Supplementary Materials

Planarian cholinesterase: *in vitro* characterization of an evolutionarily ancient enzyme to study organophosphorus pesticide toxicity and reactivation

Archives of Toxicology

Authors: Danielle Hagstrom^{*1}, Hideto Hirokawa^{*2}, Limin Zhang², Zoran Radic², Palmer Taylor², and Eva-Maria S. Collins^{1,3}

*Authors contributed equally

¹ Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA

² Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA

³ Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA

Corresponding authors:

Eva-Maria S. Collins

Email: emscollins@physics.ucsd.edu

Palmer Taylor

Email: pwtaylor@ucsd.edu

Supplemental Tables.

Table S1. Calculated K_d ranges converted from IC₅₀ values for reversible inhibitors

	Substrate			
Inhibitor	0.1 mM ATCh	1 mM ATCh	0.1 mM BTCh	1 mM BTCh
Ethopropazine	5.1 x 10 ⁻⁵	1.4 x 10 ⁻⁴	3.4 x 10 ⁻⁵	1.2×10^{-4}
BW284c51	1.1 x 10 ⁻⁵	3.5 x 10 ⁻⁶	8.6 x 10 ⁻⁶	5.0 x 10 ⁻⁶
Donepezil ^b	8.9 x 10 ⁻⁵	6.9 x 10 ⁻⁵	ND^{a}	ND^{a}
Edrophonium	1.7 x 10 ⁻⁵	1.7 x 10 ⁻⁵	ND ^a	ND ^a
Tacrine	3.4 x 10 ⁻⁵	1.6 x 10 ⁻⁴	ND ^a	ND ^a

^aND (not determined)

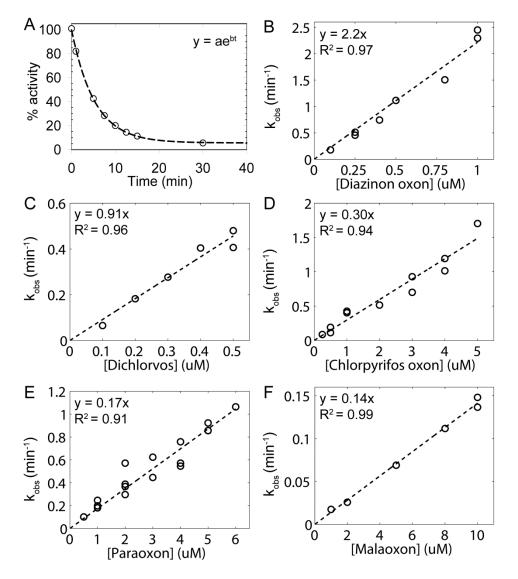
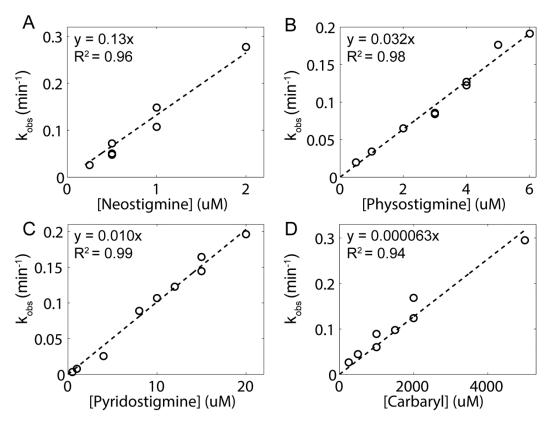

^bSince inhibition was not found to be reversible, $K_d = IC_{50}$

Table S2. Reported IC₅₀ (M) values of reversible inhibitors for human AChE


Inhibitor	IC ₅₀ (M)	References
Ethopropazine	1.8-2.6 x 10 ⁻⁴	(Atack et al. 1989)
BW284c51	1.8-2.8 x 10 ⁻⁸	(Giacobini 2000; Giacobini 2001)
Donepezil ^b	5.7 x 10 ⁻⁹	(Giacobini 2000)
Edrophonium	2.5-5.7 x 10 ⁻⁶	(Atack et al. 1989)
Tacrine	1.8-2.4 x 10 ⁻⁷	(Giacobini 2000; Giacobini 2001)
Propidium ^a	3.0 x 10 ⁻⁷	(Taylor and Lappi 1975)

 ${}^{a}K_{d}$ value for Torpedo californica AChE

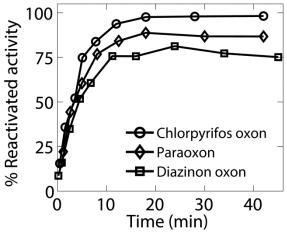

Supplemental Figures

Fig. S1 Rates of inhibition by OPs. **a** Raw inhibition values obtained over time from inhibition with 1 μ M chlorpyrifos oxon shown as an example. Percent activity values over time were fit by an exponential decay regression, equation shown, and the parameters a and b (k_{obs}) were determined using SigmaPlot software. This was repeated for each experiment on the varying concentrations of inhibitors. **b-f** For each OP (diazinon oxon (**b**), dichlorvos (**c**), chlorpyrifos oxon (**d**), paraoxon (**e**), and malaoxon (**f**)), k_{obs} vs concentration was plotted and the bimolecular rate constant (k_r) was determined as the slope of the linear regression. Regression equations and R² values for each fit are shown

Fig. S2 Rates of inhibition by carbamylating agents. For the carbamates **a** neostigmine, **b** physostigmine, **c** pyridostigmine, and **d** carbaryl, k_{obs} (as calculated in Materials and Methods and Fig S1) was plotted as a function of concentration and the bimolecular rate constant (k_r) was determined as the slope of the linear regression. Regression equations and R^2 values for each fit are shown

Fig S3 Reactivation rates are similar for OPs forming the same diethylphosphoryl DjChE conjugate. DjChE inhibited by either 1 μ M chlorpyrifos oxon (circles), 5 μ M paraoxon (diamonds), or 1 μ M diazinon oxon (squares) was reactivated by 100 mM NaF. Percent reactivated activity is based on an uninhibited control measured several times over the course of reactivation. The k_{obs} for each OP were found to be similar at 0.25, 0.25 and 0.26 min⁻¹ for chlorpyrifos oxon, paraoxon, and diazinon oxon, respectively