	 -133.089	 274.4	 25.65	 0	
Infection			 -135.62	 275.3	 26.57	 0	
Pesticide	*	Infection	 -133.585	 275.4	 26.65	 0	
Infection	+	Thorax	 -134.7	 275.5	 26.79	 0	
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Table S6 Model selection table showing candidate Cox regression models for timing of egg laying by queens. Models in bold are those within 
two AICc units of the best fitting model. 

Candidate	models	 Loglik	 AICc	 Delta	 Weight	
Hibernation	+	P1	+	P2	 -422.528	 851.1	 0	 0.489	

Hibernation	+	P1	+	P2	+	Infection	+	Thorax	 -421.426	 853	 1.89	 0.19	
Hibernation	+	P1	+	P2	+	Infection	 -422.474	 853.1	 1.94	 0.186	
Hibernation	*	P1	+	Hibernation	*P2	 -421.762	 853.7	 2.57	 0.136	

Hibernation	+	Thorax	 -431.853	 867.7	 16.62	 0	
Hibernation	 -433.319	 868.6	 17.53	 0	

Hibernation	*	Infection	 -432.172	 870.4	 19.29	 0	
Hibernation	+	Infection	 -433.275	 870.6	 19.46	 0	

P1	+	P2	 -433.473	 871	 19.86	 0	
P1	+	P2	+	Thorax	 -432.835	 871.7	 20.61	 0	
P1	+	P2	+	Infection	 -433.375	 872.8	 21.69	 0	

P1	*	Infection	+	P2	*	Infection	 -433.254	 876.7	 25.55	 0	
Null	 -433.898	 887.8	 36.68	 0	

Thorax	 -422.973	 888	 36.84	 0	
Infection	 -433.8	 889.6	 38.49	 0	

Infection	+	Thorax	 -422.832	 889.7	 38.58	 0	
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Table S7 Candidate binomial generalised linear models for presence or absence of adult offspring (including all queens). Models in bold are 
those within two AICc units of the best fitting model. 

Candidate	models:	fixed	factors	 Loglik	 AICc	 Delta	 Weight	
Null	 -104.63	 211.3	 0	 0.15	

Hibernation	 -103.636	 211.3	 0.05	 0.146	
Hibernation	+	Thorax	 -102.851	 211.8	 0.55	 0.114	

Thorax	 -103.996	 212.1	 0.77	 0.102	
Pesticide	 -104.14	 212.3	 1.06	 0.088	

Hibernation	+	Pesticide	 -103.163	 212.4	 1.17	 0.084	
Pesticide	+	Thorax	 -103.364	 212.9	 1.57	 0.069	

Hibernation	+	Infection	 -103.538	 213.2	 1.92	 0.058	
Infection	 -104.577	 213.2	 1.94	 0.057	

Infection	+	Thorax	 -103.968	 214.1	 2.78	 0.037	
Pesticide	+	Infection	 -104.092	 214.3	 3.03	 0.033	

Hibernation	+	Pesticide	+	Infection		 -103.073	 214.4	 3.07	 0.032	
Hibernation	+	Pesticide	+	Infection	+	Thorax	 -102.155	 214.6	 3.34	 0.028	
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Table S8 Model selection table showing candidate binomial generalised linear models for presence or absence of adult offspring (including only 
queens which laid eggs). Models in bold are those within two AICc units of the best fitting model. 

Candidate	models:	fixed	factors	 Loglik	 AICc	 Delta	 Weight	
Hibernation	+	Pesticide	 -56.119	 118.5	 0	 0.415	

Pesticide	 -58.087	 120.3	 1.79	 0.169	
Hibernation	+	Pesticide	+	Infection		 -56.09	 120.7	 2.14	 0.143	

Pesticide	+	Thorax	 -57.809	 121.9	 3.38	 0.077	
Pesticide	+	Infection	 -57.888	 122.1	 3.54	 0.071	

Hibernation	+	Pesticide	+	Infection	+	Thorax	 -55.992	 122.7	 4.19	 0.051	
Hibernation	 -59.865	 123.9	 5.35	 0.029	

Null	 -61.684	 125.4	 6.9	 0.013	
Hibernation	+	Infection	 -59.853	 126	 7.47	 0.01	
Hibernation	+	Thorax	 -59.855	 126	 7.47	 0.01	

Infection	 -61.549	 127.2	 8.72	 0.005	
Thorax	 -61.593	 127.3	 8.81	 0.005	

Infection	+	Thorax	 -61.495	 129.3	 10.75	 0.002	
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Modelling methods: a Bayesian model for colony capacity 

For a bumblebee population to persist, bumblebee colonies need to produce sufficiently many new colonies over their reproductive cycle. A 

minimum requirement for persistence is that the average number of colonies produced must be at least one when the bumblebee population 

reaches very low density. This result is underpinned by results from branching process theory: if the number of colonies produced is a random 

number drawn from a distribution and if the mean number of colonies is less than one, extinction is certain in the long run. In what follows we 

consider ultimate persistence and extinction of populations: the probability of extinction and persistence in the limit of time tending to infinity. If 

the mean number of daughter colonies exceeds one, the probability of extinction, starting from a single colony, is smaller than one, meaning that 

there is positive chance that the population persists. When new colonies are repeatedly introduced or if the initial population is of sufficient size 

the probability of extinction is very small and persistence virtually certain. Therefore, the mean number of colonies produced is a key parameter. 

If it takes value one a population is on the threshold between persistence and extinction. There is a parallel here with epidemiology and 

metapopulation theory, where similar threshold exists in that each infection or patch, needs to be capable, on average, of producing at least one 

new infection or patch over its lifetime to guarantee persistence46, and where the key parameters are known as the basic reproductive number and 

metapopulation capacity, respectively. We will call the average number of colonies produced per colony the colony capacity. 

If we would know the precise value of the colony capacity, it would allow us to predict the persistence of the bumblebee population. The number 

of new colonies produced depends on a number of factors: firstly, it depends on the average number of gynes (unmated queens) produced by a 

colony. These gynes must mate, survive hibernation, find a suitable nest site, and following this they will need to initiate a colony. If we can 

quantify these factors, we can quantify the colony capacity. Generally, the information needed to calculate the colony capacity is either 

unknown, or not known in sufficient detail. Because we do not have complete information about the value of these factors, there is a certain 

amount of uncertainty about the value of the colony capacity. What we do here is show how partial information can be used to calculate the 

likely value of the colony capacity, and how we can quantify the uncertainty about the components of this parameter, to arrive at a likelihood 
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profile for the colony capacity. Using our results on the effects of pesticide exposure, we can then also find the likelihood profile of the colony 

capacity after pesticide use, and can use this to make predictions about persistence and extinction  

In order to calculate a likelihood profile, we need a model that describes the number of daughter colonies produced. Such a model is necessarily 

a simplification of reality. It ignores a number of factors that exist in the real world, such as the spatial and temporal variability in the number of 

colonies produced, and the density dependence in the process. Density dependence we will ignore because the value of the threshold depends on 

the dynamics for low densities, and the value of the threshold is not affected by density dependence. Spatial patterning we assume to be 

incorporated in the averages in the number of colonies produced. Temporal variation and correlation can be important in environments where the 

colony capacity is different from one year to the next. In that case, the colony capacity is the geometric mean of the values over the years, and 

thus on the variance over the years. To estimate the geometric mean one would need a number of measurements over the years to quantify the 

colony capacity. The published information we use only covers a single year due to logistical and financial constraints on performing such large 

scale experiments, and we are not aware of sufficient information from across multiple years to form a precise estimate. What we do instead is 

use the information we have on B. terrestris, which we know is from a relatively good year. If every year were to be like this, we conclude that 

the population will persist and that the colony capacity in such a year is at least one. Using a Bayesian approach we calculate the likelihood of 

the colony capacity based on this assumption and use this to extrapolate the effect of pesticide exposure on overwintering bumblebee queens. 

Because we based our calculations on data from what we know to be a favourable year, our results are a conservative estimate of the likelihood 

that the population can become extinct through pesticide exposure, based on the uncertainty we have about parameter values. 

A model Several studies have quantified the success of various stages of the bumblebee life cycle. Baer and Schmid-Hempel75 studied the 

number of B. terrestris gynes produced by a colony under field conditions (a quantity which we call mg), and found that 18 colonies produced a 

total of 155 gynes. The probability to survive hibernation (which we call ph) and the probability to be able initiate a colony following survival 

(which we call pc) were studied by Beekman and colleagues42. They found that 23 of 45 (51.1%) queens survived a 6-month hibernation period, 

and that 11 of the 23 surviving queens initiated a colony. Following over-winter survival queens need to find a nest site. The probabilities of 



11	
	

successful mating and finding a nest site have not been studied, and we therefore have no information about values of these parameters. We have 

bundled these two unknown parameters together and call their product pnm. Table S9 provides a summary of the key parameters. 

Although we do not know what the exact value of the population capacity is based on the above observations, we can quantify the certainty with 

which the colony capacity takes a certain value, using a Bayesian approach. The capacity of the population is the product mgphpcpnm and its 

logarithm is ln mg + ln ph + ln pc + ln pnm . For a population to persist, the capacity of the population needs to be at least 1, or equivalently, its 

logarithm needs to be at least 0. Because natural B. terrestris populations persist, we also can include in our considerations that the capacity must 

be at least 1. We will then establish what reduction in the probability of colony initiation is produced by exposure to thiamethoxam after 

hibernation. By combining this with the probability profile of the colony capacity we can calculate the increase in the chances of population 

extinction caused by thiamethoxam exposure. 
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Table S9 Key model parameters and data sources.  

Parameter Description  Data source 

C 
ln C=z 

Colony capacity: the expected number of new 

colonies produced by a colony, averaged over 

time and space. C=mgphpcpnm. 

Compound parameter, using all sources 

below 

ph 
ln ph=zh 

Chance to survive hibernation  42 

mg 
ln mg=zg 

Mean number of gynes produced by a colony  75 

pc 
ln pc=zc 

Chance to initiate a colony following survival  42 

pnm Chance to mate successfully and 

consequently find a nest site 

No data 

rc 
ln rc=zr 

Reduction in the chance of initiating a colony 

under pesticide exposure.  

This study 

pcp 
ln pcp=zc+zr  

Probability to establish a colony under 

pesticide exposure is reduced to pcp = pcrc 

Compound parameter 
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The number of gynes produced by established colonies 

Bumblebee colonies in the wild produce a variable number of daughter colonies. We assume a geometric distribution for the number of gynes, 

(unmated queens) with mean mg. The probability of a colony to produce x gynes is: 

 

If we collect data from ng colonies placed in the field, the probability to find x1, x2 … xng gynes is: 

 

 

where the total number of gynes in the ng colonies is      Assuming an uninformed prior for mg, the likelihood of the mean, mg, is 

proportional to: 

 

 

and normalized to a probability this is: 
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Note that kg and ng are sufficient statistics, and there is no need to know the number of gynes produced per colony. The probability density 

function of zg = ln mg is: 

 

 

 

with moment generation function: 

 

 

 

 

 

Hibernation survival 

Queens either survive hibernation, or not. A typical experiment to establish the chance, which we call ph, to survive consists of keeping a nh 

queens for a certain length of the hibernation period and establish the number kh that survive. We assume that the survival of an individual is 

independent of the survival of others, so that the probability of having kh out of nh queens surviving is given by a binomial distribution: 
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If we do an experiment and find that there are kh queens surviving out of nh we can turn this around and infer the likelihood, assuming an 

uninformed prior for ph, that the chance to survive is ph as: 

 

 

 

and the probability of the parameter ph is: 

 

For future use it is helpful to know the probability distribution of zh = ln ph, is given by: 

 

 

 

The moment generating function of this distribution is: 
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Initiating a colony 

Following hibernation queens need to initiate a colony. Let the chance of initiating a colony be given by pc. A typical experiment to quantify pc 

consists of taking nc queens and establishing the number k that initiate a colony. We assume that the probability of having kc out of nc queens 

initiating a colony is given by a binomial distribution: 

 

 

 

If we do an experiment and find that there are kc queens initiating a colony out of nc we can also turn this around and infer, assuming an 

uninformed prior for pc, the likelihood that the chance to initiate a colony is pc as: 

 

 

 

and the probability of the parameter pc is: 

 

 

 

The moment generating function of zc = ln pc is: 
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Calculating the effect of pesticide exposure 

In an experiment the effect of pesticide was assessed on the probability of initiating a colony. In a control experiment it was established that kpc 

out of npc queens established a colony. Among the treated queens, kpt out of npt queens establish a colony. We assume that the probability to 

establish a colony under pesticide is reduced to pcp = pcrc. What is the likelihood of rc? Note that the control data kpc and npc need to be obtained 

with the same protocol (apart from pesticide treatment) as kpt and npt, (for instance because the same hibernation period needs to be used) so that 

it might not be possible to combine the data kpc, npc with kc and nc. The probability of having kpc out of npc queens initiating a colony is given by 

a binomial distribution: 

 

 

 

Using an uninformed prior the likelihood that the chance to initiate a colony is pc as: 

 

 

 

and the probability of the parameter pc is: 
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and the pdf of the logarithm of zc = ln pc is: 

  
When treated with pesticide, kpt out of npt queens establish a colony. We assume that the probability to establish a colony under pesticide is 

reduced to pcp = pcrc, where rc is the reduction in the chance of initiating a colony caused by the pesticide. What is the probability of rc? 

The probability of having kpt out of npt queens initiating a colony is given by a: 

 

 

 

 

 

 

Assuming an uninformed prior for pcrc, and assuming that the probability of pc is inferred from the control, the likelihood of rc is: 
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The probability of these parameters, given the data, is: 

 

 

 

 

 

 

 

 

From this we can calculate the marginal probability of rc as: 

 

 

 

 

 

  The logarithm rc, denoted zr = ln rc, is distributed as: 

  
In our calculation we integrated this numerically. 
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Calculating the probability of the colony capacity 

To calculate the probability of the capacity, C, we calculated the probability of  z = ln C = ln mg +ln ph +ln pc +ln pnm.  We have no information 

on the value of pnm, and therefore assume that it is uniformly distributed on the interval [0;1]: The probability density of z is then given by: 

 
 

The procedure above was used to calculate the probability of the colony capacity in the untreated situation. Note that, although there is no need 

to do so here in detail, should we want to calculate the probability distribution of z we could do this using the generating function of the 

logarithms of the other variable.  

After treatment, the logarithm of the colony capacity is given by zt  = ln mg +ln ph +ln pcp +ln pnm= z + zr. To calculate this probability 

distribution (the heat map) of the logarithm of the capacity affected by pesticide exposure we calculate the marginal probability of zt.: 

 
 

Next, we take into account that we know that the population is extant. Given this fact, we know that the colony capacity, measured as the 

geometric mean over the years needs to exceed one. Our measurement only covers a single year. However, because we know the year from 

which we have data was a good year for bumblebees the fact that the population is extant implies that the colony capacity in this year has to be at 

least one (if the colony capacity were to be less than one even in a good year the population would certainly be extinct). We can now use the 

probability for z = ln C that we have calculated as P(z=z) as a prior and then add the information that the colony capacity for this year must be at 

least one, and that the value of z for this particular year must be at least zero. This gives the posterior: 
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The procedure above was used to calculate probability of the colony capacity in the untreated situation. To calculate this probability distribution 

(the heat map) of the logarithm of the capacity affected by pesticide exposure we calculate, using zt = z + zr: 

 
 

 


